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Introduction



Introduction

• providing algebraic characterisations of polynomial complexity

classes, without:

• explicit bounds (Cobham)

• several types of arguments (Bellantoni and Cook)

• tiering (Leivant and Marion)...

• We are in the framework of implicit complexity
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Introduction

• Born from the work of Olivier Bournez and Arnaud Durand,

using linear length discrete ODEs...

• ... but here we are interested in functions over the real

numbers
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Our framework: Computable Analysis

• Computable real number

• Computable function over the reals

• Discrete derivation : f : N× R 7→ R,

f ′(x , y) = ∂f
∂x (x , y) = f (x + 1, y)− f (x , y).
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Characterising computable reals and

sequences (MCU22)



Motivation behind Length-ODEs

θ solution of:

y ′ = f (y)

with f : R → R

ϕ solution of:

z = z ′

y ′ = f (y)z
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Motivation behind Length-ODEs

Re-scaling: ϕ1(t) = θ(et)
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Motivation behind Length-ODEs

Now “time-complexity” is measured by the length of the solution

curve of the ODE.

Invariance by rescaling
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“Length ODE”?

Definition (Length ODE)

A function f is ”length-ODE” definable (from u, g and h) if it is a

solution of

f (0, y) = g(y) and
∂f(x , y)

∂ℓ
= u(f(x , y),h(x , y), x , y). (1)

Formal synonym for right-hand side of (1):

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)
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“Length ODE”?

A derivation with respect to the length corresponds to change of

variable in the ODE. Variation when:

ℓ(x + 1)− ℓ(x) ̸= 0

Inspired by:
δf (x , y)

δx
=

δℓ(x)

δx
· δf (x , y)

δℓ(x)
.
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Example of length-ODE

f (0) = 2

∂f

∂ℓ
(x) = f (x) · f (x)− f (x)

Unique solution : f (x) = 22
ℓ(x)
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Example of length-ODE

f (0) = 2; ∂f
∂ℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))
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Effective Limit

Definition
f : R → R is an effective limit of f̄ : R× N → R if∣∣f (x)− f̄ (x , 2n)

∣∣ ≤ 2−n

Key observation : f̄ computable in polynomial time ⇒ f

computable in polynomial time.
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Algebraic characterisation of PTIME

We consider:

LDL• = [0, 1, πk
i , ℓ(x),+,−,×, cond(x),

x

2
;

composition, linear length ODE , effective limit]

Theorem (MCU22)
FPTIME∩RN = LDL• ∩ RN
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“Proof”

N

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f
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Characterising computable functions

over the reals (MFCS ‘23)



What we cannot do

R

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

XX
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FPTIME for computable functions over the reals

We consider:

LDL◦ = [0, 1, πk
i , ℓ(x),+,−, tanh,

x

2
,
x

3
;

composition, linear length ODE , effective limit]

Theorem

LDL◦ ∩ RR = FPTIME∩RR
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Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function f is a robustly linear ODE definable (with u

essentially linear in f(x , y), g and h) if:

1. it is a solution of

f(0, y) = g(y) and
∂f(x , y)

∂x
= u(f(x , y),h(x , y), x , y),

2. the ODE is (polynomially) numerically stable.
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FPSPACE for computable functions over the reals

We consider:

RLD◦ = [0, 1, πk
i , ℓ(x),+,−, tanh,

x

2
,
x

3
;

composition, robust linear ODE , effective limit]

Theorem
RLD◦ ∩ RR = FPSPACE∩RR
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Conclusion



Conclusion

• We now have “natural” algebraic characterisations for

functions over the reals computable in FPTIME and

FPSPACE.

• Further works:

• Going to continuous ODEs

• Cover other complexity classes

• See what we can say for more general functions
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