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Introduction



• Motivated by the field of verification.

• Informal conjecture: undecidability in verification does not

happen for robust systems.

• Approach: Asarin and Bouajjani (LICS 01).

• Our goal:

• go from computability to complexity,

• quantifying the robustness to characterise FPSPACE.
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Introduction

Frame : We want to talk about discrete- and continuous-time

dynamical systems. We first use the frame of Turing machines

(seen as a particular dynamical system).
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Space-perturbation of a Dynamical

System



n-perturbation of a TM

Let Mn, the n-space-perturbed version of TM M: the idea is that

the n-perturbed version of the machine M is unable to remain

correct at a distance more than n from the head of the machine.

... l−n+1 ... l−1 l0 r0 r1 ... rn−1 ...︸ ︷︷ ︸
n

↑︸ ︷︷ ︸
n
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Some Properties (from Asarin and Bouajjani ’01)

Let Ln(M) be the n-perturbed language of M.

• a word accepted by M is also recognised by all the Mn’s.

• Ln+1(M) ⊆ Ln(M).

• Lω(M) =
⋂

n Ln(M): this is the set of words accepted by M
when subject to arbitrarily “small” perturbations.

• L(M) ⊆ Lω(M) ⊆ · · · ⊆ L2(M) ⊆ L1(M).
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Theorem (Perturbed reachability is co-c.e., from Asarin-

Bouajjani 01)

Lω(M) ∈ Π0
1.

Say L is robust if L = Lω:

L robust ⇒ L decidable.
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A Characterisation of PSPACE



A Characterisation of PSPACE

Definition
For f : N → N, we write L{f }(M) the set of words accepted by M

with a ”space-perturbation” f :

L{f }(M) = {w | w ∈ Lf (ℓ(w))(M)}.
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A Characterisation of PSPACE

Theorem (Polynomial precision robust ⇔ PSPACE)

L ∈ PSPACE iff for some M and some polynomial p,

L = L(M) = L{p}(M).
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Reachability Relations



Reachability Relation for Dynamical Systems

To each rational discrete time dynamical system P is associated its

reachability relation RP(·, ·) on Qd ×Qd .

→ two rational points x and y, RP(x, y) holds iff there exists a

trajectory of P from x to y.

10



Reachability Relation With Small Perturbations

• We add small perturbations: consider a discrete-time

dynamical system P with function f:

For ε > 0 we consider the ε-perturbed system Pε.

• Its trajectories are defined as sequences xt satisfying

d(xt+1, f (xt)) < ε for all t.

• We denote reachability in the system Pε by RP
ε (·, ·).

• RP
ω =

⋂
ϵ R

P
ε (·, ·) is co-c.e..

• Say RP is robust when RP
ω = RP : RP robust ⇒ RP

computable.
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Link with δ-reachability

Proposition (Robust ⇔ reachability true or ϵ-far from being

true)

We have RP
ω = RP iff for all x, y ∈ Qd , either RP(x, y) is true or

RP(x, y) is false and there exists ϵ > 0 such that it is ϵ-far from

being true.

⇒ relation with δ-reachability (Gao, Kong, Chen, Clarke ’06).
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Complexity of reachability relations

Theorem (Polynomially robust to precision ⇐ PSPACE)

Any PSPACE language is reducible to PAM’s reachability relation:

RP = RP
{p}, for some polynomial p.

Theorem (Polynomially robust to precision ⇒ PSPACE)

Take a locally Lipschitz system, with f poly. time computable,

whose domain X is a closed rational box, and that for all rational

x, RP(x) is closed and RP(x) = RP
{p}(x) for a polynomial p.

Then the ball decision problem is in PSPACE.
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Time-perturbation



Another type of perturbation

Definition
Given f : N → N, we write L{f }(M) for the set of words accepted

by M with time perturbation f :

L{f }(M) = {w | w ∈ Lf (ℓ(w))(M)}.
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A Characterisation of PTIME

Theorem (Polynomially robust to time ⇐ PTIME)

A language L ∈ PTIME iff for some M and some polynomial p,

L = L(M) = L{p}(M). Any PTIME language is reducible to

PAM’s reachability: RP = L{p}(P) for some polynomial p.

Theorem (Polynomially length robust ⇒ PTIME)

Assume distance d is time metric and RP = RP,(p) for some

polynomial p. Then RP ∈ PTIME.
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Alternative view: Drawability



Drawability: geometric properties

But we could also see it as a relation over the reals and use the

framework of CA, regarding subsets of Rd × Rd .

Definition
A closed subset of Rd is said c.e. closed if we can effectively

enumerate the rational open balls intersecting it.

From the statements of CA, the following holds:

Theorem

Consider a computable discrete time system P whose domain is a

computable compact. For all x, cls(RP(x)) ⊆ Rd is a c.e. closed

subset.
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And With Reachability Properties

Theorem (Perturbed reachability is co-c.e.)

Consider a dynamical system, with f locally Lipschitz, computable,

whose domain is a computable compact, then, for all x,

cls(RP
ω (x)) ⊆ Rd is a co-c.e. closed subset.

Say RP is robust when RP
ω = RP : RP robust ⇒ RP computable.
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Plot twist

From CA, Computable ⇔ can be plotted.

Theorem
Assume RP is closed and can be plotted effectively in a name of f.

Then the system is robust, i.e. RP
ω = RP .
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Conclusion

• Characterisation of FPSPACE with the suitable notion of

perturbation.

• Characterisation ot PTIME with the suitable notion of

perturbation.

• Extension to drawability.
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