A characterization of polynomial time computable functions from the integers to the reals using discrete ordinary differential equations

Manon Blanc, Olivier Bournez

[Discrete differential equations](#page-4-0)

[Computable analysis: Computability and Complexity](#page-5-0)

[LDL and FP](#page-19-0)

[LDL and FP](#page-20-0)

[Computing real numbers in polynomial time](#page-24-0)

[Computing sequences in polynomial time](#page-28-0)

[Computing sequences in polynomial time](#page-29-0)

[Conclusion](#page-30-0)

What has been done?

- ▶ Ordinary differential equations: well-understood, used in many fields in applied science (describing dynamical systems for example).
- ▶ We also can see them as a computation model: Shannon ('42), Moore ('96), Costa, Graça, Hainry, Pouly, Bournez...
- ▶ We focus on their discrete counterparts: discrete ODEs. \Rightarrow widely studied in numerical optimisation, combinatorial analysis
- ▶ Bournez & Durand ('19) established a connection with complexity theory : characterisation of polynomial time using discrete ODEs.

K ロ ▶ K 리 ▶ K 로 ▶ K 로 ▶ 『 콘 · 이익C

We prove:

Theorem

A function $\mathbf{f}:\mathbb{N}^d\to\mathbb{R}^{d'}$. is computable in polynomial time if and only if all its components belong to $\overline{\mathbb{LDL}^{\bullet}}$.

with $\overline{\mathbb{LDL}^{\bullet}}$ a finite set of functions and operators.

We characterize polynomial time computable real numbers and polynomial time computable sequences over the reals (functions from $\mathbb N$ to $\mathbb R$).

Definition

Let $f : \mathbb{N} \times \mathbb{R} \mapsto \mathbb{R}$. The discrete derivative of f is defined by $f'(x, y) = \Delta f(x, y) = f(x + 1, y) - f(x, y).$

KORKARA REPASA DA VOCA

Computable analysis: Computability and Complexity

Definition (e.g. Ker I. Ko)

Let $x \in \mathbb{R}$. x is computable if and only if there exists a computable function $\phi : \mathbb{N} \mapsto \mathbb{D}$ such that for all $n \in \mathbb{N}$, $|\phi(n) - x| \leq 2^{-n}$.

Example

6/27

e, π are computable. $\sum_{i\geq 1}2^{-BB(i)}$, where BB is the Busy Beavers function is not.

KORKARRICH ER VOOR

Computable analysis: Computability and Complexity

Definition (e.g. Ker I. Ko)

We say that the time (or space) complexity of a computable real number x is the time (or space) complexity of computing one of its Cauchy function, where the input n to a Cauchy function is written in unitary notation $0ⁿ$.

Definition (e.g. Ker I.Ko)

A function $f : \mathbb{R} \mapsto \mathbb{R}$ is computable if there exists a oracle Turing machine M such that, for all $x \in \mathbb{R}$ and ϕ a Cauchy function associated to x (CF_x) , the function ψ computed by M with oracle $\phi \, (\psi(n) = M^{\phi}(n))$ is in $CF_{f(x)}$.

K ロ ▶ K 리 ▶ K 로 ▶ K 로 ▶ 『 콘 · 이익C

Example: Primitive recursive functions

A function over the integers is primitive recursive, denoted PR , if and only if it belongs to the smallest set of functions that contains

- \blacktriangleright constant function θ .
- ightharpoonly the projection functions π_i^p $\frac{p}{i}$,
- \blacktriangleright the functions successor s .
- ▶ and that is closed under composition and primitive recursion.

KORKARRA ERKER SAGA

We have $\mathcal{PR} = [O, \pi^\mathcal{P}_i]$ $i_i^p, s; composition, primitive recursion]$ Example: Primitive recursive functions

Let $p \in \mathbb{N}$, $g: \mathbb{N}^p \to \mathbb{N}$ and $h: \mathbb{N}^{p+2} \to \mathbb{N}$.

The function $f = \text{REC}(g,h) : \mathbb{N}^{p+1} \to \mathbb{N}$ is defined by primitive recursion from g and h if:

$$
\begin{cases}\nf(0, \mathbf{y}) = g(\mathbf{y}) \\
f(x+1, \mathbf{y}) = h(f(x, \mathbf{y}), x, \mathbf{y})\n\end{cases}
$$

We can reformulate f through differential discrete equation:

$$
\frac{\partial f}{\partial x}(x, y) = \overline{h}(f(x, y), x, y)
$$

= $h(f(x + 1, y), x + 1, y) - h(f(x, y), x, y)$

KORKARRA ERKER SAGA

Another example: Elementary functions and Grzegorczyk's hierarchy

- ▶ Class \mathcal{E}^0 : contains the constant function 0, the projection functions π_i^p i_{j}^{ν} , the successor function ${\bf s}$, and is closed under composition and bounded recursion.
- ▶ Class \mathcal{E}^n for $n \geq 1$: defined similarly except that functions max and E_n are added to the list of initial functions.

Known results:

- $\triangleright \mathcal{E}^3$: class of elementary functions (alternative definition by bounded sum and product)
- ▶ $\mathcal{E}^2_* =$ LINSPACE, $\mathcal{E}^2 = \mathcal{F}_{\text{LINSPACE}}$ (linear space and polynomial growth)

KORKARYKERKE PORCH

- ▶ $\mathcal{E}^n \subsetneq \mathcal{E}^{n+1}$ for $n \geq 3$
- \blacktriangleright $\mathcal{PR} = \bigcup_i \mathcal{E}^i$

Linear ODEs give exactly the elementary functions.

Bounded recursion

Let $g: \mathbb{N}^p \to \mathbb{N}$, $h: \mathbb{N}^{p+2} \to \mathbb{N}$ and $i: \mathbb{N}^{p+1} \to \mathbb{N}$.

The function $f = \text{BR}(g,h)$: $\mathbb{N}^{p+1} \to \mathbb{N}$ is defined by bounded recursion from g , h and i if

$$
f(0, \mathbf{y}) = g(\mathbf{y})
$$

$$
f(x+1, \mathbf{y}) = h(f(x, \mathbf{y}), x, \mathbf{y})
$$

under the condition that:

$$
f(x, y) \leq i(x, y).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Algebras of functions

Summary

 \triangleright Characterise **complexity classes**, in polynomial time, by algebras of functions

KORK EXTERNE PROVIDE

 \blacktriangleright How?

- \blacktriangleright Take some basis functions
- \blacktriangleright Allow classical operations such as composition
- \blacktriangleright Use a recursion mechanism

Algebras of functions

Summary

 \triangleright Characterise **complexity classes**, in polynomial time, by algebras of functions

\blacktriangleright How?

- \blacktriangleright Take some basis functions
- \blacktriangleright Allow classical operations such as composition
- \blacktriangleright Use a recursion mechanism
- ▶ Full recursion is too much (primitive recursion). Need to restrict it.
- ▶ Applications/goals: programming languages with performance guarantees

Recursion on notation (Cobham ('62))

Consider $s_0, s_1 : \mathbb{N} \to \mathbb{N}$

$$
s_0(x) = 2 \cdot x
$$
 and $s_1(x) = 2 \cdot x + 1$.

Definition

Function f defined by bounded recursion on notations, i.e. BRN, from functions g, h_0, h_1 et k when:

$$
\begin{cases}\nf(0, \mathbf{y}) = g(\mathbf{y}) \\
f(\mathbf{s}_0(x), \mathbf{y}) = h_0(x, \mathbf{y}, f(x, \mathbf{y})) \text{ for } x \neq 0 \\
f(\mathbf{s}_1(x), \mathbf{y}) = h_1(x, \mathbf{y}, f(x, \mathbf{y})) \\
f(x, \mathbf{y}) \leq k(x, \mathbf{y})\n\end{cases}
$$

KOKK@KKEKKEK E 1990

 F_P smallest subset of primitive recursive functions

▶ Containing basis functions : $F_P = [\mathbf{0}, \pi_i^k, s_0, s_1, \sharp;$ Composition, BRN] with \sharp , a "smash funtion" defined by $\sharp(x, y) = 2^{|x| \times |y|}$

Cobham (62) : F_P is equal to FP, the class of polynomial time computable functions

$$
\begin{cases}\nf(0, \mathbf{y}) = g(\mathbf{y}) \\
f(\mathbf{s}_0(x), \mathbf{y}) = h_0(x, \mathbf{y}, f(x, \mathbf{y})) \text{ for } x \neq 0 \\
f(\mathbf{s}_1(x), \mathbf{y}) = h_1(x, \mathbf{y}, f(x, \mathbf{y})) \\
f(x, \mathbf{y}) \leq k(x, \mathbf{y})\n\end{cases}
$$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ 『 聖 │ の Q ⊙ |

$$
\begin{cases}\nf(0, \mathbf{y}) = g(\mathbf{y}) \\
f(\mathbf{s}_0(x), \mathbf{y}) = h_0(x, \mathbf{y}, f(x, \mathbf{y})) \text{ for } x \neq 0 \\
f(\mathbf{s}_1(x), \mathbf{y}) = h_1(x, \mathbf{y}, f(x, \mathbf{y})) \\
f(x, \mathbf{y}) \le k(x, \mathbf{y})\n\end{cases}
$$

- ▶ f is defined from h_0 , h_1 and k .
- If $|k(x, y)|$ is polynomial in $|x| + |y|$, then so is $|f(x, y)|$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

▶ Hence, inner terms do not grow too fast!

$$
\begin{cases}\nf(0, \mathbf{y}) = g(\mathbf{y}) \\
f(\mathbf{s}_0(x), \mathbf{y}) = h_0(x, \mathbf{y}, f(x, \mathbf{y})) \text{ for } x \neq 0 \\
f(\mathbf{s}_1(x), \mathbf{y}) = h_1(x, \mathbf{y}, f(x, \mathbf{y})) \\
f(x, \mathbf{y}) \leq k(x, \mathbf{y})\n\end{cases}
$$

Kロトメ部トメミトメミト ミニのQC

 \blacktriangleright $|\mathbf{s}_1(x)| = |\mathbf{s}_0(x)| = |x| + 1$

 \blacktriangleright Then the number of induction steps is in $O(|x|)$.

▶ Definition of useful functions (addition, concatenation, conditionals, etc) "easy"

KID KØD KED KED E 1090

- ▶ $\sharp(x,y) = 2^{|x| \times |y|}$, Hence $|\sharp(x,y)| = |x| + |y| + 1$.
- ▶ Help to obtain "counters" of polynomial size.

LDL and FP

Definition

- \triangleright FP is the class of functions computed by deterministic Turing machines in polynomial time
- \triangleright FPSPACE is the class of functions computed by deterministic Turing machines in polynomial space

KORK EXTERNE PROVIDE

▶ We have $FP \subseteq \#P \subseteq FPSPACE$

LDL and FP

Definition

- \blacktriangleright FP is the class of functions computed by deterministic Turing machines in polynomial time
- ▶ FPSPACE is the class of functions computed by deterministic Turing machines in polynomial space
- ▶ We have $FP \subseteq \#P \subseteq FPSPACE$

Theorem (Bournez & Durand, '19) For discrete functions, we have $\mathbb{L} \mathbb{DL} = FPTIME$ where $\mathbb{L} \mathbb{DL} =$ $[0, 1, \pi_i^k, \ell(x), +, -, \times, \text{cond}(x)$; composition, linear length ODE].

KORKARA REPASA DA VOCA

Definition (f Linear length ODE)

$$
f(0, y) = g(y)
$$
 and $\frac{\partial f(x, y)}{\partial \ell} = u(f(x, y), h(x, y), x, y)$ (1)

where **u** is essentially linear in $f(x, y)$.

 \Rightarrow introduced in (Bournez & Durand '19) (1) is similar to classical formula for classical continuous ODEs:

$$
\frac{\delta f(x, \mathbf{y})}{\delta x} = \frac{\delta \ell(x)}{\delta x} \cdot \frac{\delta f(x, \mathbf{y})}{\delta \ell(x)},
$$

KORKARRICH ER VOOR

and hence this is similar to a change of variable: $t = \ell(x)$

ODE for complexity classes

- \blacktriangleright Elementary functions are of high complexity, but linear systems are the simplest kind of system
- ▶ Expressive and believed to help better understand computation for both discrete and continuous settings

KORK ERKER ADAM ADA

$LDL = FPTIME$: Why it works

Proof of (\subseteq **):** (main ideas)

- The derivation along $\ell(x)$ (or any $\mathcal L$ with polylog "jumps") permits to control the number of steps
- ▶ Linearity of the system permits to control the size of the output

KORK EXTERNE PROVIDE

Proof of (\supseteq **):** By a direct expression of a polynomial computation of a register machine.

Computing reals in polynomial time

 L DL \cdot = $[0, 1, \pi_i^k, \ell(x), +, -, \times, \overline{\text{cond}}(x), \frac{x}{2}]$ $\frac{x}{2}$; composition, linear length ODE]

with $\overline{\text{cond}}(x)$ some piecewise linear continuous function that takes value 1 for $x>\frac{3}{4}$ $\frac{3}{4}$ and 0 for $x < \frac{1}{4}$ $\frac{1}{4}$.

Proposition

All functions of \mathbb{LDL}^{\bullet} are computable in the sense of computable analysis in polynomial time.

KID KA KERKER E 1990

 L DL \degree \subset FP

Proof.

By structural induction.

The case of the closure under composition:

- \blacktriangleright Take *COMP*(f, g)
- \triangleright By induction hypothesis, f and g are in FP, so there exists two Turing machines M_f and M_g that respectively compute f and g
- ▶ Deterministic polynomial times Turing machines are closed under composition, so $COMP(f, g)$ is computable in deterministic polynomial time.

KOD KAR KED KED E YOUN

Computing reals in polynomial time : $FP \subseteq \mathbb{LDL}^{\bullet}$

For any polynomial time computable function $f:\mathbb{N}^d\mapsto\mathbb{R}^d$, we can construct some function $\tilde{f} \in \mathbb{LDL}^\bullet$ that simulates the computation of f :

This basically requires to be able to simulate the computation of a Turing machine using the functions from LDL[.]

KORKARRA ERKER SAGA

Computing reals in polynomial time : $FP \subseteq \mathbb{LDL}^{\bullet}$

Main ideas of the proof:

 \triangleright We take a Turing machine M, with bi-infinite tapes computing f , we assume the reals are in base 4:

 \triangleright We encode each transition of M with functions of \mathbb{LDL}^{\bullet} .

 \triangleright We characterise the complete execution of M on some input as a composition of the transitions: we know M is polynomial, so we can bound the number of steps.

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time $f : \mathbb{N} \mapsto \mathbb{R}$.

Main ideas of the proof:

 \triangleright Encode the binary extension using only 1 and 3: computable in LDL•

KORKARRA ERKER SAGA

Why? \rightarrow Functions in \mathbb{LDL}^\bullet are all continuous. Here, we use discontinuous functions, but on disjoint intervals

Computing sequences in polynomial time

We are now able to compute sequences in polynomial time $f : \mathbb{N} \mapsto \mathbb{R}$.

Main ideas of the proof:

- \triangleright Encode the binary extension using only 1 and 3: computable in LDL•
- \triangleright We use the same trick as for computing reals.
- ▶ We decode the result: computable in LDL[•].

Conclusion

▶ We were able to characterise computable real numbers and sequences over the reals in polynomial time:

Theorem

A function $\mathbf{f}:\mathbb{N}^d\to\mathbb{R}^{d'}$. is computable in polynomial time if and only if all its components belong to $\overline{\mathbb{LDL}^{\bullet}}$.

 \triangleright We still need to characterise fuctions over the reals in polynomial time (ongoing work)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$