
A characterization of polynomial time
computable functions from the integers to the

reals using discrete ordinary differential equations

Manon Blanc, Olivier Bournez

1/27

Discrete differential equations

Computable analysis: Computability and Complexity

LDL and FP

LDL and FP

Computing real numbers in polynomial time

Computing sequences in polynomial time

Computing sequences in polynomial time

Conclusion

2/27

What has been done?

▶ Ordinary differential equations: well-understood, used in many
fields in applied science (describing dynamical systems for
example).

▶ We also can see them as a computation model: Shannon
(’42), Moore (’96), Costa, Graça, Hainry, Pouly, Bournez...

▶ We focus on their discrete counterparts: discrete ODEs.
⇒ widely studied in numerical optimisation, combinatorial
analysis

▶ Bournez & Durand (’19) established a connection with
complexity theory : characterisation of polynomial time using
discrete ODEs.

3/27

We prove:

Theorem
A function f : Nd → Rd ′

. is computable in polynomial time if and
only if all its components belong to LDL•.

with LDL• a finite set of functions and operators.

4/27

Discrete differential equations

We characterize polynomial time computable real numbers and
polynomial time computable sequences over the reals (functions
from N to R).

Definition
Let f : N× R 7→ R. The discrete derivative of f is defined by
f ′(x , y) = ∆f (x , y) = f (x + 1, y)− f (x , y).

5/27

Computable analysis: Computability and Complexity

Definition (e.g. Ker I. Ko)

Let x ∈ R. x is computable if and only if there exists a computable
function ϕ : N 7→ D such that for all n ∈ N, |ϕ(n)− x | ≤ 2−n.

Example

e, π are computable.
∑

i≥1 2
−BB(i), where BB is the Busy Beavers

function is not.

6/27

Computable analysis: Computability and Complexity

Definition (e.g. Ker I. Ko)

We say that the time (or space) complexity of a computable real
number x is the time (or space) complexity of computing one of its
Cauchy function, where the input n to a Cauchy function is written
in unitary notation 0n.

Definition (e.g. Ker I.Ko)

A function f : R 7→ R is computable if there exists a oracle Turing
machine M such that, for all x ∈ R and ϕ a Cauchy function
associated to x (CFx), the function ψ computed by M with oracle
ϕ (ψ(n) = Mϕ(n)) is in CFf (x).

7/27

Example: Primitive recursive functions

A function over the integers is primitive recursive, denoted PR, if
and only if it belongs to the smallest set of functions that contains

▶ constant function 0,

▶ the projection functions πpi ,

▶ the functions successor s,

▶ and that is closed under composition and primitive recursion.

We have PR = [O, πpi , s; composition, primitive recursion]

8/27

Example: Primitive recursive functions

Let p ∈ N, g : Np → N and h : Np+2 → N.

The function f = REC(g , h) : Np+1 → N is defined by primitive
recursion from g and h if:{

f (0, y) = g(y)
f (x + 1, y) = h(f (x , y), x , y)

We can reformulate f through differential discrete equation:

∂f

∂x
(x , y) = h(f (x , y), x , y)

= h(f (x + 1, y), x + 1, y)− h(f (x , y), x , y)

9/27

Another example: Elementary functions and Grzegorczyk’s
hierarchy

▶ Class E0 : contains the constant function 0, the projection
functions πpi , the successor function s, and is closed under
composition and bounded recursion.

▶ Class En for n ≥ 1 : defined similarly except that functions
max and En are added to the list of initial functions.

Known results:

▶ E3 : class of elementary functions (alternative definition by
bounded sum and product)

▶ E2
∗ = Linspace, E2 = FLinspace (linear space and polynomial

growth)

▶ En ⊊ En+1 for n ≥ 3

▶ PR =
⋃

i E i

Linear ODEs give exactly the elementary functions.

10/27

Bounded recursion

Let g : Np → N, h : Np+2 → N and i : Np+1 → N.

The function f = BR(g , h) : Np+1 → N is defined by bounded
recursion from g , h and i if

f (0, y) = g(y)

f (x + 1, y) = h(f (x , y), x , y)

under the condition that:

f (x , y) ≤ i(x , y).

11/27

Algebras of functions

Summary

▶ Characterise complexity classes , in polynomial time, by
algebras of functions

▶ How?
▶ Take some basis functions
▶ Allow classical operations such as composition
▶ Use a recursion mechanism

▶ Full recursion is too much (primitive recursion). Need to
restrict it.

▶ Applications/goals: programming languages with performance
guarantees

12/27

Algebras of functions

Summary

▶ Characterise complexity classes , in polynomial time, by
algebras of functions

▶ How?
▶ Take some basis functions
▶ Allow classical operations such as composition
▶ Use a recursion mechanism

▶ Full recursion is too much (primitive recursion). Need to
restrict it.

▶ Applications/goals: programming languages with performance
guarantees

12/27

Recursion on notation (Cobham (’62))

Consider s0, s1 : N → N

s0(x) = 2 · x and s1(x) = 2 · x + 1.

Definition
Function f defined by bounded recursion on notations, i.e. BRN,
from functions g , h0, h1 et k when:

f (0, y) = g(y)
f (s0(x), y) = h0(x , y, f (x , y)) for x ̸= 0
f (s1(x), y) = h1(x , y, f (x , y))
f (x , y) ≤ k(x , y)

13/27

Cobham’s approach

FP smallest subset of primitive recursive functions

▶ Containing basis functions :
FP = [0, πki , s0, s1, ♯;Composition,BRN]
with ♯, a ”smash funtion” defined by ♯(x , y) = 2|x |×|y |

Cobham (62) : FP is equal to FP, the class of polynomial time
computable functions

14/27

Why it works

f (0, y) = g(y)
f (s0(x), y) = h0(x , y, f (x , y)) for x ̸= 0
f (s1(x), y) = h1(x , y, f (x , y))
f (x , y) ≤ k(x , y)

15/27

Why it works

f (0, y) = g(y)
f (s0(x), y) = h0(x , y, f (x , y)) for x ̸= 0
f (s1(x), y) = h1(x , y, f (x , y))
f (x , y) ≤ k(x , y)

▶ f is defined from h0, h1 and k .

▶ If |k(x , y)| is polynomial in |x |+ |y |, then so is |f (x , y)|
▶ Hence, inner terms do not grow too fast!

15/27

Why it works

f (0, y) = g(y)
f (s0(x), y) = h0(x , y, f (x , y)) for x ̸= 0
f (s1(x), y) = h1(x , y, f (x , y))
f (x , y) ≤ k(x , y)

▶ |s1(x)| = |s0(x)| = |x |+ 1

▶ Then the number of induction steps is in O(|x |).

15/27

Why it works

▶ Definition of useful functions (addition, concatenation,
conditionals, etc) ”easy”

▶ ♯(x , y) = 2|x |×|y |, Hence |♯(x , y)| = |x |+ |y |+ 1.

▶ Help to obtain ”counters” of polynomial size.

16/27

LDL and FP

Definition
▶ FP is the class of functions computed by deterministic Turing

machines in polynomial time

▶ FPSPACE is the class of functions computed by deterministic
Turing machines in polynomial space

▶ We have FP ⊆ #P ⊆ FPSPACE

Theorem (Bournez & Durand, ’19)

For discrete functions, we have LDL = FPTIME
where LDL =
[0, 1, πki , ℓ(x),+,−,×, cond(x); composition, linear length ODE].

17/27

LDL and FP

Definition
▶ FP is the class of functions computed by deterministic Turing

machines in polynomial time

▶ FPSPACE is the class of functions computed by deterministic
Turing machines in polynomial space

▶ We have FP ⊆ #P ⊆ FPSPACE

Theorem (Bournez & Durand, ’19)

For discrete functions, we have LDL = FPTIME
where LDL =
[0, 1, πki , ℓ(x),+,−,×, cond(x); composition, linear length ODE].

17/27

Definition (f Linear length ODE)

f (0, y) = g(y) and
∂f(x , y)

∂ℓ
= u(f(x , y),h(x , y), x , y) (1)

where u is essentially linear in f(x , y).

⇒ introduced in (Bournez & Durand ’19) (1) is similar to classical
formula for classical continuous ODEs:

δf (x , y)

δx
=
δℓ(x)

δx
· δf (x , y)
δℓ(x)

,

and hence this is similar to a change of variable: t = ℓ(x)

18/27

ODE for complexity classes

▶ Elementary functions are of high complexity, but linear
systems are the simplest kind of system

▶ Expressive and believed to help better understand
computation for both discrete and continuous settings

19/27

LDL = FPTIME : Why it works

Proof of (⊆): (main ideas)

▶ The derivation along ℓ(x) (or any L with polylog ”jumps”)
permits to control the number of steps

▶ Linearity of the system permits to control the size of the
output

Proof of (⊇): By a direct expression of a polynomial
computation of a register machine.

20/27

Computing reals in polynomial time

LDL• =
[0, 1, πki , ℓ(x),+,−,×, cond(x),

x
2 ; composition, linear length ODE]

with cond(x) some piecewise linear continuous function that takes
value 1 for x > 3

4 and 0 for x < 1
4 .

Proposition

All functions of LDL• are computable in the sense of computable
analysis in polynomial time.

21/27

LDL• ⊆ FP

Proof.
By structural induction.

The case of the closure under composition:

▶ Take COMP(f , g)

▶ By induction hypothesis, f and g are in FP, so there exists
two Turing machines Mf and Mg that respectively compute f
and g

▶ Deterministic polynomial times Turing machines are closed
under composition, so COMP(f , g) is computable in
deterministic polynomial time.

22/27

Computing reals in polynomial time : FP ⊆ LDL•

For any polynomial time computable function f : Nd 7→ Rd , we
can construct some function f̃ ∈ LDL• that simulates the
computation of f :

This basically requires to be able to simulate the computation of a
Turing machine using the functions from LDL•.

23/27

Computing reals in polynomial time : FP ⊆ LDL•

Main ideas of the proof:

▶ We take a Turing machine M, with bi-infinite tapes
computing f , we assume the reals are in base 4:

... l• l0 r0 r• ...︸ ︷︷ ︸
l

︸ ︷︷ ︸
r

▶ We encode each transition of M with functions of LDL•.

▶ We characterise the complete execution of M on some input
as a composition of the transitions: we know M is polynomial,
so we can bound the number of steps.

24/27

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f : N 7→ R.
Main ideas of the proof:

▶ Encode the binary extension using only 1 and 3: computable
in LDL•

Why? → Functions in LDL• are all continuous. Here, we use
discontinuous functions, but on disjoint intervals

25/27

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f : N 7→ R.
Main ideas of the proof:

▶ Encode the binary extension using only 1 and 3: computable
in LDL•

▶ We use the same trick as for computing reals.

▶ We decode the result: computable in LDL•.

N

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

26/27

Conclusion

▶ We were able to characterise computable real numbers and
sequences over the reals in polynomial time:

Theorem
A function f : Nd → Rd ′

. is computable in polynomial time if and
only if all its components belong to LDL•.

▶ We still need to characterise fuctions over the reals in
polynomial time (ongoing work)

R

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

XX

27/27

	Discrete differential equations
	Computable analysis: Computability and Complexity
	LDL and FP
	LDL and FP
	Computing real numbers in polynomial time
	Computing sequences in polynomial time
	Computing sequences in polynomial time
	Conclusion

