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Introduction



Introduction

• Motivated by the field of verification.

• Informal conjecture: undecidability in verification does not

happen for robust systems.
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Introduction

• Approach: Asarin and Bouajjani (LICS ‘01).

• Our goal:

• go from computability to complexity,

• quantifying the robustness to characterise PSPACE,

• having a notion of robustness to characterise PTIME,

• ”applying” those notions to tillings.
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Introduction

Frame : We want to talk about discrete- and continuous-time

dynamical systems. We first use the framework of Turing machines

(seen as a particular dynamical system).
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Space-perturbation of a Dynamical

System



n-perturbation of a TM

Let Mn, the n-space-perturbed version of TM M: the idea is that

the n-perturbed version of the machine M is unable to remain

correct at a distance more than n from the head of the machine.

... l−n+1 ... l−1 l0 r0 r1 ... rn−1 ...︸ ︷︷ ︸
n

↑︸ ︷︷ ︸
n
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Some Properties (from Asarin and Bouajjani ’01)

Let Ln(M) be the n-perturbed language of M.

• a word accepted by M is also recognised by all the Mn’s.

• Ln+1(M) ⊆ Ln(M).

• Lω(M) =
⋂

n Ln(M): this is the set of words accepted by M
when subject to arbitrarily “small” perturbations.

• L(M) ⊆ Lω(M) ⊆ · · · ⊆ L2(M) ⊆ L1(M).
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Perturbated reachability co-ce

Theorem (Perturbed reachability is co-c.e., from Asarin-

Bouajjani 01)

Lω(M) ∈ Π0
1.

Say L is robust if L = Lω:

L robust ⇒ L decidable.
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• Definition of the notion of perturbation of a TM

• Some properties
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A Characterisation of PSPACE



A Characterisation of PSPACE

Definition
For f : N → N, we write L{f }(M) the set of words accepted by M

with a ”space-perturbation” f :

L{f }(M) = {w | w ∈ Lf (ℓ(w))(M)}.
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A Characterisation of PSPACE

Theorem (Polynomial precision robust ⇔ PSPACE)

L ∈ PSPACE iff for some M and some polynomial p,

L = L(M) = L{p}(M).
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• Characterisation of PSPACE with space-perturbated TMs
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Reachability Relations



Reachability Relation for Dynamical Systems

To each rational discrete-time dynamical system P is associated its

reachability relation RP(·, ·) on Qd ×Qd .

→ two rational points x and y, RP(x, y) holds iff there exists a

trajectory of P from x to y.

13



Reachability Relation With Small Perturbations

• Consider now a discrete-time dynamical system P with

function f Lipschitz on a compact domain:

For ε > 0 we consider the ε-perturbed system Pε.

• Its trajectories are defined as sequences xt satisfying

d(xt+1, f (xt)) < ε for all t.
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Reachability Relation With Small Perturbations

• We denote reachability in the system Pε by RP
ε (·, ·).

• RP
ω =

⋂
ϵ R

P
ε (·, ·) is co-c.e..

• Say RP is robust when RP
ω = RP :

RP robust ⇒ RP computable.
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Link with δ-reachability

Proposition (Robust ⇔ reachability true or ϵ-far from being

true)

We have RP
ω = RP iff for all x, y ∈ Qd , either RP(x, y) is true or

RP(x, y) is false and there exists ϵ > 0 such that it is ϵ-far from

being true.

⇒ relation with δ-reachability (Gao, Kong, Chen, Clarke ’06).
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Towards real numbers : Ball decision problem

Input:

• A point x ∈ Q

• A set B

• A dynamic given by the function f ∈ RR

• The promise that the dynamics starting from x never ends up

on the border of B.

Output: Does the dynamics starting from x reach B ?
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Complexity of reachability relations

Theorem (Polynomially robust to precision ⇒ PSPACE)

Take a Lipschitz system on a compact, with f poly. time

computable, whose domain X is a closed rational box, and that for

all rational x, RP(x) is closed and RP(x) = RP
{p}(x) for a

polynomial p. Then the ball decision problem is in PSPACE.
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Complexity of reachability relations

Theorem (Polynomially robust to precision ⇐ PSPACE-

completeness)

Any PSPACE language is reducible to PAM’s reachability relation:

RP = RP
{p}, for some polynomial p.
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• Perturbated reachability relation for rational dynamical

systems

• Characterisation of PSPACE in that framework (with

additionnal properties)
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Alternative view: Drawability and

extension to the reals



Drawability: geometric properties

But we could also see it as a relation over the reals and use the

framework of CA, regarding subsets of Rd × Rd .

Definition
A closed subset of Rd is said c.e. closed if we can effectively

enumerate the rational open balls intersecting it.
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Drawability: geometric properties

From the statements of CA, the following holds:

Theorem

Consider a computable discrete time system P whose domain is a

computable compact. For all x, cls(RP(x)) ⊆ Rd is a c.e. closed

subset.
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And With Reachability Properties

Theorem (Perturbed reachability is co-c.e.)

Consider a dynamical system, with f locally Lipschitz, computable,

whose domain is a computable compact, then, for all x,

cls(RP
ω (x)) ⊆ Rd is a co-c.e. closed subset.

Say RP is robust when RP
ω = RP : RP robust ⇒ RP computable.
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Plot twist

From CA, Computable ⇔ can be plotted.

Theorem
RP closed and can be plotted effectively in a name of f ⇔ the

system is robust, i.e. RP
ω = RP .
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• We have a nice extension to geometric properties : what can

be drawn is robust
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Time-perturbation



Another type of perturbation

Definition
Given f : N → N, we write L{f }(M) for the set of words accepted

by M with time perturbation f :

L{f }(M) = {w | w ∈ Lf (ℓ(w))(M)}.
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Another Characterisation of PTIME with length

Theorem (Polynomially robust to time ⇔ PTIME)

• A language L ∈ PTIME iff for some M and some polynomial

p, L = L(M) = L{p}(M).

• Any PTIME language is reducible to PAM’s reachability:

RP = RP,(p) for some polynomial p.
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A Characterisation of PTIME

Theorem (Polynomially length robust ⇒ PTIME)

Assume distance d is time metric and RP = RP,(p) for some

polynomial p. Then RP ∈ PTIME.
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• Definition of another type of perturbation

• Characterisation of PTIME
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Towards tilings



Motivation

• Applying our notion of robustness to tilings :

what makes the problem of tiling undecidable?

• What can make the problem of some tiling decidable?
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Wang Tileset

• A set of tiles with compatibility rules
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Wang Tileset

• A set of tiles with compatibility rules
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Computability result

Theorem (Easy inclusion, compacity argument)
Given a set of tiles, the problem of knowing whether it tiles the

plan is co-computably enumerable.

False Conjecture (Wang ’61) : all the tiling of the plan are

periodic.

FALSE!!
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Counter-example : Robinson tileset ’78
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Theorem (Berger ’64)
Given a set of tiles, the problem of knowing whether it tiles the

plan is undecidable.
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The formalism of transducers



Transducers
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Example
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(Meta-)Transducers
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Example
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(Meta-)Transducers
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The notion of robustness



Robustness

Definition (Robustness)
Let τ a tileset. It is provably robust if there provably exists some

sequence of tranducers (Tn)n∈N such that, for all n ∈ N, Tn
contains a loop
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Theorem
Let τ a tileset. τ is provably robust ⇔ τ admits a tiling.

→ the domino problem for provably robust tileset is computable
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Conclusion



• Characterisation of FPSPACE with the suitable notion of

perturbation.

• Characterisation ot PTIME with the suitable notion of

perturbation.

• Extension to drawability.
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Conclusion

• We have a criterion to prove if a tileset can tile a plan.

• We applied it to some well-known tilesets, including

Jeandel-Rao 2015 tileset and Robinson 1978 tileset.

• Current work : a criterion to prove if a tilset can aperiodically

tiles.
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