1/27

A characterization of polynomial time
computable functions from the integers to the
reals using discrete ordinary differential equations

Manon Blanc, Olivier Bournez

ECOLE
POLYTECHNIQUE

N2 1P PARIS

2/27

Discrete differential equations

Computable analysis: Computability and Complexity
LDL and FP

LDL and FP

Computing real numbers in polynomial time
Computing sequences in polynomial time
Computing sequences in polynomial time

Conclusion

What has been done?

» Ordinary differential equations: well-understood, used in many
fields in applied science (describing dynamical systems for
example).

» We also can see them as a computation model: Shannon
('42), Moore ('96), Costa, Graga, Hainry, Pouly, Bournez...

» We focus on their discrete counterparts: discrete ODEs.
= widely studied in numerical optimisation, combinatorial
analysis

» Bournez & Durand ('19) established a connection with

complexity theory : characterisation of polynomial time using
discrete ODEs.

3/27

We prove:

Theorem
A function f : N4 — RY". is computable in polynomial time if and
only if all its components belong to LDL®.

with LIDL® a finite set of functions and operators.

4/27

Discrete differential equations

We characterize polynomial time computable real numbers and

polynomial time computable sequences over the reals (functions
from N to R).

Definition
Let f : N x R+ R. The discrete derivative of f is defined by
f/(X7y) = Af(X,y) = f(X+ 17y) - f(Xay)

5/27

Computable analysis: Computability and Complexity

6/27

Definition (e.g. Ker |. Ko)
Let x € R. x is computable if and only if there exists a computable
function ¢ : N — D such that for all n € N, |¢(n) — x| <27

Example
e, m are computable. > .-, 2-BB(1) where BB is the Busy Beavers
function is not.

Computable analysis: Computability and Complexity

7/27

Definition (e.g. Ker I. Ko)

We say that the time (or space) complexity of a computable real
number x is the time (or space) complexity of computing one of its
Cauchy function, where the input n to a Cauchy function is written
in unitary notation 0".

Definition (e.g. Ker 1.Ko)

A function f : R — R is computable if there exists a oracle Turing
machine M such that, for all x € R and ¢ a Cauchy function
associated to x (CFy), the function ¢ computed by M with oracle

¢ (d(n) = M?(n)) is in CFy(y).

Example: Primitive recursive functions

A function over the integers is primitive recursive, denoted PR, if
and only if it belongs to the smallest set of functions that contains

» constant function 0,
> the projection functions 77,
» the functions successor s,

» and that is closed under composition and primitive recursion.

We have PR = [O,7r,’-J , S; composition, primitive recursion]

8/27

Example: Primitive recursive functions

let peN, g: NP - Nand h: NP*2 5 N.

The function f = REC(g, h) : NP1 — N is defined by primitive
recursion from g and h if:

{ f(0,y) = &l(y)
f(x+1,y) = h(f(x,y), x,y)

We can reformulate f through differential discrete equation:

O (ey) = BlF(x,y), x.9)

=h(f(x+1,y),x+1,y) — h(f(x,y),x,y)

9/27

Another example: Elementary functions and Grzegorczyk's
hierarchy

» Class £° : contains the constant function 0, the projection
functions 7, the successor function s, and is closed under
composition and bounded recursion.

» Class £" for n > 1 : defined similarly except that functions
max and E, are added to the list of initial functions.

Known results:

» &3 : class of elementary functions (alternative definition by
bounded sum and product)

> 53 = LINSPACE, £2 = FlLinspacs (linear space and polynomial
growth)

> grc gl forn>3
> PR=J,&

Linear ODEs give exactly the elementary functions.

10/27

Bounded recursion

let g : NP - N, h:NPt? Nand i: NPH 5 N.

The function f = BR(g, h) : N°*1 — N is defined by bounded
recursion from g, h and i if

f(0,y) = gly)
f(x+1y) = h(f(x,y),xy)
under the condition that:

flx,y) < i(xy).

11/27

Algebras of functions

Summary

» Characterise complexity classes , in polynomial time, by
algebras of functions

» How?
» Take some basis functions

P> Allow classical operations such as composition
» Use a recursion mechanism

12/27

Algebras of functions

Summary

» Characterise complexity classes , in polynomial time, by
algebras of functions

» How?
» Take some basis functions
P> Allow classical operations such as composition
» Use a recursion mechanism

» Full recursion is too much (primitive recursion). Need to
restrict it.

» Applications/goals: programming languages with performance
guarantees

12/27

Recursion on notation (Cobham ('62))

Consider sg,s1 : N —» N
so(x) =2-xand s;(x) =2 -x+ 1.
Definition

Function f defined by bounded recursion on notations, i.e. BRN,
from functions g, hg, h; et k when:

13/27

Cobham’s approach

Fp smallest subset of primitive recursive functions

» Containing basis functions :
Fp =10, Trf‘, s0, s1, f; Composition, BRN]
with 4, a "smash funtion” defined by #(x, y) = 2/x/x1¥|

Cobham (62) : Fp is equal to FP, the class of polynomial time
computable functions

14/27

Why it works

15/27

Why it works

» f is defined from hg, h; and k.
> If |k(x,y)| is polynomial in |x| + |y|, then so is |f(x,y)|
» Hence, inner terms do not grow too fast!

15/27

Why it works

> s1(3)] = [so(x)| = x| + 1
» Then the number of induction steps is in O(]x]).

15/27

Why it works

» Definition of useful functions (addition, concatenation,
conditionals, etc) "easy”

> #(x,y) = 2MI], Hence [4(x, y)| = x| + [y| + L.
» Help to obtain "counters” of polynomial size.

16/27

LDL and FP

Definition
» FP is the class of functions computed by deterministic Turing
machines in polynomial time
» FPSPACE is the class of functions computed by deterministic
Turing machines in polynomial space
» We have FP C #P C FPSPACE

17/27

LDL and FP

Definition
» FP is the class of functions computed by deterministic Turing
machines in polynomial time

» FPSPACE is the class of functions computed by deterministic
Turing machines in polynomial space

> We have FP C #P C FPSPACE

Theorem (Bournez & Durand, '19)

For discrete functions, we have LDL = FPTIME
where LDL =
[0,1, 7K, ¢(x), +, —, %, cond(x); composition, linear length ODE].

17/27

18/27

Definition (f Linear length ODE)

0.y =) and 0wy niey)xy) (1)

where u is essentially linear in f(x,y).

= introduced in (Bournez & Durand '19) (1) is similar to classical
formula for classical continuous ODEs:

of(x,y) _ 6l(x) 6f(x,y)
dx dx 5(x)

and hence this is similar to a change of variable: t = /(x)

ODE for complexity classes

» Elementary functions are of high complexity, but linear
systems are the simplest kind of system

P Expressive and believed to help better understand
computation for both discrete and continuous settings

19/27

LDL = FPTIME: Why it works

Proof of (C): (main ideas)

» The derivation along ¢(x) (or any £ with polylog " jumps")
permits to control the number of steps

> Linearity of the system permits to control the size of the
output

Proof of (2): By a direct expression of a polynomial
computation of a register machine.

20/27

Computing reals in polynomial time

21/27

LDL® =
[0,1, 7K, ¢(x), +, —, x, cond(x), % composition, linear length ODE]

with cond(x) some piecewise linear continuous function that takes
value 1 for x > % and 0 for x < %.
Proposition

All functions of LDIL® are computable in the sense of computable
analysis in polynomial time.

LDL®* C FP

Proof.
By structural induction.

The case of the closure under composition:
» Take COMP(f,g)
» By induction hypothesis, f and g are in FP, so there exists
two Turing machines M¢ and M, that respectively compute f
and g

» Deterministic polynomial times Turing machines are closed
under composition, so COMP(f, g) is computable in
deterministic polynomial time.

22/27

Computing reals in polynomial time : FP C LDL®

For any polynomial time computable function f : N¢ — R? | we
can construct some function f € LDL® that simulates the
computation of f :

This basically requires to be able to simulate the computation of a
Turing machine using the functions from LIDL®.

23/27

Computing reals in polynomial time : FP C LDL®

Main ideas of the proof:

> We take a Turing machine M, with bi-infinite tapes
computing f, we assume the reals are in base 4:

I" lo ‘ro‘r

—_— N

| r

» We encode each transition of M with functions of LDL®.

» We characterise the complete execution of M on some input
as a composition of the transitions: we know M is polynomial,
so we can bound the number of steps.

24/27

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f:N—R.
Main ideas of the proof:

» Encode the binary extension using only 1 and 3: computable
in LDL*®

Why? — Functions in LDILL® are all continuous. Here, we use
discontinuous functions, but on disjoint intervals

25/27

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time
f:N—R.
Main ideas of the proof:

» Encode the binary extension using only 1 and 3: computable
in LDL*®

» We use the same trick as for computing reals.

» We decode the result: computable in LIDIL®.

N Encode (1,3}
f{ J ™

1,3}

R Decode {13}

26/27

Conclusion

> We were able to characterise computable real numbers and
sequences over the reals in polynomial time:

Theorem
A function f : N9 — R? . is computable in polynomial time if and
only if all its components belong to LDIL®.

» We still need to characterise fuctions over the reals in
polynomial time (ongoing work)

R Encode (1,3}
f[J ™

1,3

R Decode {1,3}

27/27

	Discrete differential equations
	Computable analysis: Computability and Complexity
	LDL and FP
	LDL and FP
	Computing real numbers in polynomial time
	Computing sequences in polynomial time
	Computing sequences in polynomial time
	Conclusion

