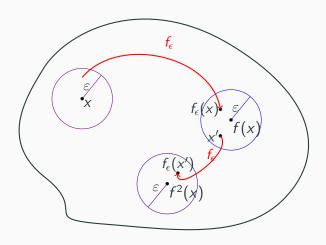
Measuring the robusteness of dynamical systems

Manon BLANC, Olivier BOURNEZ

Introduction

- Motivated by the field of verification.
- Informal conjecture: undecidability in verification does not happen for robust systems.
- Approach: Asarin and Bouajjani (LICS 01).
- Our goal:
 - go from computability to complexity,
 - quantifying the robustness to characterise FPSPACE.

Introduction



Introduction

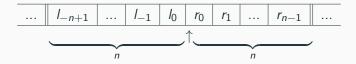
Frame: We want to talk about discrete- and continuous-time dynamical systems. We first use the frame of Turing machines (seen as a particular dynamical system).

Space-perturbation of a Dynamical

System

n-perturbation of a TM

Let \mathcal{M}_n , the *n*-space-perturbed version of TM \mathcal{M} : the idea is that the *n*-perturbed version of the machine \mathcal{M} is unable to remain correct at a distance more than *n* from the head of the machine.



Let $L_n(\mathcal{M})$ be the *n*-perturbed language of \mathcal{M} .

• a word accepted by \mathcal{M} is also recognised by all the \mathcal{M}_n 's.

Let $L_n(\mathcal{M})$ be the *n*-perturbed language of \mathcal{M} .

- a word accepted by \mathcal{M} is also recognised by all the \mathcal{M}_n 's.
- $L_{n+1}(\mathcal{M}) \subseteq L_n(\mathcal{M})$.

Let $L_n(\mathcal{M})$ be the *n*-perturbed language of \mathcal{M} .

- a word accepted by \mathcal{M} is also recognised by all the \mathcal{M}_n 's.
- $L_{n+1}(\mathcal{M}) \subseteq L_n(\mathcal{M})$.
- $L_{\omega}(\mathcal{M}) = \bigcap_{n} L_{n}(\mathcal{M})$: this is the set of words accepted by \mathcal{M} when subject to arbitrarily "small" perturbations.

Let $L_n(\mathcal{M})$ be the *n*-perturbed language of \mathcal{M} .

- a word accepted by \mathcal{M} is also recognised by all the \mathcal{M}_n 's.
- $L_{n+1}(\mathcal{M}) \subseteq L_n(\mathcal{M})$.
- $L_{\omega}(\mathcal{M}) = \bigcap_{n} L_{n}(\mathcal{M})$: this is the set of words accepted by \mathcal{M} when subject to arbitrarily "small" perturbations.
- $L(\mathcal{M}) \subseteq L_{\omega}(\mathcal{M}) \subseteq \cdots \subseteq L_2(\mathcal{M}) \subseteq L_1(\mathcal{M})$.

Theorem (Perturbed reachability is co-c.e., from Asarin-Bouajjani 01)

$$L_{\omega}(\mathcal{M})\in\Pi_{1}^{0}$$
.

Say *L* is robust if $L = L_{\omega}$:

 $L \text{ robust} \Rightarrow L \text{ decidable}.$

A Characterisation of PSPACE

4

A Characterisation of PSPACE

Definition

For $f: \mathbb{N} \to \mathbb{N}$, we write $L_{\{f\}}(\mathcal{M})$ the set of words accepted by \mathcal{M} with a "space-perturbation" f:

$$L_{\{f\}}(\mathcal{M}) = \{w | w \in L_{f(\ell(w))}(\mathcal{M})\}.$$

A Characterisation of PSPACE

Theorem (Polynomial precision robust ⇔ PSPACE)

$$L \in \mathsf{PSPACE}$$
 iff for some \mathcal{M} and some polynomial p , $L = L(\mathcal{M}) = L_{\{p\}}(\mathcal{M})$.

Reachability Relations

Reachability Relation for Dynamical Systems

To each rational discrete time dynamical system \mathcal{P} is associated its reachability relation $R^{\mathcal{P}}(\cdot,\cdot)$ on $\mathbb{Q}^d\times\mathbb{Q}^d$.

 \to two rational points **x** and **y**, $R^{\mathcal{P}}(\mathbf{x}, \mathbf{y})$ holds iff there exists a trajectory of \mathcal{P} from **x** to **y**.

Reachability Relation With Small Perturbations

- We add small perturbations: consider a discrete-time dynamical system P with function f:
 For ε > 0 we consider the ε-perturbed system P_ε.
- Its trajectories are defined as sequences \mathbf{x}_t satisfying $d(\mathbf{x}_{t+1}, \mathbf{f}(\mathbf{x}_t)) < \varepsilon$ for all t.
- We denote reachability in the system $\mathcal{P}_{\varepsilon}$ by $R_{\varepsilon}^{\mathcal{P}}(\cdot,\cdot)$.
- $R_{\omega}^{\mathcal{P}} = \bigcap_{\epsilon} R_{\varepsilon}^{\mathcal{P}}(\cdot, \cdot)$ is co-c.e..
- Say $R^{\mathcal{P}}$ is robust when $R_{\omega}^{\mathcal{P}} = R^{\mathcal{P}}$: $R^{\mathcal{P}}$ robust $\Rightarrow R^{\mathcal{P}}$ computable.

Link with δ -reachability

Proposition (Robust \Leftrightarrow reachability true or ϵ -far from being true)

We have $R_{\omega}^{\mathcal{P}} = R^{\mathcal{P}}$ iff for all $\mathbf{x}, \mathbf{y} \in \mathbb{Q}^d$, either $R^{\mathcal{P}}(\mathbf{x}, \mathbf{y})$ is true or $R^{\mathcal{P}}(\mathbf{x}, \mathbf{y})$ is false and there exists $\epsilon > 0$ such that it is ϵ -far from being true.

 \Rightarrow relation with δ -reachability (Gao, Kong, Chen, Clarke '06).

Complexity of reachability relations

Theorem (Polynomially robust to precision ← PSPACE)

Any PSPACE language is reducible to PAM's reachability relation: $R^{\mathcal{P}} = R^{\mathcal{P}}_{\{p\}}, \text{ for some polynomial } p.$

Theorem (Polynomially robust to precision ⇒ PSPACE)

Take a locally Lipschitz system, with **f** poly. time computable, whose domain X is a closed rational box, and that for all rational \mathbf{x} , $R^{\mathcal{P}}(\mathbf{x})$ is closed and $R^{\mathcal{P}}(\mathbf{x}) = R^{\mathcal{P}}_{\{p\}}(\mathbf{x})$ for a polynomial p.

Then the ball decision problem is in PSPACE.

Time-perturbation

Another type of perturbation

Definition

Given $f: \mathbb{N} \to \mathbb{N}$, we write $L^{\{f\}}(\mathcal{M})$ for the set of words accepted by \mathcal{M} with time perturbation f: $L^{\{f\}}(\mathcal{M}) = \{w | w \in L^{f(\ell(w))}(\mathcal{M})\}.$

A Characterisation of PTIME

Theorem (Polynomially robust to time ← PTIME)

A language $L \in \mathsf{PTIME}$ iff for some \mathcal{M} and some polynomial p, $L = L(\mathcal{M}) = L^{\{p\}}(\mathcal{M})$. Any PTIME language is reducible to PAM's reachability: $R^{\mathcal{P}} = L^{\{p\}}(\mathcal{P})$ for some polynomial p.

Theorem (Polynomially length robust ⇒ PTIME)

Assume distance d is time metric and $R^{\mathcal{P}} = R^{\mathcal{P},(p)}$ for some polynomial p. Then $R^{\mathcal{P}} \in \mathsf{PTIME}$.

Alternative view: Drawability

Drawability: geometric properties

But we could also see it as a relation over the reals and use the framework of CA, regarding subsets of $\mathbb{R}^d \times \mathbb{R}^d$.

Definition

A closed subset of \mathbb{R}^d is said *c.e. closed* if we can effectively enumerate the rational open balls intersecting it.

From the statements of CA, the following holds:

Theorem

Consider a computable discrete time system \mathcal{P} whose domain is a computable compact. For all \mathbf{x} , $cls(R^{\mathcal{P}}(\mathbf{x})) \subseteq \mathbb{R}^d$ is a c.e. closed subset.

And With Reachability Properties

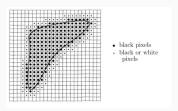
Theorem (Perturbed reachability is co-c.e.)

Consider a dynamical system, with \mathbf{f} locally Lipschitz, computable, whose domain is a computable compact, then, for all \mathbf{x} , $cls(R_{\omega}^{\mathcal{P}}(\mathbf{x})) \subseteq \mathbb{R}^d$ is a co-c.e. closed subset.

Say $R^{\mathcal{P}}$ is robust when $R_{\omega}^{\mathcal{P}} = R^{\mathcal{P}}$: $R^{\mathcal{P}}$ robust $\Rightarrow R^{\mathcal{P}}$ computable.

Plot twist

From CA, Computable \Leftrightarrow can be plotted.



Theorem

Assume $R^{\mathcal{P}}$ is closed and can be plotted effectively in a name of \mathbf{f} . Then the system is robust, i.e. $R^{\mathcal{P}}_{\omega} = R^{\mathcal{P}}$.

Conclusion

- Characterisation of FPSPACE with the suitable notion of perturbation.
- Characterisation of PTIME with the suitable notion of perturbation.
- Extension to drawability.