Notions of robustness for different types of dynamical systems

Manon BLANC

Introduction

- Motivated by the field of verification.
- Informal conjecture: undecidability in verification does not happen for robust systems.

- Approach: Asarin and Bouajjani (LICS '01).
- Our goal:
 - go from computability to complexity,

- Approach: Asarin and Bouajjani (LICS '01).
- Our goal:
 - go from computability to complexity,
 - quantifying the robustness to characterise PSPACE,

- Approach: Asarin and Bouajjani (LICS '01).
- Our goal:
 - go from computability to complexity,
 - quantifying the robustness to characterise PSPACE,
 - having a notion of robustness to characterise PTIME,

- Approach: Asarin and Bouajjani (LICS '01).
- Our goal:
 - go from computability to complexity,
 - quantifying the robustness to characterise PSPACE,
 - having a notion of robustness to characterise PTIME,
 - "applying" those notions to tillings.

Introduction

Frame : We want to talk about discrete- and continuous-time dynamical systems. We first use the framework of Turing machines

(seen as a particular dynamical system).

Space-perturbation of a Dynamical System

Let \mathcal{M}_n , the *n*-space-perturbed version of TM \mathcal{M} : the idea is that the *n*-perturbed version of the machine \mathcal{M} is unable to remain correct at a distance more than *n* from the head of the machine.

• a word accepted by $\mathcal M$ is also recognised by all the $\mathcal M_n$'s.

- a word accepted by $\mathcal M$ is also recognised by all the $\mathcal M_n$'s.
- $L_{n+1}(\mathcal{M}) \subseteq L_n(\mathcal{M}).$

- a word accepted by $\mathcal M$ is also recognised by all the $\mathcal M_n$'s.
- $L_{n+1}(\mathcal{M}) \subseteq L_n(\mathcal{M}).$
- $L_{\omega}(\mathcal{M}) = \bigcap_{n} L_{n}(\mathcal{M})$: this is the set of words accepted by \mathcal{M} when subject to arbitrarily "small" perturbations.

- a word accepted by $\mathcal M$ is also recognised by all the $\mathcal M_n$'s.
- $L_{n+1}(\mathcal{M}) \subseteq L_n(\mathcal{M}).$
- $L_{\omega}(\mathcal{M}) = \bigcap_{n} L_{n}(\mathcal{M})$: this is the set of words accepted by \mathcal{M} when subject to arbitrarily "small" perturbations.
- $L(\mathcal{M}) \subseteq L_{\omega}(\mathcal{M}) \subseteq \cdots \subseteq L_2(\mathcal{M}) \subseteq L_1(\mathcal{M}).$

Theorem (Perturbed reachability is co-c.e., from Asarin-Bouajjani 01)

 $L_{\omega}(\mathcal{M}) \in \Pi_1^0.$

Say *L* is robust if $L = L_{\omega}$:

L robust $\Rightarrow L$ decidable.

- Definition of the notion of perturbation of a TM
- Some properties

A Characterisation of PSPACE

Definition For $f : \mathbb{N} \to \mathbb{N}$, we write $L_{\{f\}}(\mathcal{M})$ the set of words accepted by \mathcal{M} with a "space-perturbation" f: $L_{\{f\}}(\mathcal{M}) = \{w | w \in L_{f(\ell(w))}(\mathcal{M})\}.$

Theorem (Polynomial precision robust \Leftrightarrow PSPACE)

 $L \in \mathsf{PSPACE}$ iff for some \mathcal{M} and some polynomial p, $L = L(\mathcal{M}) = L_{\{p\}}(\mathcal{M}).$ • Characterisation of PSPACE with space-perturbated TMs

Reachability Relations

To each rational discrete-time dynamical system \mathcal{P} is associated its reachability relation $\mathcal{R}^{\mathcal{P}}(\cdot, \cdot)$ on $\mathbb{Q}^d \times \mathbb{Q}^d$.

 \rightarrow two rational points **x** and **y**, $R^{\mathcal{P}}(\mathbf{x}, \mathbf{y})$ holds iff there exists a trajectory of \mathcal{P} from **x** to **y**.

Reachability Relation With Small Perturbations

- Consider now a discrete-time dynamical system *P* with function **f** Lipschitz on a compact domain:
 For ε > 0 we consider the ε-perturbed system *P*_ε.
- Its trajectories are defined as sequences x_t satisfying
 d(x_{t+1}, f(x_t)) < ε for all t.

• We denote reachability in the system $\mathcal{P}_{\varepsilon}$ by $R_{\varepsilon}^{\mathcal{P}}(\cdot, \cdot)$.

•
$$R^{\mathcal{P}}_{\omega} = \bigcap_{\epsilon} R^{\mathcal{P}}_{\varepsilon}(\cdot, \cdot)$$
 is co-c.e..

• Say $R^{\mathcal{P}}$ is robust when $R^{\mathcal{P}}_{\omega} = R^{\mathcal{P}}$: $R^{\mathcal{P}}$ robust $\Rightarrow R^{\mathcal{P}}$ computable.

Proposition (Robust \Leftrightarrow reachability true or ϵ -far from being true)

We have $R_{\omega}^{\mathcal{P}} = R^{\mathcal{P}}$ iff for all $\mathbf{x}, \mathbf{y} \in \mathbb{Q}^d$, either $R^{\mathcal{P}}(\mathbf{x}, \mathbf{y})$ is true or $R^{\mathcal{P}}(\mathbf{x}, \mathbf{y})$ is false and there exists $\epsilon > 0$ such that it is ϵ -far from being true.

 \Rightarrow relation with δ -reachability (Gao, Kong, Chen, Clarke '06).

Input:

- A point $\textbf{x} \in \mathbb{Q}$
- A set B
- A dynamic given by the function $f \in \mathbb{R}^{\mathbb{R}}$
- The promise that the dynamics starting from **x** never ends up on the border of *B*.

Input:

- A point $\textbf{x} \in \mathbb{Q}$
- A set B
- A dynamic given by the function $f \in \mathbb{R}^{\mathbb{R}}$
- The promise that the dynamics starting from **x** never ends up on the border of *B*.

Output: Does the dynamics starting from \mathbf{x} reach B ?

Theorem (Polynomially robust to precision \Rightarrow PSPACE)

Take a Lipschitz system on a compact, with **f** poly. time computable, whose domain X is a closed rational box, and that for all rational **x**, $R^{\mathcal{P}}(\mathbf{x})$ is closed and $R^{\mathcal{P}}(\mathbf{x}) = R^{\mathcal{P}}_{\{p\}}(\mathbf{x})$ for a polynomial p. Then the ball decision problem is in PSPACE.

Theorem (Polynomially robust to precision \leftarrow PSPACE-completeness)

Any PSPACE language is reducible to PAM's reachability relation: $R^{\mathcal{P}} = R^{\mathcal{P}}_{\{p\}}, \text{ for some polynomial } p.$

- Perturbated reachability relation for rational dynamical systems
- Characterisation of PSPACE in that framework (with additionnal properties)

Alternative view: Drawability and extension to the reals

But we could also see it as a relation over the reals and use the framework of CA, regarding subsets of $\mathbb{R}^d \times \mathbb{R}^d$.

Definition

A closed subset of \mathbb{R}^d is said *c.e. closed* if we can effectively enumerate the rational open balls intersecting it.

From the statements of CA, the following holds:

Theorem

Consider a computable discrete time system \mathcal{P} whose domain is a computable compact. For all \mathbf{x} , $cls(R^{\mathcal{P}}(\mathbf{x})) \subseteq \mathbb{R}^d$ is a c.e. closed subset.

Theorem (Perturbed reachability is co-c.e.)

Consider a dynamical system, with **f** locally Lipschitz, computable, whose domain is a computable compact, then, for all **x**, $cls(R^{\mathcal{P}}_{\omega}(\mathbf{x})) \subseteq \mathbb{R}^d$ is a co-c.e. closed subset.

Say $R^{\mathcal{P}}$ is robust when $R^{\mathcal{P}}_{\omega} = R^{\mathcal{P}}$: $R^{\mathcal{P}}$ robust $\Rightarrow R^{\mathcal{P}}$ computable.

From CA, Computable \Leftrightarrow can be plotted.

Theorem

 $R^{\mathcal{P}}$ closed and can be plotted effectively in a name of $\mathbf{f} \Leftrightarrow$ the system is robust, i.e. $R_{\omega}^{\mathcal{P}} = R^{\mathcal{P}}$.

• We have a nice extension to geometric properties : what can be drawn is robust

Time-perturbation

Definition Given $f : \mathbb{N} \to \mathbb{N}$, we write $L^{\{f\}}(\mathcal{M})$ for the set of words accepted by \mathcal{M} with time perturbation f: $L^{\{f\}}(\mathcal{M}) = \{w | w \in L^{f(\ell(w))}(\mathcal{M})\}.$

Theorem (Polynomially robust to time ⇔ PTIME)

- A language L ∈ PTIME iff for some M and some polynomial p, L = L(M) = L^{p}(M).
- Any PTIME language is reducible to PAM's reachability: $R^{\mathcal{P}} = R^{\mathcal{P},(p)}$ for some polynomial p.

Theorem (Polynomially length robust \Rightarrow PTIME)

Assume distance d is time metric and $R^{\mathcal{P}} = R^{\mathcal{P},(p)}$ for some polynomial p. Then $R^{\mathcal{P}} \in \mathsf{PTIME}$.

- Definition of another type of perturbation
- Characterisation of PTIME

Towards tilings

- Applying our notion of robustness to tilings : what makes the problem of tiling undecidable?
- What can make the problem of *some* tiling decidable?

• A set of tiles with compatibility rules

• A set of tiles with compatibility rules

Theorem (Easy inclusion, compacity argument) Given a set of tiles, the problem of knowing whether it tiles the plan is co-computably enumerable.

False Conjecture (Wang '61) : all the tiling of the plan are periodic.

Theorem (Easy inclusion, compacity argument) Given a set of tiles, the problem of knowing whether it tiles the plan is co-computably enumerable.

False Conjecture (Wang '61) : all the tiling of the plan are periodic.

FALSE!!

Counter-example : Robinson tileset '78

Theorem (Berger '64) Given a set of tiles, the problem of knowing whether it tiles the plan is undecidable.

The formalism of transducers

(Meta-)Transducers

Example

(Meta-)Transducers

The notion of robustness

Definition (Robustness)

Let τ a tileset. It is *provably robust* if there *provably* exists some sequence of tranducers $(\mathcal{T}_n)_{n\in\mathbb{N}}$ such that, for all $n\in\mathbb{N}$, \mathcal{T}_n contains a loop

Theorem Let τ a tileset. τ is provably robust $\Leftrightarrow \tau$ admits a tiling.

 \rightarrow the domino problem for provably robust tileset is computable

Conclusion

- Characterisation of FPSPACE with the suitable notion of perturbation.
- Characterisation ot PTIME with the suitable notion of perturbation.
- Extension to drawability.

- We have a criterion to prove if a tileset can tile a plan.
- We applied it to some well-known tilesets, including Jeandel-Rao 2015 tileset and Robinson 1978 tileset.
- Current work : a criterion to prove if a tilset can *aperiodically* tiles.