
626

N
N

T
:2

02
5I

P
PA

X
02

4

Discrete-Time and Continuous-Time
Systems over the Reals: Relating

Complexity with Robustness, Length
and Precision

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École Polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique, données, IA

Thèse présentée et soutenue à Palaiseau, le 28 mai 2025, par

MANON BLANC

Composition du Jury :

Pierre Valarcher
Professeur des universités, Université Paris-Est Créteil (LACL) Président

Enrico Formenti
Professeur, Université Côte-d’Azur (I3S) Rapporteur

Elvira Mayordomo
Professeure des universités, Universidad de Zaragoza (I3A) Rapportrice

Luis Cristóbal Rojas González
Professeur, Pontificia Universidad Católica de Chile (IMC) Rapporteur

Nathalie Aubrun
Directrice de recherche, Université Paris-Saclay (LISN) Co-directrice de thèse

Olivier Bournez
Professeur, École Polytechnique (LIX) Co-directeur de thèse

Juha Kontinen
Professeur, Helsingin Yliopisto (Department of Mathematics and
Statistics) Examinateur

Présentation en français
Cette thèse a été réalisée en co-direction entre l’École Polytechnique et l’Université Paris-
Saclay.

Le monde physique qui nous entoure est continu et décrit par des équations différenti-
elles ordinaires (EDO): par exemple, nos ordinateurs sont constitués de composants élec-
troniques analogiques, décrits naturellement en physique par certaines EDO. Mais, dans
les ordinateurs d’aujourd’hui, ce n’est pas le modèle utilisé: les composants sont con-
traints de vivre dans un régime vrai/faux. Ainsi, les modèles mathématiques de calcul,
comme les machines de Turing, sont discrets: ils fonctionnent sur des mots d’un alphabet
fini, avec des pas, c’est-à-dire un temps discret. Cependant, nous avons aussi des modèles
mathématiques pour les machines analogiques, et les ordinateurs analogiques, comme le
“General Purpose Analog Computer” proposé par Claude Shannon, qui peuvent être vus
comme le pendant des machines de Turing pour le monde analogique.

Ma contribution porte sur la puissance de calcul de tels modèles : comprendre si
nous pourrions calculer plus et plus vite avec eux. La calculabilité et la théorie de la
complexité sont un moyen de classer la difficulté des problèmes. La calculabilité vise à
diviser les problèmes entre ce que nous pouvons résoudre avec un modèle de calcul (dé-
cidable ou calculable), et ce que nous ne pouvons pas. Parmi les problèmes résolubles,
il est intéressant de savoir combien de ressources sont utilisées: c’est là qu’intervient la
théorie de la complexité. Selon le temps et la mémoire (on parle plutôt d’espace que
de mémoire dans ce contexte) nécessaires, ces problèmes appartiennent à des classes
différentes. Le modèle de calcul que l’informatique utilise habituellement pour définir
ces classes est celui des machines de Turing. Elles sont bien définies pour les problèmes
traitant uniquement d’entiers, car elles ont une représentation finie, autrement dit, pour
les modèles discrets, et les calculs binaires. Pour comparer les approches, nous avons
besoin d’un moyen de mesurer le coût des calculs dans des contextes continus. Nous
avons développé et prouvé des caractérisations de classes de complexité pour les calculs
utilisant des nombres réels et des modèles analogiques.

O. Bournez et A. Durand ont établi une caractérisation du temps polynomial (PTIME)
dans le monde discret et nous avons étendu ce résultat aux paramètres continus: c’est-
à-dire aux fonctions sur les réels. Nous avons prouvé une caractérisation algébrique de
suites réelles calculables en temps polynomial dans notre publication à MCU 2022 (Best
Student Paper Award) et l’International Journal of Foundations of Computer Science.
Nous avons ensuite généralisé ce résultat et prouvé des caractérisations algébriques de
PTIME et de l’espace polynomial (PSPACE) pour des fonctions sur les réels. Ces travaux
sont publiés à la conférence MFCS 2023 (Best Paper Award). Avec ces caractérisations
algébriques, nous avons prouvé que le calcul d’une fonction en temps polynomial ou
en espace polynomial équivaut à résoudre une EDO discrète (aussi appelée différences
finies). Nous lions le modèle basé sur des équations différentielles à l’analyse calculable.

Maintenant que nous avons des caractérisations avec des EDO discrètes, nous avons

1

voulu utiliser des EDO continues, pour couvrir le modèle de Shannon. A. Pouly a prouvé
le lien avec le temps, qui correspond à la longueur de la dynamique représentée par l’EDO.
Nous avons ici prouvé un lien avec l’espace, qui est associé à la précision du calcul. Nous
sommes maintenant capables de mesurer l’espace pour un système physique. En utilis-
ant ces résultats, nous avons réussi à prouver une caractérisation algébrique de PSPACE
avec une classe d’EDO continues, prolongeant ainsi le travail d’A. Kawamura. Nous
avons proposé une manière originale et assez inhabituelle de résoudre les EDO: nous les
résolvons de manière récursive, elle s’inspire de la preuve du théorème de Savitch, et cela
permet de garantir l’optimalité en mémoire (espace). Nous avons prouvé le lien entre
l’espace polynomial et la précision polynomiale dans la résolution de l’EDO. L’avantage
est que les EDO continues pourraient être plus naturelles que les EDO discrètes, car elles
sont étudiées dans davantage de domaines scientifiques. Cela a donné lieu à un autre
article publié à la conférence ICALP 2024.

Un autre axe de recherche et point de vue que j’ai étudié pendant ma thèse porte sur la
robustesse des systèmes dynamiques et les applications en théorie de la complexité et en
théorie des pavages. Il est bien connu que le raisonnement sur les systèmes dynamiques
évoluant sur les réels conduit à l’indécidabilité. Cela vient principalement du fait que
l’accessibilité des systèmes dynamiques sur les réels est fondamentalement indécidable,
car les machines de Turing peuvent être intégrées dans des systèmes dynamiques (même
très simples). Cependant, divers résultats dans la littérature ont montré que des procédures
de décision existent lorsque on se limite à des systèmes robustes, avec une notion de
robustesse convenablement choisie. En particulier, dans le domaine de la vérification, si
l’accessibilité des états n’est pas sensible aux petites perturbations, alors des procédures
de décision pour l’accessibilité des états existent. Dans le contexte des théories logiques
sur les réels, il a été établi que des procédures de décision existent en se concentrant sur
des propriétés insensibles à des perturbations arbitrairement petites.

Nous proposons d’abord une théorie unifiée expliquant dans un cadre uniforme
ces énoncés, qui ont été établis dans des contextes différents. Plus fondamentalement,
bien que tous ces énoncés ne concernent que des questions de calculabilité, nous con-
sidérons également des aspects de la théorie de la complexité. Nous prouvons que la ro-
bustesse à une certaine précision est intrinsèquement liée à la complexité de la procédure
de décision. Lorsqu’un système est robuste, il est logique de quantifier à quel niveau de
perturbation il se trouve. Nous prouvons que supposer une robustesse à une perturbation
polynomiale sur la précision conduit à une caractérisation de PSPACE. Nous prouvons
que supposer une robustesse à une perturbation polynomiale sur le temps ou la longueur
conduit à des énoncés similaires pour PTIME. En d’autres termes, nous avons prouvé que
la précision des calculs est intrinsèquement liée à la complexité spatiale, tandis que la
longueur ou le temps des trajectoires est intrinsèquement lié à la complexité temporelle.
Cela a donné lieu à un publication à la conférence CSL 2024. Nous avons étendu ces ré-
sultats à d’autres types de systèmes dynamiques: les pavages, donnant lieu à une soumis-
sion en conférence. Nous soulignons le rôle joué par des concepts venant de la topologie
dans les calculs informatiques, en lien avec tous les résultats précédents.

2

Contents

Acknowledgements . 6

Introduction 8

1 Mathematical background 14
1.1 Some Analysis and Topology . 14

1.1.1 Topology . 14
1.1.2 A classical statement from numerical analysis 17

1.2 Concepts of Ordinary Differential Equations 18
1.2.1 Continuous Ordinary Differential Equations 18
1.2.2 Discrete Ordinary Differential Equations 20

1.3 Computability, Complexity, Computable Analysis 23
1.3.1 Some notions of classical computability and complexity theory . 23
1.3.2 On computable analysis: Computability 32
1.3.3 On computable analysis: Complexity 35
1.3.4 Reductions in continuous settings 38

1.4 Dynamical Systems . 41
1.5 Tiling theory . 44

1.5.1 Tilings as dynamical systems . 44
1.5.2 Minimality and Essential Minimality 46
1.5.3 Tiles and Tilings . 47
1.5.4 Transducers and meta-transducers 49

1.6 Notations Tabulars . 52

2 State of the art 54
2.1 Solving efficiently ODEs: what is known 54
2.2 A variant definition of Turing machines 57
2.3 Dynamical systems and associated complexity issues 57

2.3.1 Embedding TMs into dynamical systems 57
2.3.2 Some complexity results on graphs 60

2.4 Implicit complexity . 62
2.5 Using Discrete ODEs in complexity . 64

2.5.1 Length Ordinary Differential Equations 64
2.5.2 Implicit definition of polynomial time 68

2.6 A previous characterisation of FPSPACE 74
2.7 Programs and Turing machines . 75

3

3 Algebraic Characterisations of FPTIME with Discrete ODEs 78
3.1 Algebraic characterisation of the real sequences computable in polyno-

mial time . 79
3.1.1 Towards functions from integers to the reals: simulation with Tur-

ing machines . 81
3.1.2 Proof of Theorem 3.1.1: f ∈ FPTIME is equivalent to the exist-

ence of some f̃ ∈ LDL• . 83
3.1.3 Proving Theorems 3.1.5 and 3.1.6: LDL• characterises FPTIME

for real sequences . 86
3.2 Algebraic characterisation of FPTIME for functions over the reals 89

3.2.1 Preliminary results about continuous functions 90
3.2.2 Simulating Turing machines with functions of LDL◦ 101
3.2.3 Converting integers and dyadics to words, and conversely 104
3.2.4 Proof of Theorem 3.2.3: LDL◦ characterises FPTIME for real

functions . 105
3.3 Chapter Conclusion . 109

4 Robustness and applications 110
4.1 Perturbed TMs . 111
4.2 Discrete-Time Dynamical Systems . 116

4.2.1 The case of rational systems . 116
4.2.2 The case of computable systems 124

4.3 Relating robustness to drawability . 127
4.4 Continuous-time systems . 129
4.5 Other type of perturbations . 131
4.6 Properties of provably robust TM . 134
4.7 Chapter Conclusion . 136

5 Algebraic Characterisations of FPSPACE 137
5.1 Algebraic characterisation of PSPACE for functions over the reals with

discrete ODEs . 138
5.1.1 Characterisation of FPSPACE and generalisations 139

5.2 Characterisation with Continuous ODEs 140
5.2.1 Solving efficiently ODEs: a space efficient method 141
5.2.2 Simulating a discrete ODE using a continuous ODE 143
5.2.3 Revisiting some previous constructions 146
5.2.4 Constructing the missing functions 150
5.2.5 Working with all steps of a Turing machines 153
5.2.6 Proof of Theorem 5.2.1: the algebra also characterises FPSPACE

in discrete settings . 154
5.2.7 Proof of Theorem 5.2.2: RCD characterises FPSPACE for real

functions . 155
5.3 A completeness result on the reachability of dynamical systems 155
5.4 Chapter Conclusion . 157

4

6 Robustness in Tilings and Subshifts 159
6.1 Some representation aspects . 160

6.1.1 About representation of involved sets 160
6.1.2 About allowed inputs . 161

6.2 Viability and Invariance Kernels . 161
6.2.1 Some vocabulary from verification, control and dynamical sys-

tems theory . 162
6.2.2 Robustness of dynamical systems 164
6.2.3 Space-time of dynamical systems and related problems 168
6.2.4 Relating robustness to reachability 169
6.2.5 Reachability and Witness of non-reachability 171
6.2.6 A specific case . 173

6.3 Robustness of Turing machines . 173
6.3.1 Space-time diagrams of a Turing machine 173

6.4 Robust Subshifts . 174
6.4.1 Computability and uncomputability issues for subshits 174
6.4.2 Robustness of subshifts . 176

6.5 The Robinson tileset is polynomially robust 176
6.5.1 Robustness and invariants . 179

6.6 Application to other tilesets . 181
6.6.1 Extension: Tiling equivalence 181
6.6.2 Jeandel-Rao’s tileset . 181
6.6.3 Kari’s tilings . 182

6.7 Other types of robustness . 184
6.7.1 Robinson’s tilings described by a recurrence relation 186
6.7.2 Semantically robust tilesets . 190
6.7.3 Properties . 190
6.7.4 Provably robust tilesets . 191

6.8 Chapter Conclusion . 193

Conclusion 194

Bibliography 197

5

Acknowledgements

Hygge er en tilstand man oplever, hvis man har fred
med sin selv, sin ægtfælle, skattevæsnet og sine indre
organer.

Tove Ditlevsen

First of all, I would like to thank my reviewers, Enrico Formenti, Elvira Mayordomo
and Cristóbal Rojas, for accepting to read my (rather long) manuscript and their useful
comments. Thank you for your reports and and your encouragements.

I thank Enrico Formenti, Juha Kontinen, Elvira Mayordomo, Cristóbal Rojas and
Pierre Valarcher for accepting to be in my jury.

Je suis très reconnaissante envers Nathalie Aubrun et Olivier Bournez, mes directeur-
ices de thèse, pour leur soutien au cours de ces 3 années. Ce travail aurait été impossible
sans leurs confiances et leurs précieux conseils.

Je remercie mes laboratoires, le LIX et le LISN, pour m’avoir accueillie pendant 3
ans, plus précisément les équipes AlCo, COSYNUS, Grace1 et GAlaC. Plus particulière-
ment merci à mes co-doctorant·es Bernardo, Émile, Mathilde, Pierre, Nicolas, Valentin
et Nuwa. Merci à Johanne d’avoir officieusement relu mes dossiers de candidature et
m’avoir fait répéter ma soutenance.

Merci aux gestionnaires et anciennes gestionnaires de mon équipe et du laboratoire:
Vanessa, Bahareh, Héléna, Fatima et Jackie. C’est grâce à vous que tout tourne bien et
que nous pouvons partir en mission sereinement.

Merci à Arnaud Durand et Pierre Valarcher pour avoir été un super comité de suivi de
thèse. Merci à eux de m’avoir écoutée et encouragée.

Merci à mes relecteurices de manuscrit, Olivier, Nathalie, Louis, Bernardo2 et Dread.
J’espère que j’ai implémenté tous vos conseils.

Je tiens à remercier Louis pour m’avoir hébergée chez lui à Edinburgh pendant 1 mois
pour rédiger mon manuscrit (et fait en sorte que je survive aux randonnées écossaises de
février). Dziękuję bardzo, pour ça et pour tout le reste.

Mes études supérieures n’ont pas toujours été faciles pour pleins de raison différentes.
Et certaines personnes m’ont fortement influencée à continuer et à ne pas lacher. En par-
ticulier, je remercie Frédéric Simon, Laurent Sartre et Benoît Eloseguy, mes professeurs
de mathématiques, informatique et physique en première année de prépa. A niveau de
l’ENS Cachan3, je remercie Serge Haddad pour sa confiance. Et surtout, j’ai énormément
de gratitude envers Hubert Comon-Lundh pour son soutien pendant ma scolarité à l’ENS.
Merci de m’avoir redonné confiance en mes capacités4.

Pendant ma thèse, il n’y a évidemment pas eu que de la science. Je tiens à remercier
Marie, Adrien, Louis et Elric pour nos soirées Escape Game (on a toujours réussi à sortir,
et ce malgré les caprices des acteurices). Je remercie Dread et Louis pour les concerts
et les festivals, les découvertes de nouveaux groupes et les circle pits. Merci à Bernardo
pour la découverte du cinéma brésilien. Merci à Bastien pour les soirées tisanes. Merci
à Blandine pour les balades parisiennes. Merci à Alex et Rosemonde pour le cat-sitting.

1Kong
2obrigado para você
3ou Paris-Saclay, on peut dire les deux
4Je sais qu’il en a assez que je le remercie pour cela, mais ce sont mes remerciement de thèse, et je suis

têtue

6

Merci à Zéphyr pour nos conversations toujours intéressantes. Merci à Baptiste et Simon
pour les soirées après les conférences et pour m’avoir montrée les mille nuances du pastis.
Merci à ma soeur, Margaux, pour les matchs de rugby et les sorties au bar.

Jeg takker mine venner fra den Danske Skole, Tom, Thomas, Clémence, Olivier,
Joséphine, Armande, Frederike, Véronique and Kyrian, og vores vidunderlig lærer, Lotte
Nør-Larsen. Det var meget godt at lave og lærer andre ting end videnskab. Tak for vores
ugentlige møder.

Commencer des études supérieures n’aurait évidemment pas été possible sans le sou-
tien de mes parents, Fabienne et Serge.

Pendant assez longtemps, je n’ai pas eu l’impression de souffrir du manque de femmes
en sciences5. Après de nombreuses discussions, je me suis aperçue de tous les biais
dont on était pétri·es, et d’à quel point le sexisme (ordinaire) est présent, même dans nos
laboratoires. Il faut que ça change. Il faut que nous prennions collectivement conscience
du problème et faire mieux. Je remercie donc toutes les chercheuses qui m’ont inspirée,
notamment Johanne Cohen, Nathalie Aubrun et Marie Kerjean, pour m’avoir montré que
c’était normal de ne pas se laisser faire. C’est une posture que je n’oublierai pas.

Je dédie ma thèse à vous toustes

5Je pointe ici sur un problème parmi tant d’autres

7

Introduction

C’est faisable, il faut juste le faire.
Olivier Bournez

Our physical world is continuous and described by ordinary differential equations
(ODEs). Our computers are made of analogue electronic components, naturally described
in physics by some ODEs. In today’s computers, everything is true or false: components
are forced to live in a true/false regime. Consequently, the classical mathematical models
of computation, such as Turing machines, are discrete: they work on words over a finite
alphabet, with steps, i.e. a discrete time. At the same time, we also have mathematical
models for analogue machines with discrete- and continuous-time, and analogue com-
puters, such as the General Purpose Analog Computer (GPAC) proposed by Shannon,
that can be seen as the counterpart of Turing machines for the analogue world.

We are interested in computability and complexity over the reals. There are various
models of computation for real numbers in computer science: some are in discrete-time,
others are in continuous-time. For studying those models, we will mostly focus on the
framework of computable analysis: it is based on Turing machines, which are very natural
to consider in computer science.

From a complexity point of view, we will study complexity classes doing computa-
tions over real numbers. There are several ways to define complexity classes. Usually,
we use Turing machines to do so. However, this model is a rather heavy framework.
Moreover, it is not widespread in other scientific communities, and being able to do ef-
ficient computations is critical in many areas of fundamental and applied science, for
example in physics or biology. Also, those domains use continuous settings. We want
to abstract from Turing machines to have a more natural model of computation for every
community. We aim to give understandable translations of complexity classes over the
reals. As a side-effect, we prove that it is possible to program with ODEs and ensure that
we can do it efficiently. ODEs also relate mathematics, computer science, and physics,
paving the way to a common research goal.

Since the continuous framework is rather difficult to deal with, we will start by sim-
plifying it. We study discrete-time systems on continuous space (in Chapters 3, 4, 5 and
6) and even discrete-time systems on discrete spaces (in Chapters 3 and 6). We generalise
these frameworks afterwards to all-continuous settings.

Also, inspired by complexity, we study computability questions. Many simply-stated
problems turn out to be undecidable. We show that, by slightly twisting some of them,
they can become decidable. We aim to draw more precisely the border between what is
computable and what is not.

We are specifically interested in studying the complexity properties of dynamical sys-
tems. As many systems in our world are naturally modelled by dynamical systems over

8

the reals (or by so-called hybrid systems, mixing continuous and discrete aspects), veri-
fication of safety properties on these systems is inherently related to state reachability for
dynamical systems. Roughly speaking, a system is safe if the subset of “bad states” (i.e.
those not satisfying some property) cannot be reached from the subset of the initial states
of the system. Unfortunately, it is well-known that such questions are undecidable, even
for elementary dynamical systems. For example, it is undecidable even for systems with
piecewise affine functions [KCG94, Moo91] over the compact domain [0,1]2. Also, the
computational power of dynamical systems is at least as powerful as Turing machines.
Thus, studying dynamical systems becomes a good way to study the questions we are
interested in.

Such undecidability statements are proved by showing that a Turing machine, a par-
ticular discrete-time dynamical system, evolving with time over configurations, can be
embedded into dynamical systems. This requires mapping the infinite set of possible con-
figurations of a Turing machine into a real domain. Hence, the simulation of a Turing
machine requires an infinite precision encoding when the system is defined over a com-
pact domain. This establishes that verification is undecidable for systems with infinite
precisions. However, as many authors observe (see e.g. [AB01]), this does not prove that
undecidability holds for systems needing infinite precision computations.

In that spirit, while several undecidability results were stated for hybrid systems, such
as Linear Hybrid Automata [HKPV98], Piecewise Constant Derivative systems [AMP95],
an informal conjecture (that we will call the “robustness conjecture”) appeared in the
field of verification of hybrid and continuous systems by various authors. It states that
undecidability is due to non-stability, non-robustness and sensitivity to the initial values
of the systems. There were several attempts to formalise and prove this, including [Frä99,
AB01].
Nota Bene (NB) 0.0.1

The “robustness conjecture” is an acknowledged informal conjecture, as it is related
to the mathematical notion of robustness. It holds for some mathematical concepts of
robustness, such as the ones considered in this document. It is provably false for some
other frameworks: see e.g. [HR00].

The mathematical formalisation of robustness, or the question of the various “natural”
concepts of robustness, is related to philosophical questions about the limits of mathem-
atical models, handled by computability theory. It is important to highlight that a Turing
machine is an ideal model, as well as dynamical systems over the reals are often idealisa-
tions of models. We do not aim to review these kinds of discussions, even if our results
shed some light on these questions, such as the fact that complexity theory is associated
with quantifying the accepted level of robustness.

A long-standing open problem was how to measure time complexity in continuous
time models. It was recently proved [BGP17] that the length of the solution curves
provides a measure equivalent to time for digital models. In the spirit of avoiding the
model of Turing machines and measuring time as the length of a curve, we will develop
in Chapter 3 alternative characterisations of polynomial time, as finite sets of functions
stable under finite sets of operators. We call such characterisations algebraic.
NB 0.0.2

Turing machines is an operationnal model: the computations are made very expli-
citely, step-by-step. An algebraic characterisation, like the ones we will state and

9

prove in Chapter 3 and also in Chapter 5, provides a denotational point of view: it
works on the mathematical representation.

We consider in Chapter 4 the approach perturbation of [AB01], where classes of dy-
namical systems are considered. A notion of perturbed dynamics by a small ε is asso-
ciated with each system. We define a perturbed reachability relation as the intersection
of all reachability relations obtained by ε-perturbations. The authors of [AB01] showed
that, for many models, the perturbed reachability relation is co-computably enumerable
(co-c.e., Π1) and any co-c.e. relation can be defined as the perturbed reachability relation
of such models. Consequently, it follows from basic computability arguments, namely
that a computably enumerable and co-computably enumerable set is decidable that, if ro-
bustness is defined as the stability of the reachability relation under infinitesimal perturb-
ation, then robust systems have a decidable reachability relation and hence a decidable
verification (i.e. the robusness conjecture holds).

In the context of decision procedures for logic over the reals, the authors of [GAC12]
observed that it is well-known that some logics, such as real arithmetic, are decidable.
However, decidability does not hold for simple extensions of real arithmetic. Indeed,
even the set of Σ1-sentences in a language extending real arithmetic with the sine function
is already undecidable. If a relaxed and more “robust” notion of correctness is considered
(one asks to answer true when a given formula φ is true and to return false when it is δ -
robustly wrong) the truth of a formula becomes algorithmically solvable. In other words,
undecidability intrinsically comes from the fact that the truth of a sentence might depend
on infinitesimally small variations of its interpretation.

Recently, the author of [Rat23] proposed a first-order predicate language for reasoning
about multi-dimensional smooth real-valued functions. They proved the specification of
an algorithm solving formulas robustly satisfiable, up to some metrics. The proof of
decidability can also be interpreted using an argument similar to [AB01, GAC12].

The question of a natural measure for space complexity remained open, despite some
very recent characterisations of (F)PSPACE using ODEs [BGGP23]. We will solve it
in Chapter 5, by proposing a measure and a rather simple characterisation of polynomial
space. The theory developed in Chapter 4 and Chapter 5 comes from an attempt to get to
simpler (algebraic) characterisations of (F)PSPACE, with continuous ODEs. It also al-
lows us to relate the concept of space to the precision of the computation. It can be related
to [BGP16b, BGP17]: the authors of these articles provide a characterisation of PTIME
with continuous ODEs, establishing that time complexity corresponds to the length of the
involved curve, i.e. the motto time complexity = length. Here, we get a maxim of the
form space complexity = precision: we characterise space for continuous-time systems.
The proofs of the algebraic characterisations will rely on continuously approximating
non-continuous functions, such as the fractional part, and encoding the execution of the
underlying Turing machine into the algebras. We obtained this theory initially with the
idea that getting to (F)PSPACE requires a way to forbid undecidability. This led us to
develop this theory based on these notions of robustness, guaranteeing computability.

Let us review more thoroughly the contributions of each chapter:
To give some context, we start by introducing, in Chapter 1, concepts of mathematics

and computer science necessary to understand the rest of the document. We will also de-
scribe some previous, somewhat non-classical, works on the subjects we tackle in Chapter
2.

10

Chapter 3 We give characterisations of polynomial time over the reals with discrete
ODEs. First, we characterise real sequences (Theorem 3.1.6), then functions over the
reals (Theorem 3.2.3). The core of the proofs relies on encoding the execution of Turing
machines into particular discrete ODEs, on which we know or prove complexity proper-
ties. Characterisations of polynomial time with discrete ODEs existed before, but only
for decision problems. Here we characterise sequences and functions over the reals using
robust discrete ODEs.

Chapter 4 Using various arguments from computability and computable analysis, we
prove that being robust for a dynamical system implies that its reachability relation is
decidable. Also, we directly relate the level of robustness to the complexity of associated
decision problems.

More precisely, we establish the following:

• We consider various classes of dynamical systems: in turn, Turing machines, then
discrete-time dynamical systems preserving the rationals, then general discrete-time
dynamical systems and eventually continuous-time dynamical systems. For all of
them, we define robustness as non-sensitivity to infinitesimal perturbations of the
associated reachability relation, in the spirit of [AB01].

– We prove that for this natural concept of robustness, the “robustness conjec-
ture” holds: verification or reachability relation (and hence safety verification)
is decidable.

– We characterise and relate robustness to decidability by proving that the con-
verse holds if some property is added (Corollary 4.2.19). This means that
there is a form of completeness of the above statement: when decidability
holds, establishing the robustness of the corresponding system can be done
for a suitable notion of perturbation or metric.

– We relate this notion of robustness of Turing machines to a programming lan-
guages and logic point of view based on provability and Hoare logic.

• Furthermore, we relate this approach, inspired by [AB01] from verification, to the
concept of δ -decision of [GAC12], from the context of decision procedures in logic.

A system is robust iff its reachability relation is either true or ε-far from being true
(Proposition 4.2.14).

• We also prove that robustness can be seen as having a reachability relation depicted
by a pixelated image. It is a simple and elegant geometric property (Corollary 4.3.4
and 4.3.5).

• More fundamentally, in the whole chapter, while the above results are about decid-
ability, we also discuss complexity issues. Indeed, when a system is robust, it is
natural to quantify the perturbation level we allow.

– We show that considering a perturbation polynomially small relates in a very
intuitive way to the complexity of the associated verification or decision prob-
lem (Theorem 4.1.11, Theorem 4.2.24).

11

– More precisely, polynomial space computability is related to precision (The-
orem 4.1.11, Theorem 4.2.24). Polynomial time computability is related to
the time or length of the trajectory (Theorem 4.5.10).

Chapter 5 Now that we have characterisations for polynomial time with discrete ODEs
in Chapter 3, it makes sense to characterise space complexity. Furthermore, we wanted to
use continuous ODEs instead of discrete ODEs to get closer to models such as the GPAC.
Amaury Pouly in [Pou15] proved their link with time: it corresponds to the length of the
dynamic represented by the ODE. Here, we proved a link with space, which is associated
with the precision of the computation.

In this chapter, we solve the problem of having a proper way to measure space com-
plexity in continuous settings. The theory developed here provides arguments to state
that, over a compact domain, space corresponds to the precision of the computations.
More precisely, it corresponds to the logarithm of the size of some graphs for systems
over more general domains. Meanwhile, this idea has been used to provide a simple char-
acterisation of FPSPACE with discrete ordinary differential equations (Theorem 5.1.6).

We are now able to measure space of an actual physical system. Using these results,
we, managed to prove an algebraic characterisation of PSPACE with a class of continuous
ODEs (Theorem 5.2.2), also using the work of Akitoshi Kawamura, to be seen. As a side-
effect, we propose a quite unusual way to solve ODEs: we solve them recursively. It
is inspired by the proof of the Savitch theorem (Theorem 1.3.30). We proved the link
between polynomial space and polynomial precision in the solution of the ODE. The
advantage is that continuous ODEs might be more natural than discrete ODEs, as they are
studied in more fields of science.

Defining a robust and well-defined computation theory for continuous-time computa-
tions was an open problem and not an easy one: see [BP21] for the most recent survey.
In short, the problem with time complexity is that considering the time variable as a
measure of time is not robust: a curve can always be re-parameterised using a change of
variable. The problem with space complexity is similar: reparameterisation corresponds
to a change of time variable, but also of space-variable, introducing space and time con-
tractions: see e.g. [BP21, BGP17]. Furthermore, many problems for simple dynamical
systems are known to be undecidable, hence forbid PSPACE-completeness: see [GZB06]
and [GZ18].

Chapter 6 We extend the concepts of robustness of Chapter 4 regarding reachabilty
to more general settings, namely invariance properties. Another main difference is that,
we adopt here a more topological point of view. We study the specific case of tilings and
subshifts. We prove that it provides explanations of phenomema observed in the literature.

In this chapter, we adapt tools, concepts and arguments from the continuum to discrete
objects. While concepts from computer science lead naturally to reachability questions
(e.g. “does some Turing machine reach a halting state”), the dual view leads naturally
to viability questions (e.g. “does some non-deterministic Turing machine run forever” or
invariance questions (e.g. “what are the inputs on which the machine will run forever”).
Some of these questions can be reduced from one to another (e.g. “a machine with no
rejecting state never halts on some input if it does not reach a halting state”). Those
problems remain natural and of clear practical interest for applications [AMJ24].

12

We extend this approach to the dual questions mentioned above. In addition to the
applications contexts of [AB01] and Chapter 4, we prove that we can extend it to ques-
tions and concepts about objects that are nowadays considered purely discrete questions,
namely tilings and subshifts. In particular, we provide a formal explanation of the phe-
nomenon observed experimentally in simulations of tilesets such as the one of [JR21].

We consider the context of tilings and subshifts. The domino problem is known to
be undecidable in general, even for sets of Wang tiles: unit squares tiles with colours on
their edges, introduced in the early ’60s to study the undecidability of the ∀∃∀ fragment
of first-order logic [Wan61].

We prove the Domino problem is decidable for robust tilesets and that it holds for
many other tilesets of the literature, including the Robinson tileset [Rob71] (Section 6.5).
A tileset is robust if the membership of its patterns is decided by reasoning on strips of
the plane. Applying our general theory, we prove that if the number of strips involved
by a given pattern is polynomial, then the Domino problem is solvable in polynomial
space. We show the undecidability of the Domino problem holds in Berger’s construction
because it involves a non-robust Turing machine, i.e. a non-robust tiling. We argue it
is true for all tilesets in the literature unless they are produced from non-robust Turing
machines.

• We start from the ideas of [AB01] and Chapter 4. While they were restricted to
point-to-point computability, our theory is widely more general: it also covers the
computation of invariance kernel, invariance envelope, or reachability sets (sets-
computations, with all the associated difficulties).

• Doing so, we specialise and extend several statements known in control theory for
differential inclusions [SP94, Aub91] or hybrid systems [Lyg04] to the theory of
discrete time dynamical systems. Several statements seem original, even if inspired
by this rather different context.

• We prove that robustness concepts from [AB01] have a topological interpretation
(Definition 6.2.6, Proposition 6.2.7, Corollary 6.2.8). No such explanations have
been observed. Another side effect is that many statements stated in the tiling sub-
shift community get an interpretation regarding statements for dynamical systems
over the continuum and conversely (e.g. minimality of a subshift and the invariance
kernel), used in our arguments.

• We prove that several statements from Chapter 4 have a wider interpretation. We
extend several statements to non-deterministic systems and over more general time-
space (group actions), needed for our theory about subshifts.

13

Chapter 1

Mathematical background

But once an object is found inedible, that does not
always mean it’s uninteresting.

Peter Godfrey-Smith, Other Minds: The Octopus,
the Sea, and the Deep Origins of Consciousness

In this chapter, we shall introduce the concepts we need in the other chapters, covering
the theory of Ordinary Differential Equations, Computable Analysis, Computability and
Complexity, Dynamical Systems and Tilings. The objective is to find and prove links
between all those concepts. Analysis and complexity remain the backbones of all our
results. We apply various notions of both domains to characterise classes and study the
complexity properties of different types of dynamical systems.

A tabular referencing the notations we use can be found at the end of this chapter.

1.1 Some Analysis and Topology
We recall some usual concepts of topology and analysis. We introduce only the concepts
we need throughout the chapter. Hence, we assume some familiarity with these concepts.
See [Cla24] or [Rud91] and [Rud87] for a more comprehensive view.

1.1.1 Topology
Sets and spaces

Definition 1.1.1 (Metric Space, e.g. in [Cla24])

A metric space is a pair (X ,d), where X is a set and d : X ×X → R+ (for R+

the non-negative real numbers) a distance, that is to say, for x,y,z ∈ X :

• d(x,x) = 0;

• d(x,y)≥ 0 (positivity);

• d(x,y) = d(y,x) (symmetry);

• d(x,z)≤ d(x,y)+d(y,z) (triangle inequality).

14

Example 1.1.2
The pair (R, |.|) is a metric space. The pair (Σω ,dC) with Σω the set of infinite words
on alphabet Σ and dC such that dC(w1,w2) = 2−min{i|(w1)i ̸=(w2)i} (and is equal to 0
when w1 = w2) is also a metric space.

The metric spaces of Example 1.1.2 are the ones we will work on the most in this
document.

Definition 1.1.3 (Compact set)
Let X be a metric space. A subset S ⊆ X is compact if and only if (iff) every
cover by a collection C of open sets

⋃
O∈C O of S has a finite subcover by a

finite subcollection F ⊆ C : S =
⋃

O∈F O .

Definition 1.1.4 (Closure, e.g. in [Cla24])

Let X be a metric space. The closure of S ⊆ X , denoted by S or csl(S), is the
set containing S and all its limit points.

Example 1.1.5
The closure of Q is R, as any real number is the limit of a rational sequence. Only
real numbers can be reached with such sequences.

Definition 1.1.6 (Interior and Frontier, e.g. in [Cla24])

Let X be a metric space. The interior of S ⊆ X , denoted by int(S), is the union
of all the open subsets O of X such that O ⊆ S.
The frontier of S is ∂ (S) = S− int(S).

Example 1.1.7

The interior of Q is empty, and its frontier is R. On (R, |·|), int
(
[0,1]

)
=]0,1[and

∂
(
[0,1]

)
= {0,1}

X
S

int(S) ∂S

15

Definition 1.1.8 (Balls, e.g. in [Cla24])

Let (X ,d) be a metric space. The (open) ball of radius ε centered on x ∈ X ,
denoted by Bε(x), is the set {y ∈ X |d(x,y)< ε}.

Definition 1.1.9 (Closed Rational Box)

A closed rational box X is a subset of Rn of the form X = Π
n−1
i=0 [ai,bi], with,

for all i ∈ J0,nK, ai,bi ∈Q.

Note that, according to the definition, a rational box X is a subset of Rn, not of rational
numbers: it is a finite product of intervals. Consequently, such an X is compact for the
topology of Rn.

Functions

In the rest of the thesis, for A and B sets, we will often write BA for the set of functions f
such that f : A→ B. As we deal with complexity over the reals, measuring the resources
we use during the computations is crucial. We define the following to do so:

Definition 1.1.10 (Modulus of convergence, e.g. in [Cla24])

Let g : N→ R and h : N2→ R, with g(n) and h(·,n) be functions converging
to 0 when n goes to ∞.

• A function M : N→N is a modulus of convergence of g iff for all n ∈N,
for all i > M(n), we have ∥g(i)∥ ≤ 2−n.

• A function M :N→N is a uniform modulus of convergence of a sequence
h iff for all n ∈ N, for all i > M(n), we have, for all m ∈ N, ∥h(m, i)∥ ≤
2−n.

Intuitively, the modulus of convergence bounds the speed of convergence of a se-
quence.

Definition 1.1.11 (Continuity, e.g. in [Cla24])

Let (E,dE) and (F,dF) be two metric spaces. A function f : E → F is (uni-
formly) continuous iff for all ε > 0, there exists δ > 0 such that, for all x,y∈ E,
dE (x,y)≤ δ implies dF

(
f (x), f (y)

)
≤ ε .

If E and F are subsets of R, the definition becomes: |x− y| ≤ δ ⇒
∣∣ f (x)− f (y)

∣∣≤ ε .
In this context, we will often write x =δ y for |x− y| ≤ δ .

In Chapter 6, we will also have to consider set-valued functions, for which we consider
a weaker versions of continuity:

Definition 1.1.12 (Set-valued map)

A set-valued map f is a function mapping any element of Dom(f) to subsets
of another set.

16

Definition 1.1.13 (Upper-semicontinuity, e.g. [Mus00])

Let f : X →P(R∪ {−∞,+∞}) be a set-valued map with X a topological
space. We say f is an upper-semicontinuous map in x0 ∈ X iff for all open set
V with f (x0)⊆V , there exists a neighbourhood U of x0 such that, for all x ∈U ,
f (x)⊆V .

Definition 1.1.14 (Lower-semicontinuity, e.g. [Mus00])

Let f : X →P(R∪ {−∞,+∞}) be a set-valued map with X a topological
space. We say f is an upper-semicontinuous map in x0 ∈ X iff for all open set
V with f (x0)∩V ̸= /0, there exists a neighbourhood U of x0 such that, for all
x ∈U , f (x)∩V ̸= /0.

Definition 1.1.15 (Lipschitz functions, e.g. in [Cla24])

Let (E,dE) and (F,dF) be two metric spaces. Let k ∈ R+. f : E → F is k-
Lipschitz iff for all x,y ∈ E, dF

(
f (x), f (y)

)
≤ k ·dE (x,y).

For simplicity, we denote “k-Lipschitz functions” for some k, by “Lipschitz func-
tions”. When F = R and E is a subset of R, the definition can be simply restated as:∣∣ f (x)− f (y)

∣∣≤ k · |x−y|.
A function f is locally Lipschitz if every point x ∈ Dom(f) has a neighbourhood U

such that f|U is Lispchitz.
A function f is a contraction if it is k-Lipschitz with k ∈ (0,1).
We explicitly use those functions in Chapter 4 and Chapter 5.

1.1.2 A classical statement from numerical analysis
The field of numerical analysis studies ways to give numerical approximations to various
analysis problems. See [Dem96] for more details. We give here a classical lemma that we
will use later:

Lemma 1.1.16 (Discrete Grönwall’s lemma, e.g. [Dem96])

Consider sequences (hn)n∈N ,(θn)n∈N ∈ R+, Λ ∈ R+, with R+ the set of non-
negative reals, and εn ∈ R such that, for all n ∈ N,

θn+1 ≤ (1+Λhn)θn + |εn|.

Then, for (tn)n∈N such that t0 ∈ R+ and tn+1 = t0 +∑
n−1
i=0 ∆ti, ∆ti = ti+1− ti, we

have:
θn ≤ eΛ(tn−t0)θ0 + ∑

0≤i≤n−1
eΛ(tn−ti+1)|εi|.

Proof. By recurrence over n. For n = 0, the inequality θ0 ≤ θ0 holds.
Suppose now the inequality at order n. Observe that (1+Λhn)≤ eΛ(tn+1−tn).

17

By hypothesis, we have

θn+1 ≤ eΛ(tn+1−tn)θn + |εn|
≤ eΛ(tn+1−t0)θ0 + ∑

0≤i≤n−1
eΛ(tn+1−ti+1)|εi|+ |εn|

The inequality at order n+1 follows.

1.2 Concepts of Ordinary Differential Equations
In this section, we give some concepts and definitions for continuous and discrete ODEs.
We assume some familiarity with differential equations: see [Cla24, Dem96].

1.2.1 Continuous Ordinary Differential Equations
In Chapter 5, we prove an algebraic characterisation of FPSPACE using continuous
ODEs.

Definition 1.2.1 (Derivative, e.g. in [Cla24])

A function f such that Dom(f)⊆R, is differentiable at a point x iff x∈Dom(f)
and there exists L ∈R such that for all ε > 0, there exists some δ > 0 such that
for all h < δ , x+h ∈ Dom(f),∣∣∣∣L− f (x+h)− f (x)

h

∣∣∣∣< ε.

The derivative L of a function quantifies how much the function varies on an arbitrarily
small interval. We denote by ∂ f

∂x (x, . . .) the derivative of f with respect to x, and just f ′

when the derivation variable is not ambiguous. For i ∈ N, we denote by f (i) the ie’s
derivative of f .

Definition 1.2.2 (Differentiability for a function)

A function f is differentiable on X ⊆ Dom(f) iff it is differentiable on every
point of X .

When it is not ambiguous, we say that “ f is differentiable”, without precising on
which set, when it is differentiable on all its domain Dom(f). We notice that a differen-
tiable function f is Lipschitz iff the derivative of f is bounded. For n ∈ N, we denote by
C n the set of functions f differentiable n times and f (n) is continuous.

Theorem 1.2.3 (Fundamental theorem of analysis, e.g. in [Cla24])
Let f be a continuous function and F be a primitive of f on an open interval J.
Then, for all a,b ∈ J and a < b:∫ b

a
f (t)dt = F(b)−F(a)

18

Definition 1.2.4 (Ordinary Differential Equation, e.g. in [Cla24])
An ordinary differential equation (ODE) is a functional equation in y ∈

C n−1 (I,R), I an interval, for n ∈ N
⋃
{+∞}, and possibly depending on one

parameter t, such that

F
(

t,y(t),y′(t), . . . ,y(n)(t)
)
= 0,

for D⊆
⋂

i≤n Dom
(

y(i)
)
⊆ Rn and F : (I×Dn)⊆ (R×Rn)→ R.

An ODE is polynomial when F is a polynomial.

Definition 1.2.5 (Initial Value Problem, e.g. [Pou15])
An initial value problem (IVP), also called Cauchy problem, is an ordinary
differential equation together with an initial condition of the form y(t0) = y0
where t0 ∈ I and y0 ∈ R.

For example, every dynamic in physics, for example in mechanics, can be represented
by an ODE as long as it is differentiable with a unique solution.
Example 1.2.6

Modelisation of the trajectory of an object thrown at initial velocity v0 = 20 m.s−1

with an initial angle of θ = 45◦. Re-using the notation of Definition 1.2.4,

F : t,

(
x(t)
y(t)

)
,

(
x′(t)
y′(t)

)
→

(
x′(t)− v0 cos(θ)

y′(t)− v0 sin(θ)+g · t

)
.

{
x(0) = v0 · cos(θ)
x(t) = v0 · cos(θ)+ t{
y(0) = v0 · sin(θ)
y(t) = v0 · sin(θ) · t−0.5 ·g · t2

Cauchy problems, described by ODEs, have a good property on the solutions of IVPs:

19

Theorem 1.2.7 (Cauchy-Lipschitz, Picard–Lindelöf, e.g. in [Cla24])
Consider the IVP:

y′(t) = f (t,y(t))
y(0) = t0

with f : I×D⊂ (R×R)→R, continuous in t and Lipschitz and continuous in
y(t). Then there exists an interval J ⊆ I on which there exists a unique solution
of this IVP.

For Partial Differential Equations, i.e. equations involving the derivative of several
variables, the Cauchy-Lipschitz theorem no longer applies in the general case, as it does
for ODEs. In this document, we only deal with ODEs.

Ultimately, we define the notion of length for a curve.

Definition 1.2.8 (Length of a curve, e.g. in [Pou15])

Let n ∈ N, I be an interval and y ∈ C 1(I,Rn). The length of y over I is defined
by:

lengthI(y) =
∫

I
∥y′(t)∥dt.

We use a discrete version (Definition 2.5.1) to have characterisations of FPTIME in
Section 2.5 and in Chapter 3.

1.2.2 Discrete Ordinary Differential Equations
We redefine various notions of the previous subsection in the discrete settings. We mainly
use those concepts in Chapter 3 and Chapter 5.

Basic definitions and properties

We first define the (right) discrete derivation:

Definition 1.2.9 (Discrete Derivative, e.g. in [Gel71])

The discrete derivative of f(x), where Dom(f)⊆ N, is defined as ∆f(x) = f(x+
1)− f(x).

We also write f′(x) for ∆f(x) when the context is not ambiguous with respect to their
classical continuous counterparts. This type of derivative is also called finite difference in
the literature. For a,b ∈ N we denote by Ja,bK the set {a,a+1, · · · ,b−1,b}.
NB 1.2.10

We can consider N ⊂ Z ⊂ R but, as functions may have different types of outputs,
the composition is an issue. We consider that composition might not be defined in
some cases: it is a partial operator. For example, given f : N→ R and g : R→ R,
the composition of g and f is defined as expected, but f cannot be composed with a
function such as h : N→ N.

20

Several results for continuous derivatives generalise to the settings of discrete differ-
ences. It includes linearity of derivation

(
a · f (x)+b ·g(x)

)′
= a · f ′(x)+ b · g′(x), for-

mulas for products and division such as
(

f (x) ·g(x)
)′
= f ′(x) · g(x+ 1)+ f (x) · g′(x) =

f (x+1)g′(x)+ f ′(x)g(x). However, there is no simple equivalent of the chain rule.
A fundamental concept is the following:

Definition 1.2.11 (Discrete Integral, e.g. in [Gel71])

Given a,b ∈ N such that a≤ b and some function f : Ja,bK→ N, we write∫ b

a
f(x)δx

as a synonym for
∫ b

a f(x)δx = ∑
x=b−1
x=a f(x). We fix the convention that it takes

value 0 when a = b and
∫ b

a f(x)δx =−
∫ a

b f(x)δx when a > b.

The telescope formula yields the so-called Fundamental Theorem of Finite Calculus:

Theorem 1.2.12 (Fundamental Theorem of Finite Calculus, e.g. in [Gel71])

Let F be some function on Ja,bK. Then,∫ b

a
F′(x)δx = F(b)−F(a).

A classical concept in discrete calculus is the one of falling power defined as

xm = x · (x−1) · (x−2) · · ·(x− (m−1)).

This notion is motivated by the fact that it satisfies a derivative formula (xm)′ = m · xm−1

similar to the classical one for powers in the continuous settings. Similarly, we introduce
the concept of falling exponential.

Definition 1.2.13 (Falling exponential [BD19])

Given some function U(x), the expression U to the falling exponential x, de-
noted by 2U(x), stands for

2U(x)
= (1+U′(x−1)) · · ·(1+U′(1)) · (1+U′(0))

=
t=x−1

∏
t=0

(1+U′(t)),

with the convention that ∏
0
0 = ∏

−1
0 = id, where id is the identity (sometimes

denoted 1 hereafter).

This is motivated by the remarks that 2x = 2x, and that the discrete derivative of a
falling exponential is given, for all x ∈ N, by(

2U(x)
)′

= U′(x) ·2U(x)

21

Lemma 1.2.14 (Derivation of an integral with parameters [BD19])
Consider

F(x) =
∫ b(x)

a(x)
f(x, t)δ t.

Then

F′(x) =
∫ b(x)

a(x)

δ f
δx

(x, t)δ t +
∫ −a′(x)

0
f(x+1, a(x+1)+ t)δ t

+
∫ b′(x)

0
f(x+1, b(x)+ t)δ t.

In particular, when a(x) = a, b(x) = b are constant functions,

F′(x) =
∫ b

a

δ f
δx

(x, t)δ t,

and when a(x) = a, b(x) = x,

F′(x) =
∫ x

a

δ f
δx

(x, t)δ t + f(x+1, x).

Proof. By definition of the discrete derivative,

F′(x) = F(x+1)−F(x)

=
b(x+1)−1

∑
t=a(x+1)

f(x+1, t)−
b(x)−1

∑
t=a(x)

f(x, t)

Thus,

=
b(x)−1

∑
t=a(x)

(
f(x+1, t)− f(x, t)

)
+

t=a(x)−1

∑
t=a(x+1)

f(x+1, t)+
b(x+1)−1

∑
t=b(x)

f(x+1, t)

=
b(x)−1

∑
t=a(x)

δ f
δx

(x, t)+
t=a(x)−1

∑
t=a(x+1)

f(x+1, t)+
b(x+1)−1

∑
t=b(x)

f(x+1, t)

=
b(x)−1

∑
t=a(x)

δ f
δx

(x, t)+
t=−a(x+1)+a(x)−1

∑
t=0

f(x+1, a(x+1)+ t)

+
b(x+1)−b(x)−1

∑
t=0

f(x+1, b(x)+ t).

22

1.3 Computability, Complexity, Computable Analysis

1.3.1 Some notions of classical computability and complexity theory
We start by introducing some notions of classical computability and complexity theory,
firstly because they are useful mainly in Chapter 4. Also, we use the same objects in
computable analysis, so it is interesting to see how we can link both theories.

Computability

The usual model of computation we use to study discrete models is Turing machines. We
assume the readers to be somewhat familiar with these concepts, a more comprehensive
study can be found in [Sip97]. We give some basic definitions to fix the notations:

Definition 1.3.1 (Turing machine, e.g. in [Sip97])

A Turing machine is a 7-tuple
(
Q,Σ,Γ,δ ,q0,Qaccept,Qreject

)
, where Q, Σ, Γ

are all finite sets and:

1. Q is a set of states;

2. Σ is the input alphabet;

3. Γ is the tape and output alphabet, where Σ⊆ Γ;

4. δ : Q×Γ→ Q×Γ×{←,→} is the transition function;

5. qinit ∈ Q is the starting state;

6. Qaccept ⊆ Q is the set of accepting states;

7. Qreject ⊆ Q is the set of rejecting states, with Qaccept
⋂

Qreject = /0.

We give an example of the execution, or run, of a Turing machine computing the
binary addition of some integer:
Example 1.3.2 (Binary Addition: doing +1)

t = 0
$ 1 0 B ...
↑

t = 1
$ 1 0 B ...
↑

t = 2
$ 1 0 B ...

↑

t = 3
$ 1 0 B ...

↑

t = 4
$ 1 0 B ...

↑

t = 5
$ 1 1 B ...

↑

t = 6 $ 1 1 B ...

We represent what happens on the
tape of a Turing machine performing a
binary addition +1 on the integer 10 (writ-
ten in big-endian binary) given as the in-
put. The up-arrow represents the position
of the head of the machine, $ marks the
beginning of the tape, Σ = {0,1}, Γ =
{$,0,1,B}. The states of such machine
are Q= {qinit,q1,q2,q3,q0

4} and the trans-
ition function δ is decribed in the tabular
below.

23

More formally, it can be defined by:

$ 0 1 B
qinit qinit,$,→ qinit,0,→ qinit,1,→ q1,B,←
q1 accept,1 q2,0,←
q2 q3,$,→ accept,1 q2,1,←
q3 q0

4,1,→
q0

4 q0
4,0,→ accept,0

Where the cells left blank are rejecting states.

It is possible for a Turing machine M to take another machine M′ as an input. In this
case, we give some encoding (the code) of M′ to M, denoted by < M′ >. More generally,
we denote by < M′,w > for both the code of M′ and some input w.

We can also define multi-tapes Turing machines: each tape has its own head. One
transition in such machines corresponds to a simultaneous movement of all heads. Thus
the transition function δ for n tapes is δ : Q×Γn→ Q×Γn×{←,→}n.

Regarding computational power, Turing machines can simulate more general Turing
machines where the working alphabets are larger. Similarly, Turing machines whose
transition function forbids the head to stay on a given cell (i.e. it must necessarily move
right or move left at every step) can be simulated by the more general usual case where
staying on a given cell is allowed: if the head stays on the same cell, this can be emulated
by the head going back and forth, not altering the content of the tape on the way back.
Furthermore, using standard techniques, we can assume, without loss of generality, that
at any moment, the blank symbol B appears eventually on the right and eventually on the
left, but never between non-blank symbols.

We presented deterministic Turing machines: one transition on a configuration gives
at most one possible configuration. One variant is the non-deterministic Turing machine,
where we allow the transition function to send a configuration to a set of configurations:

Definition 1.3.3 (Non-determinism, e.g. in [Sip97])

A Turing machine M =
(
Q,Σ,Γ,δ ,q0,Qaccept,Qreject

)
is non-deterministic iff

δ is a relation such that δ ⊆
(
Q\{Qaccept,Qreject}×Γ

)
×
(
Q×Γ×{←,→}

)
.

In other words, non-deterministic machines are allowed to “make choices” during the
computation. However, it does not affect the computational power of Turing machines,
regarding computability:
NB 1.3.4 (e.g. in [Sip97])

Every language recognised by a non-deterministic machine can be recognised by a
deterministic machine.

There exist other variants of Turing machines. We give here the definition of oracles,
that we use in Chapter 5:

24

Definition 1.3.5 (Oracle Turing machine, e.g. in [Sip97])
An oracle for a language B is capable of reporting whether any string w is a

member B.
An oracle Turing machine is a modified Turing machine with an additional
capability of querying an oracle. We write MB to describe an oracle Turing
machine M having an oracle for the language B.

We are not interested in how the oracle actually “knows” the solution of the quer-
ies. Having an oracle for a machine, as the name suggests, can be considered as some
“magical” computability ability.
NB 1.3.6

In this document, we will mainly use the variant of TMs described in Subsection 2.2.

Now that we have seen the main models of computation we use, let us focus on their
computability properties. We will call problem sets of the form {I ∈ S|Q} with S ⊆ Σ∗

some set (for example the set of codes of Turing machines) and Q⊆ S is a question to be
solved algorithmically. We write problems this way:

Problem:
Input: I ∈ S
Output: Q

Definition 1.3.7 (Decision Problem, e.g. in [Sip97])

A decision problem is a subset P⊆ Σ∗.

Intuitively, a problem is a decision problem if its possible solutions are yes or no: it
can be interpreted as a yes/no question on some set of inputs.

For example, determining whether two integers are equal is a decision problem.

Definition 1.3.8 (Computable enumerability (c.e.), e.g. in [Sip97])
A decision problem P is computably enumerable (or semi-decidable) iff there
exists a Turing machine accepting all the correct inputs of P.

If, on some input, the machine does not reach an accepting state, we cannot say more
about its behaviour: it could halt in a rejecting state or never halt.
Example 1.3.9 ([Sip97])

Halting Problem:
Input: A Turing Machine M and x
Output: Does M stops on x?

The Halting problem is computably enumerable: if x is accepted by M, then the ma-
chine stops at some point. If not, then M could reach a rejecting state or just keep
computing indefinitely.

We define a class as a set of problems related by some computability property. In-
formally, a class C is a set of decision problems that are in the same equivalence class:

25

they are grouped according to their computability or complexity properties. For example
the set of all the c.e. decision problems is a class.

Definition 1.3.10
For every class C , co-C is the class of problems such that their respective
complements are in C .

Definition 1.3.11 (Co-computable enumerability (co-c.e.), e.g. in [Sip97])
A problem P is co-computably enumerable iff there exists a Turing machine

rejecting all the incorrect inputs of P.

It means that, on some input, if the machine does not reach a rejecting state, we cannot
say anything about its behaviour: it could halt in an accepting state or never halt.
Example 1.3.12

Non-Halting Problem:
Input: A Turing Machine M and x
Output: Does M loop forever on x?

Corollary 1.3.13
A problem is co-computably enumerable if its complement is computably enu-
merable.

And there exist problems that are neither c.e. nor co-c.e.. For example, let φ be an
oracle for the halting problem:
Example 1.3.14

Oracle Halting Problem:
Input: A Turing machine Mφ , an input x
Output: Does Mφ (x) halt?

NB 1.3.15
Coming back to oracle machines (Definition 1.3.5), note that the language recognised
by the oracle is not necessarily decidable, as in this example.

NB 1.3.16
Typically, we study this kind of problem in the framework of the arithmetical hier-
archy: see [Kle43] and [Mos47].

Definition 1.3.17 (Decidability)
A problem is decidable iff it is both computably enumerable and co-computably
enumerable.

26

Definition 1.3.18 (Computable Functions, e.g. in [Sip97])
A function f is a computabla if there exists a TM such that, on some input x,
outputs f (x) if x ∈ Dom(f) and rejects otherwise.

They are somewhat more general than decision problems, as the output is not only yes
or no.
Example 1.3.19 (A Decidable Problem)

Halting after n steps Problem:
Input: A Turing Machine M, n ∈ N and x
Output: Does M stops on x in less than n steps?

As an example of non-decidability, let us prove the following:

Proposition 1.3.20 ([Tur37])
The Halting problem is not decidable.

Proof from [Str65]. Assume, by contradiction, that the Halting problem is decidable.
Let MH be a Turing machine taking as an input the encoding of some machine M′ and x′,
and accepts if M′ halts on x′ and rejects otherwise. Let us define the machine M taking
MH as an input and:

• If MH(< M,x >) accepts then M loops forever;

• If MH(< M,x >) rejects then M accepts.

Thus, if MH(< M,x >) accepts, M never halts: contradiction. If MH(< M,x >) rejects,
M halts: contradiction.

Hence, the Halting problem is undecidable.

There exist many models of computations, for various purposes. Many of them are
equivalent, as long as they deal with effectively computable functions:

Definition 1.3.21 (Effectively Computable [Chu36, Gan80])

A function in NN is effectively computable if there exists a procedure, e.g. an
algorithm, computing it (in some pre-defined class) and terminating.

The Church-Turing thesis ([Chu36, Tur37, Kle36]) states that a function over the in-
tegers is effectively computable iff it can be computed by a Turing machine. It stipu-
lates the equivalence, in terms of computation power, between Turing machines and other
effective models of computations such as λ -calculus ([Chu36]), or more intuitive suffi-
ciently powerful models. In the rest of the thesis, we will write “computable” instead of
“effectively computable”.

Let us now recall the definitions of reduction and complete problems.

27

Definition 1.3.22 (Reduction, e.g. in [Sip97])
A decision problem A is reducible to a problem B, written A≤ B, if there exists
a computable function f : Σ∗→ Σ∗, where for every w,

w ∈ A⇔ f (w) ∈ B.

The function f is called the reduction from A to B.

Corollary 1.3.23
Let A, B be two decision problems such that A≤ B. Then,

• If A is undecidable, then B is undecidable.

• If B is decidable, then A is decidable.

Example 1.3.24 ([Sip97])
We consider the following problem:

ELBA:
Input: A Turing machine M
Output: M is a Linear Bounded Automaton with empty acceptance language
(L(M) = /0)?

where a Linear Bounded Automaton (LBA) is a Turing machine where the head is
not allowed to move off the portion of the tape containing the input. Let us proof
this problem is undecidable, by reducing from the Halting Problem. Assume, by
contradiction, there exists a TM R deciding ELBA. Let M be a Turing machine and
x an input. We assume M terminates when given the input x. The reduction is as
follows:

• We construct the LBA B from M and x. Its input is the sequence of config-
urations of M on x. This computation history is represented by a string, each
configuration separated by a fresh symbol #:

· · ·# #︷︸︸︷
C1

︷︸︸︷
C2

︷︸︸︷
Cl

B accepts if M accepts on some input by checking 3 conditions:

– C1 is the initial condition of M on x;

– Each Ci+1 is a legal successor of Ci;

– Cl is a terminating configuration of M.

• Run R on < B >.

• If R rejects, then accept; if R accepts, reject.

28

Thus, if R accepts < B >, then L(B) = /0, so M has no terminating computation history
on x, so M does not halt x and we reject. If R rejects < B > then L(B) ̸= /0. B accepts
only a finite computation history of M on x. Thus, M must halt on x and we halt on
< M,x >: contradiction.

Consequently, ELBA is undecidable.

NB 1.3.25
For LBAs, and contrary to Turing machines, knowing whether a word is in a language
is decidable. ELBA is one of the problems where undecidability remains.

Theorem 1.3.26 (Completeness)
A problem A is complete for some class C of decision problems, or C -
complete, iff A ∈ C and for every problem B in C , B≤ A.

Complexity

Now that we have a criterion to say whether we can solve some problem, it makes sense
to investigate how much resources we need to actually do so. We need a way to properly
measure time and space. Using the framework of Turing machines, time corresponds to
the number of transitions, or steps, needed to solve the problem, and space to the number
of cells required. In this context, time and space are given with respect to the size of the
input. Here, all inputs have finite size.

Definition 1.3.27 (Time classes, e.g. in [Sip97])
Let f : N→ R+,

• TIME(f) (respectively NTIME(f)) defines the class of languages de-
cidable in time bounded by O(f(n)) by a deterministic (resp. non-
deterministic) Turing machine;

• FTIME(f) (resp. NFTIME(f)) is the class of functions computable in
time bounded by O(f(n)) by a deterministic (resp. non-deterministic)
Turing machine.

Definition 1.3.28 (Space classes, e.g. in [Sip97])
Let f : N→ R+,

• SPACE(f) (resp. NSPACE(f)) is the class of languages decidable in space
bounded by O(f(n)) by a deterministic (resp. non-deterministic) Turing
machine;

• FSPACE(f) (resp. NFSPACE(f)) is the class of functions computable in
space bounded by O(f(n)) by a deterministic (resp. non-deterministic)
Turing machine.

In the literature, there are two possible definitions for FPSPACE, according to whether
functions with non-polynomial size values are allowed. When we talk about FPSPACE,

29

we will always assume the outputs remain of polynomial size. Otherwise, the class is
not closed by composition: the issue is about the usual convention of not counting the
input and output as part of the total space used. Given f computable in polynomial space
and g in logarithmic space, f ◦ g (and g ◦ f) is computable in polynomial space. But, if
exponential size output is allowed, this is not true: the problem comes from the fact that,
if we assumed only f and g to be computable in polynomial space, g might give an output
of exponential size.

Definition 1.3.29 (Some usual classes, e.g. in [Sip97])

• L is the class of languages decidable by a deterministic Turing machine
in logarithmic space.

• P = PTIME =
⋃

k∈NTIME(nk);

• NP = NPTIME =
⋃

k∈NNTIME(nk);

• PSPACE =
⋃

k∈NSPACE(nk)

The notions of stability (or closure) and reduction are still relevant for those classes.
However, they are not stable (or close) under the previous definition of reduction: it is
too general. Thus, when dealing with complexity classes, we restrain the reduction to be
computable in logarithmic space or polynomial time.

Theorem 1.3.30 (Savitch theorem, e.g. in [Sip97])

For any function f : N→ N with f (n)≥ logn, we have:

NSPACE(f (n))⊆ SPACE(f 2(n)).

Corollary 1.3.31
PSPACE = NPSPACE

We have the following hierarchy of complexity classes:

EXPTIME

PSPACE

NP

P

NL
L

30

The previous hierarchy can be divided more finely, by introducing classes such as
co-NP or ΠP

n and ΣP
n : see [Sip97] and [AB09] for more details.

Usual Complete Problems

Circuit Value:
Input: A boolean circuit C, an input x
Output: C(x) = 1?

Proposition 1.3.32 ([Sip97])
Circuit Value is P-complete.

SAT:
Input: A boolean formula φ

Output: Is φ satisfiable?

Proposition 1.3.33 ([Sip97], [Coo71], [Lev73] and [Kar72])
SAT is NP-complete.

QBF:
Input: A quantified boolean formula φ

Output: Is φ satisfiable?

Proposition 1.3.34 ([Sip97])
QBF is PSPACE-complete.

Let us focus on the following decision problem:

PATH(G,u,v):
Input: A directed graph G = (V,→), some vertices u,v ∈V

Output: Is there a path between u and v in G (denoted by u ∗→ v)?

Lemma 1.3.35 (Reachability for graphs, e.g. in [Sip97])

PATH(G,u,v) ∈ NL.

The following is known:

Lemma 1.3.36 (Immerman–Szelepcsényi’s theorem [Imm88, Sze88])
NL = coNL.

We also define the complement of PATH(G,u,v):

31

NOPATH(G,u,v):
Input: A directed graph G = (V,→), some vertices u,v ∈V
Output: Is there no path between u and v in G?

Corollary 1.3.37

Then NOPATH(G,u,v) ∈ NL.

Corollary 1.3.38

PATH(G,u,v) ∈ SPACE(log2(n)) and NOPATH(G,u,v) ∈ SPACE(log2(n)).

NB 1.3.39
Notice that detecting whether there is no path between u and v is equivalent to de-

termining whether all paths starting from u remain disjoint from v. More precisely,
the path either loops or ends without reaching v. The above statement is established
using a more subtle method than a simple depth-of-width search of the graph. One
uses the trick of the proof of Savitch theorem, i.e. a recursive procedure (expressing
reachability in less than 2t steps, called CANYIELD(C1,C2, t) in [Sip97]) guarantee-
ing the claimed space complexity. The formal proof of the Savitch theorem is detailed
in [Sip97].

1.3.2 On computable analysis: Computability
For discrete-time models of computations over the reals, the most famous models are
computable analysis, based on the Turing machine model (see[Tur37] and [Wei00]) and
algebraic models such as the Blum Shub Smale (BSS) model of computation [BSS89,
BCSS98]. Both models were tailored for different applications and it is well-known we
cannot unify existing models with the equivalent of a Church-Turing thesis. For example,
computable functions in a computable analysis model need to be continuous, while the
BSS model intends to consider functions and problems over the polynomials that are not.
It is also explained by the fact that some models have not been introduced with the idea
of being associated with actual physical machines.

Among models of computation over the reals, we can highlight continuous-time mod-
els. This includes models of old, first-ever-built computers, such as the Differential Ana-
lysers [Ulm20]. A famous mathematical model of such machines is the General Purpose
Analog Computer model of Claude Shannon [Sha41]. It covers many historical machines
and today’s analogue devices [Ulm13, Ver22] too. It also includes various recent ap-
proaches and models from deep learning such as Neural ODEs [CRBD18, Kid22] with
many variants.

In the context of continuous-time, the situation is clearer than with discrete-time mod-
els, as there is a unifying way to describe these models provided by Ordinary Differential
Equations (ODEs). Each model corresponds to a particular class of ODEs. For example,
the GPAC corresponds to polynomial ODEs [GC03], and Neural ODEs are made by se-
lecting the best solution among a parameterised class of ODEs: see, e.g. [Kid22].

When we say that a function f : S1×·· ·×Sd→Rd′ is (respectively: polynomial-time)
computable it will always be in the sense of computable analysis. We recall here the basic

32

concepts and definitions, mostly following the book [Ko91], whose subject is complexity
theory in computable analysis. Alternative presentations include [BHW08, Wei00].
NB 1.3.40

The monograph [Ko91] formulates explicitly most of the statements only for func-
tions over the reals. As we talk about functions in RN in Chapter 3, we need to mix
complexity issues dealing with integer and real arguments. Hence, we extend some
of the statements to these more general settings (in the spirit of [Ko91], [Kaw09],
[KORZ14], [KMRZ15] and [KST18]).

We present here a formalisation equivalent to [Tak01] but with our own words. This
will be used to fix the framework and the notations.

To talk about computable analysis, we consider a variant of Turing machines in this
context:

Definition 1.3.41 (Type-2 Turing machine [Wei00])
A Type-2 Turing machine is a Turing machine with k input and working tapes

together with a type specification (Y1, · · · ,Yk,Y0) with Yi ∈ {Σ∗,Σω}, giving the
type (finite or infinite) for each input tape and output tape.

This machine contains some read-only input tapes, containing the inputs, which can
be either finite or infinite words, a read-write working tape and a write-only output tape.
It looks like a classical Turing machine, the only difference is that we allow it to output
an infinite word written forever on its write-only infinite output tape(s).

Definition 1.3.42 (Computable String Function f : Y0→ Y1×·· ·×Yk [Wei00])

The initial tape configuration for input (y1, · · · ,yk) ∈Y1×·· ·×Yk is as follows:
for each input tape i the (finite or infinite) sequence yi ∈Yi is placed on the tape
immediately to the right of the head, all other tape cells contain the symbol B.
For all y0 ∈ Y0,y1 ∈ Y1, · · · ,yk ∈ Yk we define:

1. Case Y0 = Σ∗: f (y1, · · · ,yk) := y0 ∈ Σ∗ iff the associated Type-2 Turing
machine M halts on input (y1, · · · ,yk) with y0 written on the output tape.

2. Case Y0 = Σω : f (y1, · · · ,yk) := y0 ∈ Σω iff M computes forever on input
(y1, · · · ,yk) and writes y0 on the output tape.

We can now define a proper notion of computable enumerability in that context:

Definition 1.3.43 (Computably enumerable sets [Wei00])
A closed set A∈Rn is computably enumerable if there exists a Turing machine
enumerating all the open rational cubes intersecting A.

NB 1.3.44

We can also consider oracle Turing machines to represent functions in RR, as we will
see in Definition 1.3.48.

We approximate real numbers with dyadics. A dyadic number d is a rational number
with a finite binary expansion. That is to say d = m/2n for some integers m ∈ Z, n ∈ N,
n≥ 0. Let D be the set of all dyadic rational numbers.

33

We denote by Dn the set of all dyadic rationals d with a representation s of precision
prec(s) = n: that is, Dn =

{
m · 2−n | m ∈ Z

}
.

NB 1.3.45
D is dense in R.

Thus, we can approximate any real number x with a sequence of dyadics converging
to x. This leads us to the definition of computable real numbers:

Definition 1.3.46 ([Ko91])
For each real number x, a function φ : N→ D is said to binary converge to x

if for all n ∈ N,prec(φ(n)) = n and |φ(n)− x| ≤ 2−n. Let CFx denote the set of
all functions binary converging to x.

CF· is a set of Cauchy sequences.

Definition 1.3.47 (Computable real number [Ko91])
A real number x is computable iff CFx contains a computable function: there
exists a TM such that, on input n ∈ N, computes φ(n), defined in Definition
1.3.46.

There exist many more non-computable than computable real numbers. One intu-
ition is to notice that, according to the previous definition, there is an injection between
computable reals and the set of Turing machines: the set of computable real numbers is
countable, whereas R is not. However, the set of computable reals is dense in R, so any
non-computable real can be approximated by a sequence of computable reals.

In Chapter 3 and Chapter 5, we are interested in having characterisations of func-
tions computable in FPTIME and FPSPACE. So, we have to formally define what is a
computable function in the framework of computable analysis:

Definition 1.3.48 ([Ko91])
A real function f : R→ R is computable if there is a function-oracle TM M
such that for each x ∈R and each φ ∈CFx, the function ψ computed by M with
oracle φ (i.e. ψ(n) = Mφ (n)) is in CFf (x). We say the function f is computable
on interval [a,b] if the above condition holds for all x ∈ [a,b].

The intuition is that an oracle Turing machine M computes a function f over the reals,
if we have, for any real x in the domain of f , for any φ ∈ CFx, M with oracle φ , the
following: given the output precision 2−n, given in the form of integer n, M eventually
outputs d ∈ D with ∥d− f (x)∥ ≤ 2−n.

During this computation, M asks necessarily finitely many questions to its oracle φ .
From the considered oracles, any such question can be seen as follows: for some queried
precision 2−m, M asks to oracle φ to provide some φ(m), such that ∥φ(m)− x∥ ≤ 2−m.

We notice that, in computable analysis, we only deal with continuous functions:

Theorem 1.3.49 ([Wei00])
Every computable real function is continuous.

34

NB 1.3.50
From the model of computable analysis, given the names (or a representation) of the

function f and x,y ∈Q, it is impossible in general to tell effectively if f(x) = y.

For closed sets, the notion of computability can be interpreted as the possibility of
being plotted with an arbitrarily chosen precision: z/2n corresponds to a pixel at precision
2−n, 1 is black (the pixel is plotted black), 0 is white (the pixel is plotted white).

Theorem 1.3.51 ([BHW08])

For a closed set A ⊆ Rk, A is computable iff it can be plotted: there exists a
computable function f : N×Zk→{0,1} and such that for all n ∈N and z ∈ Zk

f (n,z) =


1 if B

(z
2n ,2−n)∩A ̸= /0,

0 if B
(z

2n ,2 ·2−n)∩A = /0,
0 or 1 otherwise.

1.3.3 On computable analysis: Complexity
Assume that M is an oracle machine which computes f on domain Dom(f).

For simplicity, we may assume in our discussion that Dom(f) is some closed interval
or R. For any oracle φ ∈CFx, with x ∈ Dom(f), let TM(φ , n) be the number of steps for
M to halt on input n with oracle φ , and T ′M(x, n) = max

{
TM(φ , n) | φ ∈CFx

}
.

We define the time complexity of f as follows:

Definition 1.3.52 (From [Ko91])

Let Dom(f) be a bounded closed interval [a,b]. Let f : Dom(f)→ R be a
computable function. Then, we say that the time complexity of f on Dom(f)
is bounded by a function t : Dom(f)×N→ N if there exists an oracle TM M
which computes f such that for all x∈Dom(f) and all n> 0, T ′M(x, n)≤ t(x, n).

In other words, as mentioned in [Ko91], the idea is to measure the time complexity of a
real function based on the input and the output precision 2−n. However, it is usually more
convenient to simplify the complexity measure and make it depend only on the output
precision. They define the uniform time complexity of f on G with a bound function
t ′ : N→ N.

However, if we do so, it is important to realise that if we took Dom(f) =R in previous
definition, for unbounded functions f , [Ko91] observes that “the uniform time complexity
does not exist, because the number of moves required to write down the integral part of
f (x) grows as x approaches +∞ or −∞”.

Therefore, the approach of [Ko91] is to do as follows (the bounds−2X and 2X , X ∈N,
are somewhat arbitrary, but are chosen here because the binary expansion of any x ∈
(−2n,2n) has n bits in the integral part):

35

Definition 1.3.53 (Adapted from [Ko91])

For functions f (x) whose domain is R, we say that the (non-uniform) time
complexity of f is bounded by a function t ′ : N2 → N if the time complexity
of f on

[
−2X ,2X

]
is bounded by a function t : Dom(f)×N→ N such that

t(x, n)≤ t ′(X , n) for all x ∈
[
−2X ,2X

]
.

We extend the approach to more general functions. When x = (x1, · · · ,xp) and X =

(X1, · · · ,Xp), we write x ∈ [−2X,2X] as short for x1 ∈
[
−2X1 ,2X1

]
, . . . , xp ∈

[
−2Xp,2Xp

]
.

For n ∈ N, we denote by ℓ(n) the number of bits of the binary representation of n.

Definition 1.3.54 (Complexity for real functions: general case, from [Ko91])

Consider a computable function f (x1, · · · ,xp,n1, · · · ,nq) whose domain is
Rp×Nq. We say that the (non-uniform) time complexity of f is bounded by
a function t ′ : Np+q+1 → N if the time complexity of f (·, · · · , ·,n1, · · · ,nq) on[
−2X1,2X1

]
×·· ·×

[
−2Xp,2Xp

]
is bounded by a function:

t(·, · · · , ·, ℓ(n1), · · · , ℓ(nq), ·) : Np×N→ N

such that t(x, ℓ(n1), · · · , ℓ(nq),n) ≤ t ′(X, ℓ(n1), · · · , ℓ(nq),n) whenever x ∈[
−2X,2X

]
. We say that f is polynomial time computable if t ′ can be chosen as

a polynomial. We say that a vectorial function is polynomial time computable
iff all its components are.

NB 1.3.55
There is some major subtlety. When considering f : N→ Q, as Q ⊂ R, stating f is
computable might mean two things:

• in the classical sense, given integer y, i.e. one can compute py and qy some
integers such that f (y) = py/qy;

• or in the sense of computable analysis, i.e. given some precision n, given arbit-
rary y and n ∈ N we can provide some rational qn such that |qn− f (y)| ≤ 2−n.

We always consider the latter.

The motivation behind those previous definitions is similar to the one in [Pou15] and
[BGP16b]: we want this measure of complexity to extend the usual complexity for func-
tions over the integers, where complexity of integers is measured with respects of their
lengths, and over the reals, where complexity is measured with respect to their approxim-
ation.

In particular, in the specific case of a polynomial-time computable function f : Nd →
Rd′ , it means there is some polynomial t ′ :Nd+1→N such that the time complexity of pro-
ducing some dyadic approximating f (m) at precision 2−n is bounded by t ′

(
ℓ(m1), · · · , ℓ(md),n

)
,

writing m = (m1, · · · ,md).
In other words, when considering that a function is polynomial time computable, the

bounding polynomial is given by the length of all its integer arguments, as it is the usual

36

convention.
However, we sometimes also need to consider polynomial dependency directly in one

of some specific integer argument, say ni and not on its length ℓ(ni). We say that the
function is polynomial time computable, with respect to the value of ni when this holds
(keeping possible other integer arguments n j, j ̸= i, measured by their length).

A key observation is the stability of polynomial time under composition:

Lemma 1.3.56 ([Ko91])
The class of polynomial time computable functions is stable under composi-

tion.

Proof. It is proved in [Ko91]: in short, the idea of the proof for composition(f ,g), is that
by the induction hypothesis, there exists M f and Mg two Turing machines computing in
polynomial time f : R→ R and g : R→ R. In order to compute composition(f ,g)(x) with
precision 2−n, we just need to compute g(x) with a precision 2−m(n), where m(n) is the
polynomial modulus function of f . Then, we compute f (g(x)), which, by definition of M f
takes a polynomial time in n. Thus, since polynomial time with an oracle in polynomial
time is polynomial time, composition(f ,g) is computable in polynomial time so the class
of polynomial time computable functions is closed under composition.

There exist various characterisations of functions computable in polynomial time over
the reals. For example, the following is proved in [Ko91] for functions from [a,b]→ R.
It could be extended to more general functions.

Theorem 1.3.57 (Alternative characterisation [Ko91])

A function f : [a,b]→ R is computable in polynomial time iff there exist poly-
nomial functions m and q and a function ψ : (D∩ [a,b])×N→ D such that

1. m is a polynomial modulus function for f on [a,b]: |x− y| ≤ 2−m(n) im-
plies | f (x)− f (y)| ≤ 2−n for every x,y ∈ [a,b] and every integer n;

2. for any d ∈ D∩ [a,b] and all n ∈ N, |ψ(d,n)− f (d)| ≤ 2−n;

3. ψ(d,n) is computable in time q(prec(d)+n).

In particular, a well-known observation is the following (see e.g. [Ko91]):

Theorem 1.3.58
Consider f as in Definition 1.3.54 computable in polynomial time. Then f has
a polynomial modulus function, that is to say there is a polynomial function
mf : Np+q+1→ N such that for all x,y ∈

[
−2X,2X

]
and all n > 0,

∥x−y∥ ≤ 2−mf(X,ℓ(n1),··· ,ℓ(nq),n)

implies
∥f(x,n1, · · · ,nq)− f(y,n1, · · · ,nq)∥ ≤ 2−n.

37

1.3.4 Reductions in continuous settings
Having proper computability and complexity classes over the reals depends a lot on the
representation of the reals we consider. We can even have complexity results holding for
some representation, but not for another.

Definition 1.3.59 (Translation and equivalence [Wei00])

Let S,S
′ ⊆ R be sets. For arbitrary functions γ : Y → S, γ

′
: Y

′ → S
′

with
Y,Y

′ ∈ {Σ∗,Σω}:

• f : Y → Y
′
translates γ to γ

′
iff, for all y ∈ Dom(γ), γ(y) = γ

′
(f (y));

• γ is equivalent to γ
′

iff some computable function translates γ to γ
′

and
some computable function translates γ

′
to γ .

All equivalent representations of the reals give the same computational properties (see
[Wei00]). Here we only use equivalent representations of Definition 1.3.46, with quickly
converging names: a name of x ∈ Rd , with In an interval of radius < 2−n. When s is a
word, here we denote by |s| its length.

Once again, we do not work directly on the real numbers themselves, but on some
representation of them. In this context, we will use the set Reg of regular functions to
represent them:

Definition 1.3.60 (Regular Functions [KC12])

A function f : Σ∗→ Σ∗ is regular iff, for all u,v ∈ Dom(f) such that |u| ≤ |v|,
then | f (u)| ≤ | f (v)|.

Definition 1.3.61 (Representation [Wei00] and [KC12])

A representation of a set S is a surjective function δ : Reg→ S.

A representation can be seen as a naming system. The problem with using infinite
sequences in Σω is that there is no robust measure of size for complexity, which is critical
in complexity theory. Following [KC12], we will use Reg to name real numbers, sets and
functions. The complexity is then defined regarding the length of the words representing
the reals and the size of the oracle, also denoted by | · | such that |φ |(|u|) = |φ(u)|.

Notice that, in Subsection 1.3.1, we only had to deal with sets of languages or de-
cidable problems as inputs. Here, we have functions as inputs, thus we are doing re-
ductions for the complexity on pseudofunctors (operators sending functions to functions,
preserving composition). In that context, we say the complexity classes are defined in
second-order. A second-order polynomial ([KC12]) is defined inductively as follows: a
positive integer and a variable are a second-order polynomial and if P and Q are second-
order polynomials, then so are P+Q, P ·Q and P(L) where L∈NN is a polynomial (type-1

variable). In other words, a second-order polynomial P is in
(
NN
)NN

.

38

Definition 1.3.62 (Second-order polynomial time [KC12])
A (deterministic or non-deterministic) TM M runs in second-order polynomial
time if there is a second-order polynomial P such that, given any oracle φ ∈Reg
and any input u ∈ Σ∗, M halts within P(|φ |)(|u|) steps. Define second-order
polynomial space analogously by counting the number of visited cells on all
tapes.

We can then define the usual ones in this context:

Definition 1.3.63 (Type-2 Time-Complexity Classes)

• PTIME2 defines the class of languages decidable in second-order poly-
nomial time by a Type-2 Turing machine;

• FPTIME2 defines the class of functions computable in second-order
polynomial time by a Type-2 Turing machine.

Definition 1.3.64 (Type-2 Space-Complexity Classes)

• PSPACE2 defines the class of languages decidable in second-order poly-
nomial space by a Type-2 Turing machine;

• FPSPACE2 defines the class of functions computable in second-order
polynomial space by a Type-2 Turing machine.

To obtain hardness results on computability and complexity classes, we must define
the notion of reduction we have to use, with respect to Type-2 Turing machines (Definition
1.3.41).

Following the discussions of [KC12], the reductions work on the set of regular func-
tions Reg. We define the adapted notion of reduction (Definition 1.3.65) to have complete
problems.

For decision problems, we assume that the set S of Definition 1.3.61 is {0,1}. We
denote by Pred the set of {0,1}-valued regular functions, like in [KC12].

Thus, we give the definition of Type-2 reductions for decision of [KC12]:

Definition 1.3.65 (Type-2 reductions [KC12])

Let A and B be functions from Reg to Pred. We write A ≤2
m B if there exists

s, t ∈ FPTIME2 such that for any φ ∈ Dom(A), we have s(φ) ∈ Dom(B) and
for θ = B

(
s(φ)

)
the function θ ◦ t(φ) = A(φ).

More intuitively, for A and B two decision problems, we define

Dom(A) = {φ a function ,x ∈ Dom(φ)}

and we have A(φ)(x) =
(

B
(
s(φ)

)
◦ t (φ)

)
(x).

39

φ A(φ)

t(φ) θ ◦ t(φ)

A

t

=

B◦s◦φ

or

φ A(φ)

t(φ)

t

A

B◦s◦φ

As highlighted in [KC12], this construction might seem somewhat artificial. The point
is, it is strong enough to make the following classical problems complete and it is invariant
under replacing the representions to equivalent ones.

We can deduce the definition of PSPACE2-≤2
m-completeness:

Definition 1.3.66 (PSPACE2-≤2
m-completeness)

A problem P is PSPACE2-≤2
m-complete iff:

• P ∈ PSPACE2;

• P is PSPACE2-≤2
m-hard: for all problem P′ ∈ PSPACE2, P′ ≤2

m P.

With this notion of reduction several PSPACE2-≤2
m-complete problems were defined:

We denote by “g[k]” the fact that g is iterated k times. If g is a function, then g is
composed k times with itself. If it is a string or an integer, then g[k] is a string with g
repeated k times. We denote by |s| the length of the string s.

Basic PSPACE2:
Input: < M,µ,φ >, with M a Type-2 Turing machine, µ ∈ Reg such that µ(u) =
0µ(|u|) where µ : N → N a non-decreasing polynomial bounding the space of M,
φ ∈ Reg and a string u.
Output: Does M with an oracle φ accept u?

Power 2:
Input: f ∈ Reg length-preserving (

∣∣ f (x)∣∣= |x|), a string u.

Output: f 2|u|(u) = 0|u| ?

As defined in [KC12], if φp is a boolean formula involving predicate p ({0,1}-valued
function), then

Q1a1. · · · .Qkakφp(a1, · · · ,ak),

where each Qi ∈ {∀,∃} is a a quantified boolean formula involving predicate p. The truth
value is determined relatively to the predicate to be substituted into p.

QBF 2:
Input: p ∈ Pred, a string u.
Output: Is u, a quantified boolean formula involving predicate p, made true by p?

40

Proposition 1.3.67 ([KC12])

Basic PSPACE2, Power 2 and QBF 2 are PSPACE2-≤2
m-complete for the re-

duction of Definition 1.3.65.

We use this type of reduction in Chapter 5.

1.4 Dynamical Systems
Dynamical systems are often used to model natural phenomena and in many applied
fields. The last decades have seen an impressive use of computers in studying and ana-
lysing them, with several visible theoretical breakthroughs. A famous, notable example is
the discovery of strange attractors, in models such as Lorenz attractors through numerical
simulations [Lor63]. The mathematical proof of their existence arrived only 40 years later
in [Tuc02]. The proof was obtained by checking that some quantitative invariant holds
through computer-certified computations.

Discrete-Time Dynamical Systems

Definition 1.4.1 (Discrete-time Dynamical System)
A discrete-time dynamical system is given by a set D, called domain and some
function u from D to D. A trajectory in the system is a sequence f(t) evolving
according to u: that is f(t +1) = u

(
f(t)
)

for all t.

We recall we denote by f[t], t ∈ N, the t-th iteration of function f (f composed with
itself t times).

x

Figure 1.1: On the left, an example of dynamical system over a domain made of 6 states
and f is reprensented by the arrows between the states. On the right, an example of a
trajectory of a dynamical system over R2 starting from x.

We also write x→∗ y if there exists n ∈ N such that y = f[n](x). When n > 0, then we
write x→+ y.

A dynamical system can equivalently be described by its flow Φ: by definition, Φ(f0, t)
gives the position of the dynamics at time t, for an initial position f(0) = f0. It satisfies

41

the flow property
Φ(f0,0) = f0 Φ(f0, t + t ′) = Φ(Φ(f0, t), t ′) (1.1)

for all t, t ′. The transition dynamic u can be recovered from the flow function since u(.) =
Φ(.,1). Hence, describing a dynamical system by its dynamic u or by a flow function is
equivalent. All of this can be parametrised by some x: u is also some function of x, and
f(t +1) = u

(
f(t),x

)
for all t, and the flow function is Φ(x, f0, t) = Φx(f0, t).

Continuous-Time Dynamical Systems

We can also consider continuous-time dynamical systems:

Definition 1.4.2

A continuous-time dynamical system H is given by a set X ⊆ Rd , called the
domain, and some function f ∈ XX . A trajectory starting from f0 is a solution
of the associated Initial Value Problem (IVP) u′ = f(u(t)), with u(0) = f0.

If we consider Φ(f0, t) as giving the value of the solution at time t, starting from f0,
it still satisfies the flow property (1.1). Assuming sufficient regularity on Φ (namely that
it is continuous and differentiable), Φ satisfies some ODE, and hence giving a dynamical
system is equivalent to giving its flow: u(.) can be recovered by u′ = Φ′(.,0). Here, we
can consider that all of this is parameterised by some f0.

Hence, in a very general view, a dynamical system can also be given by some function
Φ satisfying the flow property. The fact that it is continuous or discrete time, is related to
the nature of its time (i.e. second) variable, that belongs to N or Z in the latter case, and
to R in the former. See [HSD03] for a monography on the theory of dynamical systems
from a mathematical point of view.

In all previous discussions, we considered homogeneous dynamics in the sense that
u was only a function of f(t) and not also of t: but, for example, for discrete-time, to
cover the case f(t +1) = u

(
t, f (t)

)
for all t, it is sufficient to consider f(t) = (f(t), t), and

we come back to the previous settings, as we can write f(t + 1) = u(f(t)), with u(f, t) =
(u(f, t), t +1), that is a homogeneous dynamic.

Dynamical systems as group actions

We can also adopt another point of view and study dynamical systems with group theory.
Let Z denote either Z or N, or a finite products of Z or N, such as Z×N.
The flow of a discrete-time dynamical system can be seen as a semi-group (N-)action.

If G is a group with identity element e, and X is a set, then a (left) group action α of G on
X is a function Φ : G×X → X satisfying the following two axioms:

• Φ(e,x) = x;

• Φ(g,Φ(h,x)) = Φ(gh,x) for all g and h in G and all x in X .

It is precisely the translation of the flow property we already described. We restrict here
to Nd or Zd-actions, and denote by Z the sets N or Z, depending on the context. We
can then consider more general classes of dynamical systems, defined by (semi-)group
actions.

42

More formally in our context, a Z d-action on X is a function Φ : Z d×X → X that
satisfies the following two axioms Φ(0,x) = x and Φ(g,Φ(h,x)) = Φ(g+ h,x) for all g
and h in G and all x in X .

Let’s restrict to the case where the subgroup G is finitely generated, and commutative,
namely Z d . For example, for Z2, there are two generators, that we can call east and
north. We write G for the finitely many generators. Here G = {east,north}.
NB 1.4.3

Giving a subgroup, with finitely many generators, is the same as giving a function
f g for each generator g ∈ G , respecting the group equations, considering equation
f g(x) = Φ(g,x), for a generator, and the flow equation.

Giving a Z d-action is the same as giving a function f g for each element of the canon-
ical basis of Z d (the generators of the (semi-)group Z d), respecting the relations among
those generators. Thus, we sometimes present things with some function f g (or forget
about the generator g when this is clear).

Non-deterministic dynamical systems

We also need to talk about non-deterministic discrete-time dynamical systems. A non-
deterministic discrete-time dynamical system H is now given by a set X , called domain
and some set-valued function F : X →P(X), with P(X) the power set of X . An infinite
trajectory (also called run, as we do for TMs) of H is some sequence (xt)t∈N such that
xt+1 ∈ F (xt) for all t. Similarly for finite trajectories.

Definition 1.4.4 (Reachability)

We say x∗ (or a set X∗) is reachable from x if there is a trajectory with x0 = x
and xt = x∗ (respectively xt ∈ X∗) for some t.

This can still be described by a set-valued flow.

Reachability Questions

Dynamical systems exhibit a very rich class of possible behaviours. In particular, dy-
namical systems may be chaotic. We do not intend here to recall how chaoticity can be
defined in mathematical terms (see [Dev89, HSD03]), but this includes at least high sens-
itivity to initial conditions. From our point of view, we just need to say this leads, in
practice, to high unpredictability in the long run. As observed in [RS23], while countless
papers exist in the literature about computations in dynamical systems, only a small frac-
tion of them address the problem rigorously: i.e., how far is the sought actual quantity
from the computed one? And can a computer perform such computation up to a very
small pre-specified error? The reachability problem gives an important example where
these questions are of interest: given a (finite) description of a dynamical system, a de-
scription of its initial state, and the description of some “unsafe” states, the question is to
tell whether a trajectory can reach an unsafe state.

In the long run, dynamical systems may also exhibit attractors. Although there is a
clear agreement about this intuitive concept, corresponding to the set of points to which
most points evolve, it is a hard task to provide a mathematical definition covering all
cases. It is a similar problem to the concept of chaos. We refer to [Mil85] for discussions

43

of many possible ways of defining attractors and their relations. In the general case,
the attractors of dynamical systems, even if the system is very simple, can be very rich.
We refer to [RS23] for a characterisation of the hardness of computing attractors from a
computable analysis point of view. In this document, we somehow restrict to a very robust
one (numerically stable ones) for which the problem of computing attractors is tractable.
Example 1.4.5

The van der Pol equation gives a very famous example of a dynamical system ad-
mitting an attractor: y′′− µ

(
1− y2

)
x′+ y = 0 where µ is a parameter. Introducing

z = y− y3/3− ẏ/µ , it can be also described by y′ = µ

(
y− 1

3y3− z
)

, z′ = 1
µ

y. It is a
classical mathematical exercise to prove that the system has a limit cycle: this is usu-
ally done as an application of Liénard’s theorem, which is established by studying the
flow of the dynamics, using qualitative arguments based on some formal mathematical
statements: see e.g. [HSD03].

Simulations between discrete-time dynamical systems

A discrete-time dynamical system Φ′ over X ′ simulates some dynamical system Φ over
X if there is some relation R⊂ X×X ′ such that for all (x,x′) ∈ R, if y ∈Φ(g,x) for some
generator g, then there is some y′ ∈Φ′(g,x′) with (y,y′) ∈ R.

y

x

Figure 1.2: A discrete-time dynamical system simulating the dynamical system of Figure
1.1: its states are indicated by boxes and the possible transitions between states by an
arrow.

1.5 Tiling theory

1.5.1 Tilings as dynamical systems
Tiling and (discrete-time) dynamical systems theories are strongly related. A mathem-
atical formalisation for such is the field of symbolic dynamic. We give here some basic

44

definitions and theorems, taken from the lecture notes [JV20, BBEP10, Sab12, FBF+02].
We assume d ∈ N and A is a finite set unless stated otherwise.

Definition 1.5.1 (Configuration)

We consider the set of functions x : Zd → A. An element x ∈ AZd
is called a

configuration.

Let U⊂ Zd be a finite set.

Definition 1.5.2 (Pattern)

A pattern is an element p ∈ AU, the support of p is supp(p) = U. Given a
configuration x, we write xU for the pattern corresponding to the restriction of
x to U.

Definition 1.5.3

A pattern p ∈ AU appears in x if there exists i ∈ Zd such that xi+U = p, this is
written p ⊏ x.

Shifts act on configurations:

Definition 1.5.4 (Shift)

Let A be an alphabet. The shift σ :Zd×AZd →AZd
is the function such that, for

all i∈Zd and for all w∈AZd
, if we write σ i(w) for σ(i,w), we have σ i(w)=w′,

where w′ is the configuration satisfying, for all j ∈ Zd , w′(j) = w(j− i).

In this context, we usually consider the following space:

Definition 1.5.5 (Subshift)

A subshift on the finite alphabet A is a subset X of AZd
which is closed (for the

topology (A,dC)) and invariant by shifting (x ∈ X ⇒ σ(x) ∈ X , σ a shift).

Usually, as in the previous definition and as we said, the alphabet A is assumed to be
finite. We will call a generalised subshift a closed set of AZd

stable by shifting, with A a
possibly infinite set.

Subshifts can also be defined by their forbidden patterns:

Theorem 1.5.6

Let S ⊆ {0,1}Zd
. A set T ⊂ AS is a subshift if and only if there exists a set of

patterns F such that T = T(A,S,F), where T(A,S,F) =
{

x ∈ AS|p does not
appear in x for all p ∈F}.

When a subshift can be defined by a computably enumerable family F of forbidden
patterns, it is called an effectively closed subshift.

There exist many variants of subshifts, depending on their additional properties:

45

Definition 1.5.7 (SFT)

A shift of finite type (SFT) is a subshift X ⊂ AZd
that can be defined by a finite

set F of forbidden patterns.

SFT can also be defined by their authorised patterns, which correspond to Wang tile-
sets. It is the object we study in Subsection 1.5.3.

With a set of configurations, we can associate a language:

Definition 1.5.8 (Language of patterns)

For U⊂ Zd , the language of support U of the set T ⊂ AZd
is:

L (T) = {p ∈ U|∃x ∈ T, p ⊏ x}.

1.5.2 Minimality and Essential Minimality
We are interested in minimal subshifts in Chapter 6:

Definition 1.5.9 (Minimal subshift)
A subshift T is minimal if it does not strictly contain a non-empty subshift.

We define the notion of recurrence for patterns in a configuration:

Definition 1.5.10 (Recurrence)

Let Fn be the set J−n,nKd . A pattern p is recurrent in a configuration x iff there
exists some m ∈ Nd such that for all i ∈ Zd we have xi+Fm contains p.

For a given subshift T, we denote by Recurrent(T) the set of recurrent patterns in the
configurations of T.

Proposition 1.5.11 (Properties of minimal subshifts)

For some configuration x in subshift T, we define the orbit of x: O(x) =
{σ i(x)|i ∈ Zd}. The following statements are equivalent:

1. T is minimal;

2. for all x ∈ T,O(x) is dense in T;

3. for all x,y ∈ T,L (x) = L (y).

A proof can be found for example in [Sab12], similarly for the following proposition:

Proposition 1.5.12
Every subshift contains a minimal subshift.

Furthermore,

46

Proposition 1.5.13

A subshift X is minimal iff each pattern p ∈L (X) is recurrent in X .

Minimality for a subshift is a rather strong property. For example, the Robinson tileset
(discussed later) is not minimal.

We consider in Chapter 6 a weaker concept of minimality:

Definition 1.5.14 (Essential minimality)
A subshift T is essentially minimal if it contains a unique (non-empty) minimal
subshift Y that is to say, a unique non-empty closed shift-invariant set.

We write min(T) for that Y. This notion of minimality is weaker than Definition 1.5.9.
For example, the Robinson tileset is essentially minimal.

Proposition 1.5.15 ([Bru19])
Given a subshift T and a point y ∈ T, the following are equivalent:

1. T is essentially minimal and y ∈min(T);

2. for every x ∈ T, y ∈ ω(x) =
⋂

n∈N {σ i(x)|i ̸∈ J−n,nKd};

3. For every open set U with y ∈U , T =
⋃

n∈Zσn(U).

1.5.3 Tiles and Tilings
As we mentionned, SFTs can also be described by their authorised patterns. Those pat-
terns corresponds to Wang tiles.

Here, we focus on Wang tilesets, in dimension 2:

Definition 1.5.16 (Wang tilesets)

A Wang tileset T is a triple (H,V,τ) where:

• H is a finite set that corresponds to the horizontal colours;

• V is a finite set that corresponds to vertical colours;

• τ ⊂ H2×V 2 is the set of tiles.

A tile t ∈ H2×V 2 will also be denoted by t = (w,e,s,n) where w (resp. e, s, n) is the
colour on the left (resp. right, bottom, top) edge. We will also write t(w), t(e), t(s), t(n)
for w,e,s,n respectively.
Example 1.5.17

We give an example of a Wang tileset, made with 4 tiles:

• H = {Red, Green, Blue}

• V = {Red, Green}

47

• And τ is the set:

Between tiles, we will talk about east-west and north-south compatibilities.

Definition 1.5.18 (Tiling)

Let P⊆ Z2. A tiling of P by a tileset τ assigns to each element of P a tile from
τ such that colors of adjacents tiles agree on their common border. Formally, a
tiling is a map x : P→ τ such that, for every (i, j) ∈ Z2 on the plane:

• If (i, j) ∈ P and (i+ 1, j) ∈ P then x(i, j)(e) = x(i+ 1, j)(w) (east-west
compatibility);

• If (i, j) ∈ P and (i, j+1) ∈ P then x(i, j)(n) = x(i, j+1)(s) (north-south
compatibility).

When P = Z2 , it is a tiling of the plane. We say that τ tiles P if there exists a
tiling of P by τ .

Example 1.5.19
Using the set of tiles of Example 1.5.17, we have the following tiling of a rectangle:

By a compactness argument, the following holds:

Proposition 1.5.20 (Compactness)
A tileset τ tiles the plane iff for all n, τ tiles a square of size n×n.

A very fundamental problem in tiling theory is the following:

Domino Problem:
Input: A tileset τ

Output: Can τ tile Z2?

The following is true from Proposition 1.5.20:

Proposition 1.5.21 ([Ber66])
The Domino Problem is co-c.e..

It holds because there is a finite number of tiles in the tileset, so it is possible to decide
whether the tiling does not tile a given square. However, the Domino problem is not c.e.,
hence undecidable, in the general case.

48

A tiling x is periodic of period (a,b) ∈ Z2\{0,0} iff, for all (u,v) ∈ Z2, x(u,v) =
x(u+ a,v+ b). In [Wan61], Wang gave the conjecture that a tiling of Z2 is necessarily
periodic. However, this conjecture is false: there exist aperiodic tilings (valid and non-
periodic), such as the Robinson tiling ([Rob71]), made of the following tiles (on left), that
can be turned.

1 2 3

4 5 6

An example of a tiling of the plane is illustrated on the right. Intuitively, any Robinson
tiling of the plane is aperiodic because an arbitrarily big blue square must be in a bigger
blue square. Inductively, for every n ∈ N\{0,1,2}, we can construct a square of size
2n− 1, containing 4 squares of size 2n−1− 1. Proofs of the statement can be found in
[Rob71].

We focused on 2-dimensional Wang tilesets. More generally, we can consider Wang
tilings on d-dimensional spaces. We can also have tilesets with other shapes than squares.
It is interesting to investigate what features of the tilings make the domino problems
decidable. In Chapter 6, we study those features.

1.5.4 Transducers and meta-transducers
Another point of view on SFTs and Wang tilesets we consider in this thesis are trans-
ducers. They are associated with a graph point of view. We will use them in Chapter
6.

Definition 1.5.22 (Transducer)

Let Σ be a finite alphabet. A transducer is a triple (Q,Σ,δ) with

• Q a finite set of states, Σ a finite alphabet;

• δ ⊆ Q×Q×Σ×Σ a set of transitions.

For example the transducer T1 with Q = {V,B,R}, Σ = Q is pictured below. The fact
that (q,r,w,w′) ∈ δ is represented by an edge between q and r labelled by w|w′.

49

V

B

R

R|RR|V

R|R

V|R

A Wang tileset expressed as triple (H,V,τ) exactly matches the definition of a trans-
ducer where tiles are the transitions, the horizontal colours H are states Q and the vertical
colours V are letters of the alphabet Σ.

|

Figure 1.3: Two graphical representations of a Wang tile as a transition in the associated
transducer.

Figure 1.4: An example a of transducer derived from the tileset τ composed by the four
tiles pictured on the top.

The choice of H as states and V as colours is arbitrary. We could also have considered
the opposite. The transducer that we would obtain will be called the vertical transducer,
as opposed to the (horizontal) transducer considered here.

The existence of a path of length two between two vertices of the transducer tests the
horizontal compatibility between two tiles.

There is a bijection between the tiles of a Wang tileset and the edges of its associ-
ated transducer. From now on we use tileset or transducer interchangeably without any
possible confusion.
Example 1.5.23

On the tiles of Example 1.5.19, starting from the right of the tranducer, we put the tile
according the next transition.

50

A natural operation on transducers, denoted by∪, is the union: given T1 =(Q1,Σ1,δ1)
and T2 = (Q2,Σ2,δ2), their union T1 ∪T2 is given by (Q,Σ,δ) where Q = Q1 ∪Q2,
Σ = Σ1∪Σ2, and (q,q′,w,w′) ∈ δ iff (q,q′,w,w′) ∈ δ1 or (q,q′,w,w′) ∈ δ2.

Any transducer is thus the union of its edges. Combined with the remark immediately
above, the transducer associated with a Wang tileset can be seen as the union of its tiles.

To simplify notations and the writing of proofs, it is often more convenient to use
meta-transducers rather than transducers. Meta-transducers allow us to deal not only
with single letters but also with words of arbitrary finite length as labels of transitions.

Definition 1.5.24 (Meta-transducer)

Let Σ be a finite alphabet. A meta-transducer is a triple (Q,Σ,δ) with

• Q a finite set of states, Σ a finite alphabet;

• δ ⊆ Q×Q×Σ∗×Σ∗ a set of transitions – or edges – with |w|, |w′| ≥ 1
where |w| denotes the length of w.

Example 1.5.25
Here is the meta-tranducer of heigh 2 associated with the tileset of Example 1.5.17.
Starting from the couple of tiles on the upper left, we just follow the transitions all
around the meta-tranducer:

51

1.6 Notations Tabulars

Name Definition

N,Z,D,Q,R sets of non-negative integers, integers, dyadics,
rationals, real numbers

Q+, R+ sets of non-negative rationals and reals

Q−, R− sets of non-positive rationals and reals

Z denotes either Z or N, or a finite products of Z
or N, such as Z×N

S,cls(S) closure of S

int(S) interior of S

∂ (S) frontier of S

Bε(x) ball of radius ε centered on x: {y|d(x,y)< ε}

[f1, f2, . . . , fk;
op1,op2, . . . ,opℓ]

set containing f1, . . . , fk, closed under op1,
. . . opℓ

(X , f), X a set, f ∈ XX dynamical system on X with dynamic function
f

[a,b] interval between a and b, ⊂ R

Ja,bK set {a,a+1, . . . ,b} ⊂ N

BA set of functions { f : A→ B}

Dom(f) domain of the function f

P(E) power set of set E

52

Name Definition

ℓ(n) ∈ NN, the length, or size, function, mapping
some integer to the length of its binary repres-
entation,

|x| ,x ∈ R absolute value of x

|s| ,s a string size of s

| f | , f ∈ RR norm 1 of f

∥ f∥ the sup-norm: sup{ f (x)|x ∈ Dom(f)}

⌊x⌋ floor of x

⌈x⌉ ceiling of x

{x} the fractional part of x

a =ε b ∥a−b∥ ≤ ε

g[t] or gt , t ∈ N the t-th iteration of function g (g composed with
itself t times)

Name Definition

x→∗ y In a dynamical system, y is reachable from x in
n ∈ N steps

x→+ y In a dynamical system, y is reachable from x in
n ∈ (N\{0}) steps

x→∗ε y, x→+
ε y the analoguous of x→∗ y and x→∗ y but for

ε-perturbed dynamical systems

53

Chapter 2

State of the art

Là où les étoiles bougent, d’aucuns s’extasient. Moi,
je cherche à comprendre. Et à découvrir se qui se
cache derrière. J’ai toujours été curieuse et, après
tout, qu’est-ce que la science, si ce n’est la forme de
curiosité la plus absolue?

Élodie Serrano, Les Étoiles ne Fileront Plus

We first review results about the difficulty of solving ODEs in computer science in
Section 2.1. In Section 2.2, we define the variant of the Turing machine we will consider
in the rest of the document for our characterisations of complexity classes.

Furthermore, in Section 2.3, we will relate Turing machines and dynamical systems,
and mention some complexity results regarding the properties of dynamical systems.

We will present the field of implicit complexity in Section 2.4. In Section 2.5, we
will see previous results about discrete ODEs and give an implicit characterisation of
polynomial time for functions over the integers. Finally, we study the relation between
programming languages and Turing machines in Section 2.7.

2.1 Solving efficiently ODEs: what is known
We first review what is known about the complexity of ODEs solving. A more complete
survey is [GZ18]. First, it is important to distinguish the case where we want to solve the
ODE on a bounded (hence a compact) domain, from the case of the full domain Rd: in
the latter case, we might ask questions about the evolution of the system on the long run,
which is harder.

Proposition 2.1.1 ([Ko83], extending [PER79, Abe71])
Over a compact domain, there exists some polynomial-time computable func-
tion u : [−1,1]× [0,1]→ R such that f ′ = u(f , t) has no computable solution,
even over [0,δ], for any δ > 0.

The involved ODE has no unique solution. It is known over compact and non-compact
domains that if unicity holds, its solution is computable [CG08, CG09, Ruo96]. However,
the complexity can be arbitrarily high [Ko91, Mil70].

If we want to get to tractability, some regularity hypotheses must be assumed. A
classical hypothesis is to assume the ODE to be Lipschitz.

54

Over a compact domain, it has been observed in several references (see e.g. [Ko91])
that a careful analysis of Euler’s method proves that:

Proposition 2.1.2 ([GZ18])

If u : [0,1]n× [0,1]→ Rn, is a polynomial time computable Lipschitz function
then any solution f : [0,1]→ [0,1]n of f ′ = u(f , t) must be polynomial-space
computable.

See the discussions around Theorem 3.2 in [GZ18] with several references. Kawamura
has proved the following result:

Theorem 2.1.3 ([Kaw09])

There exists a polynomial-time computable Lipschitz function u : [−1,1]×
[0,1]→ R, such that the unique solution f : [0,1]→ R takes values in [−1,1]
and the computation of such function is a PSPACE-complete problem.

Hence, the question of solving ODEs over a compact domain in polynomial time is
the question PTIME = PSPACE [Kaw09], even for C ∞-functions [KORZ14].

However, all these results are over compact domains, and dealing with non-compact
domains, i.e. in the long run, is harder. PSPACE membership is not true, without stronger
hypotheses.
Example 2.1.4

If we consider f1(t) = et , and fi+1(t) = e fi(t)−1 then fd(t) is

ee.e
et
−1
−1,

while all these functions are solutions of a simple polynomial ODE over Rd , namely
f ′1(t) = f1(t) and f ′d(t) = f1(t) . . . fd(t). Hence, a solution can grow faster than a tower
of exponentials in the description of the ODE, and hence is necessarily intractable for
time or space: see the discussion in [GZ18, Section 3.2].

The difficulty, even with a bounded domain, comes from the possibility of simulating
any Turing machine by some finite-dimensional polynomial ODE [GZB06] over a non-
compact domain. It leads to many undecidability results for analytic, and even very simple
ODEs: see Chapter 5. For example, it follows that there is an analytic and computable
function u : R→ R such that the unique solution of the associated homogeneous ODE is
defined on a non-computable maximal interval of existence [GZB06].

A possible way to analyse efficiency is to analyse the complexity of the solution,
assuming a bound on the growth of the function (i.e. using parameterised complexity):

Proposition 2.1.5 ([BGP12])
A polynomial ODE is solvable in polynomial time assuming a bound on
Y(T) = max0≤t≤T ∥f(t)∥.

We can extend this result to non-polynomial ODEs assuming polynomial-time com-
putability of the higher derivatives of f and an appropriate (polynomial) bound on the
growth of those derivatives [BGP12].

55

The result for polynomial ODEs was later improved in [PG16]: the time T and para-
meter Y can be replaced by a single parameter, namely the length of the curve for poly-
nomial ODEs. This parameter is not required to be given as input to the algorithm. It is
a key argument for one direction of the motto “time complexity = length”. We will focus
on this in Chapter 3.

It is obtained using a non-classical method, from the point of view of classical numer-
ical analysis: this is not a fixed-order numerical method, but somehow a method whose
order is a function of the inputs. The authors of [Thi18, KST18] proposed independently
a similar approach, considering parametrised complexity for analytic functions.

To get polynomial-time complexity over a non-compact domain, it is mandatory not
to use most classical methods from numerical analysis. From the general theory of nu-
merical methods, presented for example in [Dem96], every such numerical method come
with a given fixed order k, and from the general theory of step-based methods, interval
[0,T] is divided into N steps, each of width hn ≤ h, and the error θn at step n can be
bounded by θn+1 ≤ (1+Λhn)θn+ |εn|: there is a multiplicative error due to the Lipschitz
constant Λ of u, and some numerical additive error εn due to the used precision.

Using Discrete Grönwall Lemma (Lemma 1.1.16), the final error between computed
approximation f̃n and exact solution fn at step n satisfies

max
0≤n≤N

∣∣∣ f̃n− fn

∣∣∣≤ eΛT
∣∣∣ f̃0− f0

∣∣∣+ eΛT −1
Λ

∣∣∣∣max
εn

h

∣∣∣∣ .
If N = T/h, we have

max
0≤n≤N

∣∣∣ f̃n− fn

∣∣∣≤ eΛT
∣∣∣ f̃0− f0

∣∣∣+ eΛT −1
Λ

∣∣∣∣max
εn

h

∣∣∣∣ .
To go to zero, we need to choose the last factor to be of the form exp(−O(T)), so the
number of steps cannot be polynomial.

The same problem happens when discussing space complexity: a non-classical method
is required to guarantee polynomial space complexity in the long run (i.e. on the non-
compact domain). As far as we know, no such method has yet been proposed, and this
is the purpose of Subsection 5.2.1. Actually, for space complexity, in addition to all the
problems mentioned, in all the above space or time analyses, the problem is that the com-
plexity is (possibly implicitly) dependent on the Lipschitz constant or the length of the
solution. In a system as simple as linear dynamics, the state at time T depends in Lipchitz
way from the state at time 0, and the number of additional bits required to guarantee some
precision 2−n growth linearly with T . But the problem is that in a space polynomial in
the input size, T has no reason to remain polynomial. Hence, the required precision is
possibly exponential in the input size.
NB 2.1.6

The above comment can be interpreted informally as the fact that “most” (this could
be “generic” in the sense of [RS23], i.e. (effective) descriptive theory) dynamical
systems are intrinsically unstable, and an error method introduced at some step can
make the approach unavoidably incorrect in the long run unless we have a means to
“guess” what happens next. This method will be used in Chapter 5, relying on the fact
that NPSPACE = PSPACE.

56

2.2 A variant definition of Turing machines
In the rest of this thesis, we will consider Turing machines with bi-infinite tapes. We can
also consider that a Turing machine is given by

M =
(
Q,{0,1,3},qinit,δ ,F

)
,

where the input alphabet and the output alphabet are the same (except for the blank sym-
bol) and F is the set of final states. We assume that the input alphabet contains the sym-
bols 0,1,3 and that B = 0 is the blank symbol and qinit ∈ Q. The reason for the choice
of symbols 1 and 3 will be made clear later. This definition is equivalent to the classical
definition (Definition 1.3.1).

2.3 Dynamical systems and associated complexity issues

2.3.1 Embedding TMs into dynamical systems
Many authors have embedded TMs in various classes of dynamical systems to get unde-
cidability or several hardness results. For example, in [CMPS23], the authors proved that
universal TMs can be simulated by a 3-dimensional steady fluid flow in a Euclidain space,
linking computability and hydrodynamical systems. The paper [CR24] also tackles the
question of efficiently embed TMs into dynamical systems, but focuses on using the BSS
model for the dynamic.

We present in this section how this is usually done, to point out where (intuitively)
(non-)robustness issues appear.

Theorem 2.3.1

Let M be a Turing machine. Then, we can construct a dynamical system (N×
Σω ×Σω , f), f a PAM with rational coefficients, simulating one transition of M.

Proof. We consider a Turing machine of the form described in Section 2.2. Up to renam-
ing, we assume Q = {0,1, · · · , |Q|−1} ⊂ N. Let

· · · l−kl−k+1 · · · l−1l0r0r1 · · ·rn · · ·

denote the content of the tape of the Turing machine M.
We can write l = l0l• and r = r0r•, respectively the left part of the tape with respect to

the head and the right part of the tape, where l0 and r0 are the first letters of l and r, and
l• and r• corresponding to the (possibly infinite) word l−1l−2 . . . and r1r2 . . . respectively.
Notice that l is written in reverse order on the tape.

... l• l0 r0 r• ...︸ ︷︷ ︸
l

︸ ︷︷ ︸
r

In this representation, the head is in front of symbol r0, and li,ri ∈ {0,1,3} for all i.
Furthermore, if the blank symbol B = 0 appears at some letter ri then it appears at letter r j

57

for all j ≥ i; if the blank symbol B = 0 appears at some letter l−i then it appears at letter
l− j for all j ≥ i.

We denote by δ the transition function: given some control state q ∈ Q, and some
symbol r0, δ (q,r0) = (q′,x,m) indicates the new control state q′ ∈ Q, the symbol x to
be written, and some movement m ∈ {←,→}, corresponding to shifting left or right.
For practical reasons, we assume that when M reaches a final state, it stays in the same
configuration.

A configuration C of such TM can be denoted by C = (q, l,r), where

r = r0r1 · · ·rn · · · ,
l = l0l−1 · · · l−k · · ·

are words over alphabet Σ = {0,1,3} and where q∈Q denotes the internal state of M. We
work with infinite words, but as expected, this covers the case of finite words. Namely,
given a finite word w = w1w2 . . .wn on the tape, in control state q, with the head in front
of symbol 1≤ i≤ n, corresponds to the configuration

C = (q,wi−1wi−2 . . .w10ω ,wiwi+1 . . .wn0ω),

that is to say, with eventually the blank symbol B = 0.
The idea is that such a configuration C can also be encoded by some element γconfig(C)=

(q, l,r) ∈ N×R2, by considering

r = r04−1 + r14−2 + · · ·+ rn4−(n+1)+ · · · ,
l = l04−1 + l−14−2 + · · ·+ l−k4−(k+1)+ · · ·

In other words, we encode the configuration of bi-infinite tape Turing machine M by
real numbers using their radix 4 encoding, but using only digits {0,1,3}. As digit 0 is used
only at the end of the words, this corresponds to some rational numbers for a finite word,
while for an infinite word, this corresponds to some real numbers, possibly irrational. If
we write: γword : Σω → R for the function that maps word w = w0w1w2 · · · to

γword(w) = w04−1 +w14−2 + · · ·+wn4−(n+1)+ · · · ,

we can also write

γconfig(C) = γconfig(q, l,r) = (q,γword(l),γword(r)).

Here, the transition function δ leads naturally to a function δ : C 7→C′ that maps a con-
figuration C = (q, l,r) to a configuration C′ = (q′, l′,r′) after one step in M. Via the above
encoding, this can be seen as a function f : N×R2 7→ N×R2.

Notice that f is defined in Q× [0,1]2 and it is a piecewise affine map. Actually, if we
denote the image of γword : Σω → R by I , it even takes its values in Q×I 2.

It remains to prove that f is a PAM:
The function f is basically of the form f(q, l,r) = f(q, l0l•,r0r•) = (q′, l′,r′), defined

as a definition by case of type:

(q′, l′,r′) =

{
(q′,xl0l•,r•) whenever δ (q,r0) = (q′,x,→)
(q′, l•, l0xr•) whenever δ (q,r0) = (q′,x,←)

58

This rewrites as a function f which is similar, working over the representation of the
configurations as reals, considering r0 = ⌊4r⌋

f(q, l,r) = f(q, l0l•,r0r•) = (q′, l′,r′)

=

{
(q′,xl0l•,r•) whenever δ (q,r0) = (q′,x,→)

(q′, l•, l0xr•) whenever δ (q,r0) = (q′,x,←)

where r0 = ⌊4r⌋ and
• in the first case “→” : l′ = 4−1l +4−1x and r′ = r• = {4r}
• in the second case “←” : l′ = l• = {4l} and r′ = 4−2r•+4−2x+4−1⌊4l⌋

(2.1)

We introduce the following functions:

→: Q×{0,1,3} 7→ {0,1}
(q,a) 7→ 1 if δ (q,a) = (·, ·,→)

(q,a) 7→ 0 otherwise

correponding to the head moving to the right, and

←: Q×{0,1,3} 7→ {0,1}
(q,a) 7→ 1 if δ (q,a) = (·, ·,←)

(q,a) 7→ 0 otherwise

corresponding to the head moving to the left.
Hence, we can rewrite,

f(q, l,r) = (q′, l
′
,r′)

as

l′ = ∑
q,r0

→ (q,r0)

(
l
4
+

x
4

)
+← (q,r0)

{
4l
}

and

r′ = ∑
q,r0

→ (q,r0){4r}+← (q,r0)

(
{4r}
42 +

x
42 +

⌊4l⌋
4

) .
And {·} and ⌊·⌋ are PAMs.

NB 2.3.2
We will use this construction for the proof of Lemma 3.1.10, with a function Next (to
be defined) instead of f.

The embedding of configurations of TM into reals, that we just used and will mainly
use in Chapter 4 and Chapter 6, is ϒ(C) = γconfig(C). But, without loss of generality, we
could have taken ϒ(q,w1,w2) =

(
q,γ (w1) ,γ (w2)

)
with γ : Σ∗→ R taken as:

• the encoding γN mapping the word w = a1 . . .an to the integer whose binary expres-
sion is w,

59

• or γ[0,1] mapping w to the real number of [0,1] whose binary expansion is w,

• or more generally, γk
[0,1] or γk

N, using base k instead of base 2 for k ≥ 2,

• or γ
′k
[0,1] mapping w to

(
γk
[0,1](w), ℓ(w)

)
.

In any case, we can then consider a function f : X ⊆ Rd → X such that for any con-
figuration C, denoting by C′ the next configuration, f

(
ϒ(C)

)
= ϒ(C′): one step of the TM

corresponds to one step in the dynamical system (X , f) with respect to γ . Then, we have
that the diagram of the execution commutes for any number of steps:

C

ϒ(C)

C′

ϒ(C′)

C′′

ϒ(C′′)

C′′′

ϒ(C′′′)

ϒ

⊢

f

ϒ

⊢

f

ϒ

⊢

f

ϒ

⊢

f

The questions related to the existence of trajectories in the dynamical system (X , f)
associated with the TM lead to questions about the existence of suitable trajectories of
the Turing machine. Specifically, it provides c.e.-hardness of reachability for various
classes of dynamical systems. Call such a situation a step-by-step emulation. However,
encodings such as γ[0,1], whose image is compact, or on γword as above, map intrinsically
distinct configurations to points arbitrarily close to each other (a sequence over a compact
must have some accumulation point). Encodings like γN do not have a compact image but
involve emulations with arbitrarily large integers, which is another issue. These observa-
tions led to the already mentioned (informal) conjecture that undecidability/hardness may
hold only for non-robust systems (sensitive to arbitrarily small perturbations). This leads
to discussing more formally robustness issues for general dynamical systems over Rd for
some d ∈ N. We will come back to those questions in Chapter 4.

These statements and underlying constructions, which allow the simulation of Tur-
ing machines, led to solving several open problems: the existence of a universal ODE
[BP17], the proof of the Turing-completeness of chemical reactions [FGBP17], or state-
ments about the hardness of several dynamical systems problems [GZ18].

Thus, we need the transition function in a Turing machine to be Lipschitz:

Lemma 2.3.3
Let M be a Type-2 Turing machine. The transition function f of M is Lipschitz.

2.3.2 Some complexity results on graphs
We discussed the hardness of solving IVP, or, equivalently, of computing Φ(y, t) for
continuous-time dynamical systems. We will also need to discuss the case of discrete-
time ODEs.

For pedagogical reasons, we first discuss the case of a simple setting, namely the case
of a (deterministic) discrete-time systems over a finite space, i.e. directed graphs. Indeed,
observe that a deterministic discrete-time dynamical system (X , f) can also be seen as

60

a particular (deterministic) directed graph G = (V,→), where, in the general case, V is
not necessarily finite: G corresponds to V = X and→ to the graph of the function f, i.e.
xt → xt+1 iff xt+1 = f(xt). If the dynamical system is deterministic, the obtained graph is
deterministic because any vertex has an outdegree 1.

Starting from some point x0, there is at most one possible path, and consequently, for
a given time T , we can talk about its position at time T , i.e. Φ(x0,T) is T th element of
this path.

We come to the space complexity of computing path, i.e. of computing Φ(x0,T),
when V is finite (or equivalently when V = X can be abstracted by some finite set). As
usual in complexity theory, the length of some integer is the length of its binary repres-
entation. Also, a function f ∈ NN is space-constructible when there is a Turing machine
that, on input n written in unary, outputs the binary representation of f (n) using at most
O(f (n)) cells.

Proposition 2.3.4 (The case of finite graphs)

Let s(n) ≥ log(n) be space-constructible. Assume the vertices of G = (V,→)
can be encoded in binary using words of length s(n). Assume the relation→ is
decidable using a space polynomial in s(n). Then,

• given the encoding of u ∈ V and of v ∈ V , we can decide whether there
is some path from u to v, in a space polynomial in s(n).

• given the encoding of u ∈ V , and integer T in binary, we can compute
Φ(u,T), in a space polynomial in s(n) and the length of T .

The second item is even a characterisation of the complexity of the problem. Indeed,
the converse is true: if, given the encoding of u ∈ V and integer T in binary, we can
compute Φ(u,T) in a space polynomial in s(n) and the length of T , then as→ is given by
Φ(.,1), then→ is decidable using a space polynomial in s(n).

Proof. Given a directed graph G=(V,→) and some vertices u,v∈V , determining whether
there is some path between u and v in G, denoted by u ∗→ v is in NL (Corollary 1.3.37).
The algorithm described in NB 1.3.39, working over representations of vertices, when
vertices are encoded using words of length s(n) works in NSPACE(s(n)) (with the ad-
dition of the binary encoding of T for the second item, if it greater than s(n)). We then
observe that NSPACE(s(n)) = SPACE(s2(n)) from the Savitch theorem.

NB 2.3.5 (Attractor point of view)
We presented the above statement in terms of computing the flow Φ(x,T). This could
alternatively be interpreted in terms of attractors. Indeed, when the hypothesis of
Proposition 2.3.4 holds, then the dynamics are captured by a graph. In the long run,
in particular, if T is greater than the number of vertices, any trajectory loops (i.e.
reaches an attractor). The above statement could then also be read as the fact that such
an attractor is then polynomial space computable.

61

2.4 Implicit complexity
Having “simple” characterisations of computability and complexity classes is useful for
various fundamental and applied science fields. We are interested here in "algebraic"
characterisations of those classes: we want to define them as the smallest set

[f1, . . . , fk;o1, . . . ,ol]

where the fi, i∈ J1,kK are functions, closed under the operators o j, j ∈ J1, lK. For example,
the set of computable functions over the integers is well-known to be:

[0,1,π i
k;composition, minimisation, primitive recursion]

Algebraic characterisations aims to give similar algebras for classes of complexity theory:
a reference survey is [Clo98, CK02]. The main benefit is to avoid the use of the frame-
work of Turing machines, which is rather heavy and not necessarily well-known outside
fundamental computer science.

When dealing with complexity classes, the problem of resources arises: somehow, we
have to bound the time and the space. The first idea is to give an explicit bound on the
functions we can construct in the algebra. Several characterisations for PTIME over the
integers were proposed.

The first is due to Cobham in [Cob62], but relies on explicit bounds and a bounded
recursion scheme for functions in NN:

Definition 2.4.1 ([Cob62])

A function f : N2 → N is defined by a bounded recursion on notations, aka
BRN, from functions g,h0,h1 and k iff:

f (0,y) = g(y)
f (s0(x),y) = h0(x,y, f (x,y)) for x ̸= 0
f (s1(x),y) = h1(x,y, f (x,y))
f (x,y)≤ k(x,y)

with s0,s1 : N→ N such that s0(x) = 2 · x and s1(x) = 2 · x+1.

Leading to the following algebraic characterisation of FPTIME over the integers:

Theorem 2.4.2 ([Cob62])
Consider

FP = [0,πk
i ,s0,s1, ♯;composition,BRN]

with ♯ the “smash funtion” defined by ♯(x,y) = 2ℓ(x)×ℓ(y). We have:

FP = FPTIME∩NN

The idea behind the proof of this statement is that if we have a function like in
Definition 2.4.1, if ℓ

(
k(x,y)

)
is polynomial in ℓ(x) + ℓ(y), so is ℓ

(
f (x,y)

)
. Hence,

the inner terms do not grow too fast. Also, the definition of the successor functions
(ℓ
(
s1(x)

)
= ℓ

(
s0(x)

)
= ℓ(x) + 1) guarantees that the number of induction steps is in

O
(
ℓ(x)

)
.

62

It is possible to extend this characterisation to polynomial space, by considering a
simple bounded recursion scheme (BR) instead of bounded recursion on notations:

Theorem 2.4.3 ([Tho72])
Consider

FQ = [0,πk
i ,s0,s1, ♯;composition,BR]

We have:
FQ = FPSPACE∩NN

The problem with these characterisations is that they involve the exhibition of some
artificial bound functions k.

Here, we want to avoid it and work directly on how we write the functions the algebras
can compute: in other words, we want to handle an implicit bound or a notational one.

Similarly, Bellantoni and Cook in [BC92] proposed a characterisation of polynomial
time based on distinguishing normal arguments from safe arguments (separated by a semi-
colon in the input of the functions). We say an argument is safe if it can be turned into an
impredicative value, meaning a value on which we can do inductions. A normal argument
can become safe but the contrary is not possible.

Firstly, we give the defintions of “safe composition” and of “safe recursion”:

Definition 2.4.4 (Safe Composition [BC92])
The function f is defined by safe composition (SCOMP) from
g,u1, · · · ,un,v1, · · · ,vm iff

f (x;a) = g
(
u1(x;), · · · ,un(x;);v1(x;a), · · · ,vm(x;a)

)
where the arguments on the left side of the semicolon are normal and the ones
on the right side are safe.

Definition 2.4.5 (Safe Recursion [BC92])
The function f is defined by recursion on notation (SRN) from the functions
g,h0,h1 iff: 

f (0,y;a) = g(y;a)
f
(
s0(x),y;a

)
= h0

(
x,y;a, f (x,y;a)

)
for x ̸= 0

f
(
s1(x),y;a

)
= h1

(
x,y;a, f (x,y;a)

)
In other words, the predicative parameter is necessarily safe.

Leading to the following algebra:

63

Theorem 2.4.6 ([BC92])
We consider

B =
[
0,πk

i ,s0,s1,pred, if;SCOMP,SRN
]
,

with pred the binary predecessor function. We have:

FPTIME∩NN = B∩NORMAL∩NN

where B∩NORMAL means the arguments of the functions in B are all nor-
mal.

Recently, Bournez and Durand in [BD23] suggested an algebra using the so-called
"linear-length" discrete ODEs (see Definition 2.5.10). Instead of having explicit bounds,
the linearity of these discrete ODEs guarantees polynomial time complexity (see Lemma
2.5.12). The characterisations of polynomial space, which we extensively study in Chapter
5, involve another type of linear ODEs: see Definition 5.1.1 for the discrete ODEs.

There also have been some attempts using continuous ODEs [BCGSH07], or the so-
called R-recursive functions [BP21]. In Chapter 5, we give a characterisation of polyno-
mial space in Section 5.2 with a scheme of continuous ODEs (Definition 5.2.3). The main
ideas are first to allow a computation by dichotomy and to impose a polynomial precision
computation at each step of the dichotomy (Definition 5.2.3).

2.5 Using Discrete ODEs in complexity
We recall in this section some results and concepts from [BD19, BD23] . We provide
some of the proofs when they are not in these articles.

The most up-to-date survey is [BP21]. Dealing with discrete ODEs is really different,
as most of the constructions heavily rely on some closure properties of continuous ODEs
not true for discrete ODEs, in particular because there is no chain rule formula for discrete
derivation.

2.5.1 Length Ordinary Differential Equations
For that discrete framework, we define the notion of length. It is adapted from Definition
1.2.8:

Definition 2.5.1 (Length of a (discrete) curve [Pou15])

Let d ∈ N, I = Ja,bK be an interval. The length of y : I→ Rd over I is defined
by:

lengthI(y) =
b−1

∑
i=a

∣∣y′(x)∣∣= b−1

∑
i=a

∣∣y(x+1)− y(x)
∣∣

Thus, we introduce the following definition for length ODE, with ℓ(.)∈NN giving the
length of the binary representation of the input:

64

Definition 2.5.2 (Length ODE [BD19, BD23])
A function f is length ODE definable (from u, g and h) if it is a solution of

f(0,y) = g(y)
δ f(x,y)

δℓ
= u

(
f(x,y) ,h(x,y) ,x,y

)
where a synonym of the previous equation is f(x+1,y) = f(x,y) +(
ℓ(x+1)− ℓ(x)

)
·u
(
f(x,y) ,h(x,y) ,x,y

)
.

NB 2.5.3
This concept, introduced in [BD19, BD23] , is motivated by the fact that a length ODE
is similar to the classical formula for classical continuous ODEs:

δ f (x,y)
δx

=
δL (x,y)

δx
· δ f (x,y)

δL (x,y)
,

and hence this is similar to a change of variable. Consequently, a linear length-ODE
is a linear ODE over variable t, once the change of variable t = ℓ(x) is done.

Example 2.5.4
Consider the following length ODE:{

f (0) = 2
δ f
δℓ (x) = f (x) · f (x)− f (x)

Its unique solution is f (x) = 22ℓ(x) .
Indeed, we rewrite the ODE, this way:

f (x+1)− f (x) =
(
ℓ(x+1)− ℓ(x)

)(
f (x) f (x)− f (x)

)
We fix f (x) = F(z), with z = ℓ(x). Then, F(z+ 1) = 22z+2z

= F(z)F(z). Thus, if
ℓ(x+1) = ℓ(x)+1, F(z+1) =F(z)+(z+1−z)(F(z)F(z)−F(z)). If ℓ(x+1) = ℓ(x),
we have f (x+1) = f (x) and the equation still holds. So f is a solution.

Let us show it is unique. Let g be a solution of this length ODE, we show by
induction it is equal to f :

• At n = 0, we necessarily have g(0) = 2 = f (0);

• Assuming f (n) = g(n), we deduce

g(n+1) = g(n)+(ℓ(n+1)− ℓ(n))(g(n)g(n)−g(n)) by definition
= f (n)+(ℓ(n+1)− ℓ(n))(f (n) f (n)− f (n)) by induction hypothesis
= f (n+1) by definition

Thus, the solution is unique.

Intuitively, the length derivative corresponds to a change of variable: instead of doing
a derivative with a fixed step of size one, we do a derivative where the size of the steps

65

changes as the successive powers of 2. Thus, there is a variation only when ℓ(x+ 1)−
ℓ(x) ̸= 0. We will often define some functions by defining their value in 20, and then
2n+1 from their value in 2n as it corresponds to some discrete ODE after this change of
variable. Namely:

Lemma 2.5.5 ([BD19, BD23])

Let f : Np+1→ Zd , L : Np+1→ Z be some functions. Assume that the equa-
tion of Definition 2.5.2 holds considering L (x,y) = ℓ(x). Then f(x,y) is also
given by f(x,y) = F

(
ℓ(x) ,y

)
where F is the solution of:

F(1,y) = f(0,y),
δF(t,y)

δ t
= h

(
F(t,y) ,2t−1,y

)
.

We will also implicitly use in what follows that some basic functions such as n 7→
2n can be easily defined and that we can produce 2T(ℓ(ω)) for any polynomial T : see
[BD19, BD23] where this is explicitly proved and detailed.

We notice that without more constraints on the length ODEs, we can compute an
exponential function, as in Example 2.5.4. Since we use them to characterise polynomial
complexity classes, we must prevent non-polynomial functions from being produced. For
that, we must define linear length ODEs in Definition 2.5.10.

Linearity

We now review the work of Bournez and Durand in [BD19, BD23] . However, we slightly
extend the concept of sg-polynomial expression from [BD19, BD23] to allow expres-
sions with cond instead of sg (sg(x) = 0 when x < 0 and 1 otherwise). We define the
discrete sigmoid cond(x) : R→ R as the continuous piecewise affine function valuing 1
for x > 3

4 and 0 for x < 1
4 , and affine between 1

4 and 3
4 .

Definition 2.5.6 (cond-polynomial expression)

A cond-polynomial expression P(x1, ...,xh) is an expression built-on +,−,×
(also often write · also for ×) and cond functions over a set of variables V =
{x1, ...,xh} and integer constants. The degree deg(x,P) of a term x ∈ V in P is
defined inductively as follows:

• deg(x,x) = 1 and for x′ ∈V ∪Z such that x′ ̸= x, deg
(
x,x′
)
= 0;

• deg(x,P+Q) = max{deg(x,P) ,deg(x,Q)};

• deg(x,P×Q) = deg(x,P)+deg(x,Q);

• deg
(

x,cond(P)
)
= 0.

A cond-polynomial expression P is essentially constant in x if deg(x,P) = 0.

In other words, compared to the classical notion of degree in polynomial expression,

66

all subterms that are within the scope of a cond function contributes 0 to the degree. A
vectorial function (resp. a matrix or a vector) is said to be a cond-polynomial expression
if all its coordinates (resp. coefficients) are. It is said to be essentially constant if all its
coefficients are.

Definition 2.5.7 (Essential Linearity [BD19, BD23])

A cond-polynomial expression g
(
f(x,y),x,y

)
is essentially linear in f(x,y) if

it is of the form:

g(f(x,y),x,y) = A
[
f(x,y),x,y

]
· f(x,y)+B

[
f(x,y),x,y

]
where A and B are cond-polynomial expressions essentially constant in f(x,y).

For example,

• the expression P(x,y,z) = x ·cond
(
(x2− z) · y

)
+y3 is essentially linear in x, essen-

tially constant in z and not linear in y.

• The expression P(x,2ℓ(y),z) = cond
(

x2− z
)
· z2 +2ℓ(y) is essentially constant in x,

essentially linear in 2ℓ(y) (not essentially constant) and not essentially linear in z.

• The expression z+(1−cond(x)) ·(1−cond(−x)) ·(y−z) is essentially constant in
x and linear in y and z.

• The following matrix is essentially linear in z and y and constant in x:

A(x,y,z) =

 cond(x− y) cond(x) · y
cond

(
z5− x3

)
z


In Chapter 3, we use a particular type of discrete ODE, namely linear length ODE.

Lemma 2.5.8 (Solution of linear ODE)
For matrices A and vectors B and G, the solution of the equation

f′(x, y) = A(f(x, y), h(x, y), x, y) · f(x, y)+B(f(x, y), h(x, y), x, y)
with initial conditions f(0, y) = G(y) is

f(x, y) =

(
2
∫ x

0 A(f(t, y), h(t, y), t, y)δ t
)
· G(y)

+
∫ x

0

(
2
∫ x

u+1 A(f(t, y), h(t, y), t, y)δ t
)
·B(f(u, y), h(u, y), u, y)δu.

67

Proof. Denoting the right-hand side by rhs(x,y), we have

rhs′(x,y) = A(f(x,y),h(x,y),x,y) ·
(

2
∫ x

0 A(f(t,y),h(t,y),t,y)δ t
)
·G(y)

+
∫ x

0

(
2
∫ x

u+1 A(f(t,y),h(t,y),t,y)δ t
)′
·B(f(u,y),h(u,y),u,y)δu

+

(
2
∫ x+1

x+1 A(f(t,y),h(t,y),t,y)δ t
)
·B(f(x,y),h(x,y),x,y)

= A(f(x,y),h(x,y),x,y) ·
(

2
∫ x

0 A(f(t,y),h(t,y),t,y)δ t
)
·G(y)

+ A(f(x,y),h(x,y),x,y)·∫ x
0

(
2
∫ x

u+1 A(f(t,y),h(t,y),t,y)δ t
)

B(f(u,y),h(u,y),u,y)δu

+ B(f(x,y),h(x,y),x,y)
= A(f(x,y),h(x,y),x,y) · rhs(x,y)+B(f(x,y),h(x,y),x,y)

where we have used linearity of derivation and definition of falling exponential for the
first term, and derivation of an integral (Lemma 1.2.14) providing the other terms to get
the first equality, and then the definition of falling exponential. This proves the property
by unicity of solutions of a discrete ODE, observing that rhs(0, y) = G(y).

We write also 1 for the identity.
NB 2.5.9

Notice that this can be rewritten as f(x,y)=∑
x−1
u=−1

(
∏

x−1
t=u+1

(
1+A(f(t,y),h(t,y), t,y)

))
·

B
(
f(u,y),h(u,y),u,y

)
, with the (not so usual) conventions that for any function κ(·),

∏
x−1
x κ(x) = 1 and B(−1,y) = G(y). Such equivalent expressions both have a clear

computational content. They can be interpreted as an algorithm unrolling the compu-
tation of f(x+1,y) from the computation of f(x,y), f(x−1,y), . . . , f(0,y).

Thus, we can properly define linear length ODEs:

Definition 2.5.10 (Linear length ODE, adapted from [BD19, BD23])
A function f is linear L -ODE definable (from u, g and h) if it corresponds to

the solution of:

f(0,y) = g(y)
δ f(x,y)

δℓ
= u(f(x,y),h(x,y),x,y)

where u is essentially linear in f(x,y).

2.5.2 Implicit definition of polynomial time
Stability property for discrete sigmoid

We need to ensure that the computation remains in polynomial time, which requires to
prove that the class of polynomial time computable functions is preserved by the linear

68

length ODE schema, so we start by it. We write
∣∣∣∣∣|· · ·|∣∣∣∣∣ for the sup norm of ceiling integer

part (of absolute value): given some matrix A = (Ai, j)1≤i≤n,1≤ j≤m,
∣∣∣∣∣|A|∣∣∣∣∣= maxi, j⌈|Ai, j|⌉.

In particular, given a vector x, it can be seen as a matrix with m = 1, and
∣∣∣∣∣|x|∣∣∣∣∣ is the sup

norm of the ceiling integer part of its components.
We need to prove the following result:

Lemma 2.5.11 (Essential linearity stability for cond)
Consider the ODE

F′ (x,y) = A
(
F(x,y),h(x,y),x,y

)
·F(x,y)+B

(
F(x,y),h(x,y),x,y

)
. (2.2)

Assume:

• The initial condition G(y) def
= F(0,y) is polynomial time computable and

h(x,y) are polynomial time computable with respect to the value of x.

• A
(
F(x,y)h(x,y),x,y

)
and B

(
F(x,y),h(x,y),x,y

)
are cond-polynomial

expressions essentially constant in F(x,y).

Then, there exists a polynomial p such that ℓ

(∣∣∣∣∣∣∣∣∣F(x,y)
∣∣∣∣∣∣∣∣∣
)
≤

p

(
x, ℓ
(∣∣∣∣∣|y|∣∣∣∣∣)) and F(x,y) is polynomial time computable with respect to

the value of x.

We give the proof of the previous lemma later, as we give a slight generalisation of it
in Lemma 2.5.14.

The previous statements lead to the following:

Lemma 2.5.12 (Intrinsic complexity of linear L -ODE)
Let f be a solution of the linear L -ODE

f(0,y) = g(y),
δ f(x,y)

δℓ
= u(f(x,y),h(x,y),x,y)

where u is essentially linear in f(x,y). Assume that the functions u,g,h are
computable in polynomial time. Then, f is computable in polynomial time.

Proof. From Lemma 2.5.5, f(x,y) can also be given by f(x,y) = F
(
ℓ(x) ,y

)
where F is

the solution of the initial value problem

F(1,y) = g(y),
δF(t,y)

δ t
= u

(
F(t,y),2t−1,y

)
.

Functions u are cond-polynomial expressions that are essentially linear in f(x,y). So
there exist matrices A, B that are essentially constants in f(t,y) such that

69

δ f(x,y)
δℓ

= A
(
f(x,y) ,h(x,y) ,x,y

)
· f(x,y)+B

(
f(x,y),h(x,y),x,y

)
.

In other words,

F′ (t,y) = A
(
F(t,y), t,y

)
·F(t,y)+B

(
F(t,y), t,y

)
,

setting

A
(
F(t,y) , t,y

)
= A

(
F(t,y) ,h

(
2t−1,y

)
,2t−1,y

)
B
(
F(t,y) , t,y

)
= B

(
F(t,y) ,h

(
2t−1,y

)
,2t−1,y

)
The corresponding matrix A and vector B are essentially constant in F(t,y). Also,

functions g,h are computable in polynomial time, more precisely polynomial in ℓ(x),
hence in t, and ℓ(y). Given t, obtaining 2t − 1 is immediate. This guarantees that all
hypotheses of Lemma 2.5.12 are true. We can then conclude remarking, again, that t =
ℓ(x).

This proves Lemma 2.5.12.

Stability property for tanh-polynomial expressions

NB 2.5.13
The previous statements were initially stated in [BD19, BD23] , using the sign func-
tion sg(·) (sg(x) = 0 if x ≤ 0 and 1 otherwise) instead of cond(·). We adapted their
result to the framework we will use.

As we will see in Chapter 3, we will use a hyperbolic tangent instead of the function
cond-polynomial (and hence also instead of sg(·) of [BD19, BD23]). The hyperbolic
tangent has the advantage of being analytic. All the previous results and proofs remain
true in this setting.

We will need to consider tanh-polynomial expression. This is not exactly as in Defini-
tion 2.5.6: it uses analogous definitions and properties. The concepts are mostly the same,
by replacing cond(·) by tanh or sg(·).

In particular, the definitions of essentially constant and essentially linear are the same,
replacing cond by tanh or even sg(·): a vectorial function (resp. a matrix or a vector) is
said to be a tanh-polynomial expression if all its coordinates (resp. coefficients) are, and
essentially constant if all its coefficients are.

As for the proof of Lemma 2.5.12, we first need to prove the following lemma. The
lemma and the proof are essentially the same as for Lemma 2.5.11.

70

Lemma 2.5.14 (Essential linear stability for tanh)
Consider the ODE

F′(x,y) = A(F(x,y),h(x,y),x,y) ·F(x,y)+B(F(x,y),h(x,y),x,y). (2.3)

Assume:

• The initial condition G(y) = F(0,y) is polynomial time computable, and
h(x,y) are polynomial time computable with respect to the value of x.

• A(F(x,y),h(x,y),x,y) and B(F(x,y),h(x,y),x,y) are tanh-polynomial
expressions essentially constant in F(x,y).

Then, there exists a polynomial p such that ℓ

(∣∣∣∣∣∣∣∣∣F(x,y)
∣∣∣∣∣∣∣∣∣
)
≤

p

(
x, ℓ
(∣∣∣∣∣|y|∣∣∣∣∣)) and F(x,y) is polynomial time computable with respect to

the value of x.

Proof. The solution of ordinary differential equation (2.3) can be put in some explicit
form (this follows from [BD19, BD23]).

F(x,y) =
x−1

∑
u=−1

(
x−1

∏
t=u+1

(
1+A(F(t,y),h(t,y), t,y)

))
·B(F(u,y),h(u,y),u,y). (2.4)

with the conventions that ∏
x−1
x κ(x) = 1 and B(·,−1,y) = G(y).

This formula allows us to evaluate F(x,y), using a dynamic programming approach,
from the quantities y, u, h(u,y), for 1 ≤ u < x, in several arithmetic steps that is polyno-
mial in x. Indeed: for any−1≤ u≤ x, A

(
F(u,y),h(u,y),u,y

)
and B

(
F(u,y),h(u,y),u,y

)
are matrices whose coefficients are tanh-polynomial. Their coefficients involve finitely
many arithmetic operations or tanh operations from their inputs. Once this is done, com-
puting F(x,y) requires polynomially in x many arithmetic operations: once the values for
A and B are known, we have to sum up x+1 terms, each of them involving at most x−1
multiplications.

We need to take care not only of the arithmetic complexity, which is polynomial in
x, but also of the bit complexity. We start by discussing the bit complexity of the integer
parts. Each of the quantities y, u, h(u,y), for 1 ≤ u < x, are computable in polynomial

time, so their integer parts have a bit complexity remaining polynomial in x and ℓ

(∣∣∣∣∣|y|∣∣∣∣∣).

The bit complexity of a sum, product, etc is polynomial in the size of its arguments, it is
sufficient to show that the growth rate of the function F(x,y) can be polynomially dom-
inated. For this, recall that, for any −1 ≤ u ≤ x, coefficients of A(F(u,y),h(u,y),u,y)
and B(F(u,y),h(u,y),u,y) are essentially constant in F(u,y). Hence, the size of the in-
teger part of these coefficients does not depend on ℓ

(
F(u,y)

)
. Since, in addition, h is

computable in polynomial time in x and ℓ(y), there exists a polynomial pM such that:

71

max

ℓ

(∣∣∣∣∣∣∣∣∣A(F(u,y),h(u,y),u,y)
∣∣∣∣∣∣∣∣∣
)
, ℓ

(∣∣∣∣∣∣∣∣∣B(F(u,y),h(u,y),u,y)∣∣∣∣∣∣∣∣∣
)≤ pM

(
u, ℓ
(∣∣∣∣∣|y|∣∣∣∣∣))

(2.5)
It then holds that,

ℓ

(∣∣∣∣∣∣∣∣∣F(x+1,y)
∣∣∣∣∣∣∣∣∣
)
≤ pM(x, ℓ

(∣∣∣∣∣|y|∣∣∣∣∣))+ ℓ

(∣∣∣∣∣∣∣∣∣F(x,y)∣∣∣∣∣∣∣∣∣
)
+2

It follows from an easy induction that we must have

ℓ

(∣∣∣∣∣∣∣∣∣F(x,y)∣∣∣∣∣∣∣∣∣
)
≤ ℓ

(∣∣∣∣∣∣∣∣∣G(y)
∣∣∣∣∣∣∣∣∣
)
+ x · (pM(x, ℓ

(∣∣∣∣∣|y|∣∣∣∣∣)+2),

which gives the desired bound on the length of the integer part of the values for function

F, after observing that, since G is polynomial time computable, necessarily ℓ

(∣∣∣∣∣∣∣∣∣G(y)
∣∣∣∣∣∣∣∣∣
)

remains polynomial in ℓ

(∣∣∣∣∣|y|∣∣∣∣∣).

We now take care of the bit complexity of involved quantities to prove that F(x,y)
is indeed polynomial time computable with respect to the value of x. Given y, we can
determine some integer Y such that y ∈ [2−Y ,2Y]. We just need to prove that given n, we
can provide some dyadic zx approximating F(x,y) at precision n, i.e. with ∥F(x,y)−zx∥≤
2−n, in a time polynomial in x and Y .

Basically, this follows from the possibility of evaluating F(x,y) using formula (2.4).
This latter formula is made of a sum of x+1 terms, that we can call T0,T1, . . . ,Tx, each
of them Ti corresponding to a product of k matrices (or vectors) Ti = C1C2 . . .Ck(i), with
k(i) ≤ x + 1, were each C j is either some B(F(u,y),h(u,y),u,y) for some u or some
(1+A(F(t,y),h(t,y), t,y)) for some t.

To solve our problem, it is sufficient to be able to approximate the value of each Ti by
some dyadic di with precision 2−n−m, considering m with x+1≤ 2m. Indeed, taking zx =

∑
x
i=0 di guarantees an error on the approximation of F(x,y) less than (x+1)2−n−m ≤ 2−n.

So we focus on the problem of estimating Ti = C1C2 . . .Ck(i) with precision 2−n−m.
If we write C̃ j for some approximation of C j, we can write

∥∥∥C1C2 . . .Ck(i)− C̃1C̃2 . . . C̃k(i)

∥∥∥ ≤ ∥∥∥C1C2 . . .Ck(i)−1

(
Ck(i)− C̃k(i)

)∥∥∥
+

∥∥∥C1C2 . . .Ck(i)−2

(
Ck(i)−1− C̃k(i)−1

)
C̃k(i)

∥∥∥
+

∥∥∥C1C2 . . .Ck(i)−3

(
Ck(i)−2− C̃k(i)−2

)
C̃k(i)−1C̃k(i)

∥∥∥
...

+
∥∥∥(C1− C̃1

)
C̃1C̃2 . . . C̃k(i)

∥∥∥ .
(2.6)

We just need then to compute some approximation C̃k(i) of Ck(i), guaranteeing the first
term in (2.6) to be less than 2−n−m−m, and then choose some approximation C̃k(i)−1 of

72

Ck(i)−1, guaranteeing the second term in (2.6) to be less than 2−n−m−m, and so on. Doing
so, we solve our problem, as C̃1C̃2 . . . C̃k(i) provides an estimation of Ti, with an error less
than (x+1)2−n−m−m ≤ 2−n−m by (2.6).

For the first term of (2.6), the point is that we know from a reasoning similar to previ-
ous computations (namely bounds such as (2.5)) that we have∣∣∣∣∣

∣∣∣∣∣∣∣C1C2 . . .Ck(i)−1

∣∣∣∣∣∣∣
∣∣∣∣∣≤ 2p1(x,Y)

for some polynomial p1. Consequently, it is sufficient to take∥∥∥Ck(i)− C̃k(i)

∥∥∥≤ 2−n−2m−p1(x,Y)

to guarantee an error less than 2−n−m−m.
A similar analysis applies for the second, and other terms, that involve finitely many

terms. The whole approach takes a time that remains polynomial in x and Y .

Thus, Lemma 2.5.12 remains true in this framework.
NB 2.5.15

In the context of neural network models, there have been several characterisations of
complexity classes over the discrete (see the monograph [Sie99] about the approach
discussed above, but not only), as far as we know, the relation between formal neural
networks with classes of computable analysis has never been established before.

If we do not restrict ourselves to neural network-related models, as in all these
previous contexts, as far as we know, only a few papers have been devoted to charac-
terisations of complexity and even computability classes in the sense of computable
analysis. There have been some attempts using continuous ODEs [BCGSH07], that
we already mentioned, or the so-called R-recursive functions [BP21, BGH11]. For
discrete schemata, we only know [Bra96] and [NRTY21], focusing on computability
and not complexity.

We also mention the references [FGH14] discussing the complexity of operators in
computable analysis. Notice that most of the classical complexity classes of the Blum
Shub Smale model [BCSS98] have been characterised using the implicit complexity
approach [BCdNM06, BCdNM05].

A characterisation of PTIME over the integers with Linear Length ODEs

A main result of [BD19, BD23] is the following (LDL stands for “Linear Derivation on
Length”):

Theorem 2.5.16 ([BD19])
For discrete functions, we have LDL= FPTIME where

LDL= [0,1,πk
i , ℓ(x) ,+,−,×,sg(x) ;composition, linear length ODE].

That is to say, LDL (and hence FPTIME for discrete functions) is the smallest sub-
set of functions, that contains the constant functions 0 and 1, the projections πk

i , the

73

length function ℓ(x) (that maps an integer to the length of its binary representation), the
addition function x+y, the subtraction function x−y, the multiplication function x× y
(that we also often denote x · y), the sign function sg(x) and closed under composition
(when defined) and linear length-ODE scheme: the linear length-ODE scheme basically
(a formal definition is provided in Definition 2.5.10) corresponds to defining functions
from linear ODEs with respect to derivation with respect to the length of the argument.
We write A[f(x,y),x,y] to mean that its coefficients (may) depend on f(x,y),x,y, and sim-
ilarly for B. Essentially constant means that f(x,y) is actually either not appearing, or
under the scope of some sg(.) function.

Theorem 2.5.17 ([BD19])

LDL∩NN = FPTIME∩NN.

This provides a characterisation of FPTIME for discrete functions that do not require
to specify an explicit bound in the recursion, in contrast to Cobham’s work [Cob62], nor
to assign a specific role or type to variables, in contrast to safe recursion or ramification
[BC92, Lei95]. The characterisation happens to be very simple using only natural notions
from the world of Ordinary Differential Equations.

Our purpose in Chapter 3 and in Chapter 5 is to extend this to more general classes
of functions. In particular, we will characterise polynomial time functions from the reals
to the reals. We consider here computability and complexity over the reals in the most
classical sense, that is to say, computable analysis (see e.g. [Wei00]). Indeed, considering
that N⊂ R, most of the basic functions and operations in the above characterisation (this
includes for example, +, −, . . .) have a clear meaning over the reals.

Link with Neural Networks

The point of view considered in the previous subsection is very close to the one of [Sie99].
Knowing whether Turing machines can be simulated by recurrent neural networks of finite
size using the tanh activation function (and not the “exact” saturated linear function) is a
long-standing open problem. Despite some attempts, such as the one described in [Sie99],
up to our knowledge, there remain some of the statements not yet formally proved, or at
least not generally accepted, in the existing proofs. Our statements in Chapter 3 deal with
the tanh activation function, in some sense, but we avoid this open question by restricting
it to finite space or time computations. Our proofs state this is possible if the space or the
time of the machine is bounded, up to some controlled error.

2.6 A previous characterisation of FPSPACE
Very recently, a characterisation of FPSPACE has also been obtained: see [Goz22], for
full details.

74

Theorem 2.6.1 ([Goz22])

A language L ⊆ Γ∗ belongs to FPSPACE iff there are ODEs y′ = p(y,z) and
z′ = q(y,z), where p,q are vectors of polynomials, there is a polynomial u,
(vector-valued) functions r,s ∈ GPVAL, a γk

N-bound φ , and ε > 0, τ ≥ α > 0,
α,τ ∈ Q, such that, for all w ∈ Σ∗, one has that the solution (y,z) of the
ODEs with the initial condition y(0) = r(x) and z(0) = s(y(0)) = s◦r(0), with
d
(

γk
N(w),x

)
< 1/4, satisfies:

1. If t1 > 0 is such that
∣∣y1(t1)

∣∣ ≥ 1, then
∣∣y1(t)

∣∣ ≥ 1 for all t ≥ t1 and∣∣y1(t)
∣∣≥ 3/2 for all t ≥ t1 +1;

2. If w ∈ L (respectively /∈ L) then there is some t1 > 0 such that y1(t1)≥ 1
(respectively ≤−1);

3.
∥∥(y(t),z(t))∥∥≤ φ ◦u(|w|), for all t ≥ 0;

4. Suppose that (ỹ, z̃) satisfies the ODE with y(0) = r(x), z(0) = s(y(0)) =
s◦ r(x), except possibly at time instants ti, for i = 1,2, . . ., satisfying:

(a) ti− ti−1 ≥ τ , where t0 = 0;

(b) ∥ỹ(ti)− limt→t−i
ỹ(t)∥ ≤ ε and z̃(ti) = s(ỹ(ti));

(c) limt→t−i
z̃1(t)> 1.

Then conditions 1,2,3,5 hold for (ỹ, z̃);

5. For any b > a ≥ 0 such that |b−a| ≥ τ , there is an interval I = [c,d] ⊆
[a,b], with |d− c| ≥ α , such that z1(t)≥ 3/2 for all t ∈ I.

Condition d
(

γk
N(w),x

)
< 1

4 , 4) and 5) impose that there exists some abstraction graph.
Conditions 3) make it keep a polynomial log-size, and conditions 1) and 2) impose to the
system to be eventually decisional. This guarantees PSPACE and allows a robust emu-
lation of a TM. However, the space used by the ODEs cannot be “read” easily (as by a
concept such as length in the previous theorem). We will propose a simpler characterisa-
tion in Chapter 5.

2.7 Programs and Turing machines
Turing machines are closely related to programs and proof theory. We can use Hoare’s
logic to formalise this relation. We review some basic results about Hoare logic. To
formally express the properties of programs, we fix a logic language Assn ([Win93]), the
syntax rules are the following:

A ::= true | false | a0 = a1 | a0 ≤ a1 | A0∧A1 | A0∨A1 | ¬A | A0⇒ A1 | ∀i.A | ∃i.A

where a0,a1 are arithmetic expressions a ::= n | X | i | a0 + a1 | a0− a1 | a0× a1, with
n ∈ N, i an integer variable and X a location.

75

We can use standard first-order logic for this purpose (with the signature of arith-
metic). Any other choice of sufficiently expressive language, able to talk about words,
configurations, and sequences, could be appropriate.

We review some statements of [Win93].

Theorem 2.7.1 (Gödel incompleteness theorem [Göd31])
Any sufficiently expressive consistent formal system F can be incomplete:

there are statements of the language of F which can neither be proved nor dis-
proved in F.

Consequently, from Gödel’s incompleteness theorem, we get:

Theorem 2.7.2 (Uncompleteness see e.g. [Win93])
There is no effective proof system for Assn such that the theorems coincide with
the valid assertions of Assn.

Hence, there is no hope of getting a proof system with total correctness. Asking
whether a program terminates or not is equivalent to asking about its partial correctness.

Proposition 2.7.3 (Uncompleteness see e.g. [Win93])
There is no effective proof system for partial correctness assertions such that its
theorems are precisely valid partial correctness assertions.

However, relative partial correctness is possible. We can devise relatively complete
proof systems, i.e. for any partial correcteness assertion {A}c{B}, if {A}c{B} is satis-
fiable then it is provable. A famous proof method for this is provided by Hoare’s logic.
In this logic, a partial correctness assertion has the form : {A}c{B}, where A and B are in
Assn, and c is a program. Such an assertion states that starting from any initial configur-
ation C satisfying A if the system evolves according to the program – or Turing machine
– c, then it will either diverge or reach a configuration C′ satisfying B. Formulas A and B
are allowed to depend on some parameters, i.e. some interpretation I of some variables.

Theorem 2.7.4 (Relative completeness [Win93])
Hoare’s logic is relatively complete.

NB 2.7.5
Observe that the Hoare triplet {A}c{false} holds iff the program c diverges from any
initial configuration C satisfying A.

Hoare’s Logic

Hoare’s logic includes the following:

1. Rule for while loops:
{A∧b}c{A}

{A} while b do c{A∧¬b}
2. Rule of consequence:

|=I (A⇒ A′
) {

A′
}

c
{

B′
}
|=I (B′⇒ B

)
{A}c{B}

76

Hoare’s logic provides a relatively complete method for proving non-termination. A
Turing machine can be seen as a program corresponding to a while loop so we can focus
on the case of a while loop: it will be the purpose of Section 4.6.

The rule for while loops, in the case of triplets of the form {A}c{false}, when c
corresponds to a Turing machine gives a way to discuss termination of a TM. We will
come back to this in Section 4.6.

Namely, given a triplet {A}c{B}, the idea will be to reason about the weakest precon-
dition: this is a predicate Q = wp(c,B) such that for any precondition A, {A}c{B} if and
only if A⇒ Q. This is the least restrictive requirement needed to guarantee that B holds
after A.
NB 2.7.6

The uniqueness of the weakest precondition follows easily from the definition: if both
Q and Q′ are weakest preconditions, then by the definition {Q′}c{B} so Q′⇒ Q and
{Q′}c{B} so Q⇒ Q′ and hence Q = Q′.

We will use those concepts in Section 4.6.

77

Chapter 3

Algebraic Characterisations of
FPTIME with Discrete ODEs

W życiu niczego nie należy się bać, należy to tylko
zrozumieć.

Maria Skłodowska-Curie

NB 3.0.1
This chapter is based on articles published in MCU 2022 ([BB22], it received Best
Student Paper Award) and MFCS 2023 ([BB23], it received Best Paper Award), co-
authored with Olivier Bournez. We wrote journal versions for both articles, respect-
ively accepted for publication in the International Journal of Foundations of Computer
Science ([BB24a]) and in the Journal of Logic and Analysis ([BB25]).

The class of functions from the integers to the integers computable in polynomial time
has been characterised using discrete ordinary differential equations (ODE) in [BD23].
Their results are recalled in Chapter 2. In doing so, Olivier Bournez and Arnaud Dur-
and pointed out the fundamental role of linear discrete and classical ODEs tools such as
changes of variables to capture computability and complexity measures or for program-
ming.

In this chapter,

• we extend the previous approach to characterise functions from the integers to the
reals (we mean real sequences) computable in polynomial time in the sense of com-
putable analysis. In particular, we provide a characterisation of such functions in
terms of the smallest class of functions containing some basic functions, closed by
composition, linear length ODEs, and an effective limit schema;

• then, we prove that functions over the reals computable in polynomial time can also
be characterised using discrete ordinary differential equations (ODE);

• furthermore, we prove we do not need any artificial sign or test function for time
complexity.

At a technical level, this is obtained by proving that Turing machines can be simulated
with analytic discrete ordinary differential equations. These results give underlying well-
understood notions of time complexity for programming with ODEs. They can be related

78

to [BGP16b, BGP17] and Chapter 2: Olivier Bournez, Daniel Graça and Amaury Pouly
provide a characterisation of PTIME with continuous ODEs, establishing that time com-
plexity corresponds to the length of the involved curve, i.e. the motto time complexity =
length.

To do so, we naturally study an algebra of functions more general than discrete func-
tions, that is to say over more general space than N and Z. This introduces some subtleties,
and difficulties, that we discuss in this document, with our various concepts, definitions
and statements.

We hence consider here the functions of type f : S1×·· ·×Sd → S0, where each Si is
either N, Z or Q or R. Or possibly vectorial functions whose components are of this type.
We denote F for the class of such functions. Clearly, we can consider N ⊂ Z ⊂ Q ⊂ R,
but as functions may have different types of outputs, composition is an issue. We simply
admit that composition may not be defined in some cases. In other words, we consider
that composition is a partial operator: for example, given f : N→ R and g : R→ R, the
composition of g and f is defined as expected, but f cannot be composed with a function
such as h : N→ N.

Considering discrete ODE as a model of computation is due to [BD19, BD23] . From
a non-ODE-centric point of view, we are characterizing some complexity classes using
particular discrete schemata. Recursion schemes constitute a major approach to comput-
ability theory and, to some extent, complexity theory. The foundational characterisation
of FPTIME due to Cobham [Cob62], and then others based on safe recursion [BC92] or
ramification ([LM93, Lei94]), or for other classes [LM95], gave birth to the very vivid
field of implicit complexity at the interplay of logic and theory of programming: see
[Clo98, CK02] for monographs.

Our ways of simulating Turing machines are rather similar to the constructions used
in other contexts such as Neural Networks [SS95, Sie99]. But, as far as we know, only a
few papers have been devoted to characterisations of complexity and even computability,
classes in the sense of computable analysis. For discrete schemata, we only know [Bra96]
and [NRTY21], focusing on computability and not complexity.

In Section 3.1, we present and prove an algebraic characterisation of real sequences
computable in polynomial time. In Section 3.2, we generalise the characterisation to
functions over the real: the proof techniques are very different, as, for example, in the
second characterisation, we no longer do exact computations, but the algebras are rather
similar.

3.1 Algebraic characterisation of the real sequences com-
putable in polynomial time

In this section, we consider the class

LDL• =
[

0,1,πk
i , ℓ(x) ,+,−,×,cond(x) ,

x
2

;composition, linear length ODE
]

Here

• x
2 : R→R is the function that divides by 2, and all other basic functions are defined
exactly as for LDL, but considered here as functions from the reals to reals.

79

• cond(.) is the function defined in Section 1.2.2 for Definition 2.5.6: its restrictions
to the integer is the function sg(x) considered in LDL.

We are going to prove, in Subsection 3.1.2, the following theorem:

Theorem 3.1.1 (Encoding a Turing machine in LDL•)

A function f : Nd → Rd′ , that is to say, a real sequence, is computable in poly-
nomial time if and only if there exists f̃ : Nd+1→ Rd′ ∈ LDL• such that for all
m ∈ Nd , n ∈ N,

∥f̃(m, 2n)− f(m)∥ ≤ 2−n.

From the fact that we have the reverse direction in the previous theorem, it is natural
to consider the operation that maps f̃ to f. For that purpose, we introduce the operation
ELim (ELim stands for Effective Limit):

Definition 3.1.2 (Operation ELim)

Given f̃ : Nd+1→ Rd′ ∈ LDL• such that for all m ∈ Nd , n ∈ N, ∥f̃(m, 2n)−
f(m)∥ ≤ 2−n, then ELim(f̃) is the (clearly uniquely defined) corresponding
function f : Nd → Rd′ .

Proposition 3.1.3
The class of functions from the integers computable in polynomial time is

preserved by the operation ELim.

Take such a function f̃. By definition, given m, we can compute f̃ (m,2n) with pre-
cision 2−n in time polynomial in n. This must be by definition of ELim schema some
approximation of f(m), and hence f is computable in polynomial time.
NB 3.1.4

We will reuse generalisations of this statement for functions over the reals in Sections
3.2, 5.1 and 5.2.

Then, we obtain our second main result of this chapter, providing a characterisation
of polynomial time computable functions for functions from the integers to the reals. We
prove it in Subsection 3.1.3.

Theorem 3.1.5 (Polynomial time in LDL•)

A function f : Nd → Rd′ is computable in polynomial time if and only if all its
components belong to LDL•, where

LDL• = [0,1,πk
i , ℓ(x) ,+,−,×,cond(x) ,

x
2

;

composition, linear length ODE,ELim]

In particular, we obtain a characterisation of the functions computable in polynomial
time from the integers to the reals:

80

Theorem 3.1.6 (Characterisation of PTIME for real sequences)

LDL•∩RN = FPTIME∩RN

The proof of LDL•∩RN ⊆ FPTIME∩RN is the purpose of Proposition 3.1.9: every
function we can construct in LDL• is computable in polynomial time. The proof of
LDL•∩RN ⊇ FPTIME∩RN relies on encoding the execution of Turing machines into
linear length ODEs.

Our ways of simulating Turing machines have some similarities with constructions
used in other contexts such as neural networks [SS95, Sie99]. In particular, we use a
Cantor-like encoding set I with inspiration from these references. These references use
some particular sigmoid function σ (called sometimes the saturated linear function) that
values 0 when x≤ 0, x for 0≤ x≤ 1, 1 for x≥ 1. The latter corresponds to cond

(
1
4 +

1
2x
)

and hence their constructions can be reformulated using the cond function.
The models considered in [SS95, Sie99] rely on inductions while our constructions are

not neural networks. Also, they are restricted to live on the compact domain [0,1], which
forbids getting functions from R→ R. Our settings allow more general functions. Our
proofs also require functions taking some integer arguments, that would be impossible to
consider in their hypotheses (unless at the price of an artificial recoding).
NB 3.1.7

In some sense, our constructions can be seen as operators mapping to a family of
neural networks in the spirit of these models, instead of considering fixed recurrent
neural networks, but also dealing with tanh, and not requiring the saturated linear
function.

It will be seen later in the chapter (Subsection 3.1.3) that, in this context, the multi-
plication can be avoided.

Theorem 3.1.8 (No need of multiplication)
Previous theorems remain true if multiplication is not among the basic func-
tions.

Let us now go to the proofs.

3.1.1 Towards functions from integers to the reals: simulation with
Turing machines

Functions in LDL• are in FPTIME

The aim of this subsection is to prove that all functions of LDL• are computable (in the
sense of computable analysis) in polynomial time (Proposition 3.1.9), giving one inclu-
sion of Theorem 3.1.6.

Proposition 3.1.9

All functions of LDL• are computable (in the sense of computable analysis)
in polynomial time.

81

Proof. We prove this proposition by induction. It is true for basis functions, from basic
arguments from computable analysis. In particular, as cond is a continuous piecewise af-
fine function with rational coefficients, it is computable in polynomial time from standard
arguments.

The class of polynomial time computable functions is stable under composition: it is
proved in Lemma 1.3.56.

It remains to prove that the class of polynomial time computable functions is closed
under the linear length ODE schema: this is Lemma 2.5.12.

Functions in FPTIME are in LDL•

This subsection is devoted to proving a kind of reverse implication of Proposition 3.1.9:
for any polynomial-time computable function f : Nd → Rd′ , we can construct some func-
tion f̃ ∈ LDL• that simulates the computation of f. It requires to be able to simulate the
computation of a Turing machine using functions from LDL•.

Consequently, to simplify the coming proofs, we consider the variant of TMs defined
in Section 2.2.

A key point is to observe that

Lemma 3.1.10

We can construct some function Next in LDL• that simulates one step of M,
i.e. that computes the Next function sending (the encoding of) a configuration
C of Turing machine M to the next one. This function is essentially linear.

Proof. We restart from arguments of the proof of Theorem 2.3.1.
NB 3.1.11

However, the problem with the expressions of the proof of Theorem 2.3.1 is that
we cannot expect the integer part and the fractional part function to be in LDL• (as
functions of this class are computable, and hence continuous, unlike the fractional
part). But, a key point is that from our trick of using only symbols 1 and 3, we are
sure that in an expression like ⌊r⌋, either it values 0 (this is the specific case where
there remain only blanks in r), or that 4r lives in the interval [1,1+ 1) or in interval
[3,3+1).

That means that we could replace in the proof of Theorem 2.3.1 {4r} by σ(4r) where
σ is some (piecewise affine) function obtained by composing in a suitable way the basic
functions of LDL•.

Namely, define If(b,T,E) as a synonym for cond(b)×T +
(

1− cond(b)
)
×E. Then,

considering i(x) = If
(
x−2,3, If(x,1,0)

)
, σ(x) = x− i(x), then i(4r) would be the same

as ⌊4r⌋, and σ(4r) would be the same as {4r} in our context in above expressions. In
other words, we could replace the items (2.1) above by:

where r0 = i(4r)
• in the first case “→” : l′ = 4−1l +4−1x and r′ = r• = σ(4r)
• in the second case “←” : l′ = l• = σ(4l) and r′ = 4−2r•+4−2x+4−1i(4l)

82

And get something that would still work exactly, but using only functions from LDL•.
Notice that this imbrication of If rewrites to an essentially constant expression.

We can then write:

q′= If(q−(|Q|−1),nextq|Q|−1, If(q−(|Q|−2),nextq|Q|−2, · · · , If(q−1,nextq1,nextq0)))

where nextqq = If
(

v−3,nextqq
3, If
(
v−1,nextqq

1,nextqq
0
))

and where nextqq
v = q′ if δ (q,v)=

(q′,x,m) for m ∈ {←,→}, for v ∈ {0,1,3}. Similarly, we can write

r′= If

(
q− (|Q|−1),nextr|Q|−1, If

(
q− (|Q|−2),nextr|Q|−2, · · · , If

(
q−1,nextr1,nextr0

)))

where nextrq = If
(

v−3,nextrq
3, If
(
v−1,nextrq

1,nextrq
0
))

and where nextrq
v corresponds to the associated expression in the item above according

to the value of δ (q,v). We can clearly write a similar expression for l′. This imbrication
of If rewrites to some essentially linear expressions.

Once we have one step, we can simulate some arbitrary computation of a Turing
machine, using some linear length ODE:

Proposition 3.1.12

Consider some Turing machine M computing some function f : Σ∗ → Σ∗

in some time T (ℓ(ω)) on input ω . We can construct some function f̃ :
N×R→R in LDL• that does the same, with respect to the previous encoding:
f̃(2T (ℓ(ω)),γword(ω)) provides f (ω).

Proof. The idea is to define the function Exec that maps some time 2t and some initial
configuration C to the configuration at time t. It can be obtained using some linear length
ODE using Lemma 3.1.10.

Exec(0,C) =C and
δExec

δℓ
(t,C) = Next(Exec(t,C))

We can then get the value of the computation as Exec(2T (ℓ(ω)),Cinit) on input ω , con-
sidering Cinit = (q0,0,γword(ω)). By applying some projection, we get the following
function f̃(x,y) = π3

3 (Exec(x,q0,0,y)) that satisfies the property.

3.1.2 Proof of Theorem 3.1.1: f ∈ FPTIME is equivalent to the exist-
ence of some f̃ ∈ LDL•

The purpose of this section is to prove Theorem 3.1.1: a function f : Nd→Rd′ is comput-
able in polynomial time if and only if there exists f̃ : Nd+1→ Rd′ ∈ LDL• such that for
all m ∈ Nd , n ∈ N, ∥f̃(m, 2n)− f(m)∥ ≤ 2−n.

More precisely, we prove that the function f̃ we construct in LDL• converges expo-
nentially fast to the function f , computable in polynomial time. And we prove that for
every function f ∈ FPTIME, there exists f̃ ∈ LDL• converging exponentially fast to f .

83

Reverse implication: the existence of some f̃ ∈ LDL• implies f ∈ FPTIME

Proof. The reverse implication of Theorem 3.1.1 mostly follows from Proposition 3.1.9
and arguments from computable analysis. We prove this by induction.

Indeed, the only non-trivial inductive case is preservation by effective limit: assume
there exists f̃ : Nd+1→ Rd′ ∈ LDL• such that for all m ∈ Nd , n ∈ N,

∥f̃(m, 2n)− f(m)∥ ≤ 2−n.

From Proposition 3.1.9, we know that f̃ is computable in polynomial time (in the binary
length of its arguments). Then f(m) is computable: indeed, given some integers m and n,
we can approximate f(m) at precision 2−n as follows: approximate f̃(m,2n+1) at precision
2−(n+1) by some rational q, and output q. We will then have

∥q− f(m)∥ ≤ ∥q− f̃(m,2n+1)∥+∥f̃(m,2n+1)− f(m)∥
≤ 2−(n+1)+2−(n+1)

≤ 2−n.

All of this is done in polynomial time in n and the size of m and, hence, we get that f
is polynomial time computable from definitions.

Direct implication: f ∈ FPTIME implies the existence of some f̃ ∈ LDL•

For the direct implication of Theorem 3.1.1, the difficulty is that we know from the previ-
ous section (Section 3.1.1) how to simulate Turing machines working over I (the image
of γword : Σω →R, and γword defined in the proof of Theorem 2.3.1), while we want func-
tions that work directly over the integers and the reals. A key point is to be able to convert
from integers/reals to representations using only symbols 1 and 3, that is to say, to map
integers to I , and I to reals.

Lemma 3.1.13 (From I to R)

We can construct some function Encode : N× [0,1]→ R in LDL• mapping
γword(d) with d ∈ {1,3}∗ to some real d. It is surjective over the dyadic, in the
sense that for any dyadic d ∈ D, there is some (easily computable) such d with
Encode(2ℓ(d),d) = d.

Proof. Consider the following transformation: every digit in the binary expansion of d is
encoded by a pair of symbols in the radix 4 encoding of d ∈ [0,1]: digit 0 (respectively: 1)
is encoded by 11 (resp. 13) if before the “decimal” point in d, and digit 0 (respectively: 1)
is encoded by 31 (resp. 33) if after. For example, for d = 101.1 in base 2, d = 0.13111333
in base 4. To compute d, given d, the intuition is to consider a two-tapes Turing machine
(Q,Σ,qinit,δ ,F) : the first tape contains the input (d) and is read-only, the second one is
write-only and empty at the beginning. We just use a different encoding on the second
tape than the previous one: for the first tape, we restrict to digits 0,1,3, while for the
second, we use binary encoding.

Writing the natural Turing machine doing the transformation, this would do the fol-
lowing (in terms of real numbers), if we forget the encoding of the internal state.

84

With more detail, from the fact that we have only 1 and 3 in r, the reasoning is
valid as soon as i(16r) is correct for 16r ∈ {11,13,31,33). So i(x) = If(x−15,15, If(x−
13,13, If(x−7,5)))) works. Then take σ(x) = x− i(x).

The transformation from d to d can be done by iterating a function F : [0,1]2→ [0,1]2

satisfying:

F(r1, l2) =


(σ(16r1),2l2 +0) whenever i(16r1) = 5
(σ(16r1),2l2 +1) whenever i(16r1) = 7
(σ(16r1),(l2 +0)/2) whenever i(16r1) = 13
(σ(16r1),(l2 +1)/2) whenever i(16r1) = 15

Here we write ab for the integer whose base 4 radix expansion is ab. A natural candidate
for F is an expression such as

If(i(16r1)−15,(σ(16r1),(l2 +1)/2),

If(i(16r1)−13,(σ(16r1,(l2 +0)/2),

If(i(16r1)−7,(σ(16r1,2l2 +1),(σ(16r1,2l2 +0))))

with σ and i constructed as a suitable approximation of the fractional and integer part
and If(·, ·, ·) defined in the proof of Lemma 3.1.10.

Then, we just need to apply ℓ(d)th times F on (d,0), and then project on the second
component to get a function Encode doing the encoding. That is Encode(x,y)= π3

3 (G(x,y))
with

G(0,y) = (d,0) and
δG
δℓ

(t,d, l) = F(G(t,d, l)).

This is how we can get the function F . Then the previous reasoning applies to the
iterations of function F that would provide some encoding function.

Lemma 3.1.14 (From N to I)

We can construct some function Decode : Nd → R in LDL• that maps n ∈ N
to some (easily computable) encoding of n in I .

Proof. We discuss only the case d = 1. The generalisation to d > 1 is similar.
Let div2 (respectively: mod2) denote integer (resp. remainder of) division by 2: as

these functions are from N→ N, from Theorem 3.1.6, they belongs to LDL. Their ex-
pression in LDL, replacing sg by cond, provides some extensions div2 and mod2 in LDL•.

We do something similar as in Lemma 3.1.13 but now with the function

F(r1, l2) =

{
(div2(r1), (l2 +0)/2) whenever mod2(r1) = 0
(div2(r1), (l2 +1)/2) whenever mod2(r1) = 1.

We can now prove the direct direction of Theorem 3.1.1:

85

Proof of Theorem 3.1.1. Assume f : Nd → Rd′ is computable in polynomial time. It
means that each of its components are, so we can consider without loss of generality that
d′ = 1. We assume also that d = 1 (otherwise consider either multi-tape Turing machines,
or some suitable alternative encoding in Encode). That means that we know that there is a
TM polynomial time computable functions d : Nd+1→{1,3}∗ so that on m,n it provides
the encoding of some dyadic φ(m,n) with ∥φ(m,n)− f(m)∥ ≤ 2−n for all m.

From Proposition 3.1.12, we can construct d̃ with d̃(2p(max(m,n)),Decode(n,m)) =
d(m,n) for some polynomial p corresponding to the time required to compute d.

Both functions ℓ(x) = ℓ(x1) + . . .+ ℓ
(
xp
)

and B(x) = 2ℓ(x)·ℓ(x) are in LDL (see
[BD19, BD23]). It is easily seen that : ℓ(x)c ≤ B(c)(ℓ(x))) where B(c) is the c-fold
composition of function B.

Then
f̃(m,n) = Encode(d̃(B(c)(max(m,n)),Decode(n,m)))

provides a solution such that

∥f̃(m,2n)− f(m)∥ ≤ 2−n

3.1.3 Proving Theorems 3.1.5 and 3.1.6: LDL• characterises FPTIME
for real sequences

It remains to prove that LDL• characterises FPTIME for real sequences.
We recall the statement of Theorem 3.1.6: LDL•∩RN = FPTIME∩RN. It follows

from the case where d = 1 and d′ = 1 from Theorem 3.1.5.
Hence, there only remains to prove Theorem 3.1.5, stating that a function f : Nd→Rd′

is computable in polynomial time if and only if all its components belong to LDL•.
The direct direction is immediate from Theorem 3.1.1.
For the reverse direction, is direct from Proposition 3.1.3.
We now improve this statement by getting rid of the multiplication in the algebra.

Getting rid of the multiplication

We notice that, in LDL•, we could have removed the multiplication.

Theorem 3.1.15

We have that LDL•∩RN is equal to:

[0,1,πk
i , ℓ(x) ,+,−,cond(x) ,

x
2

;composition, linear length ODE,ELim]∩RN.

In order to prove this theorem, we must introduce the following function:

Lemma 3.1.16

Consider T (d, l) = cond
(
d−3/4+ l/2

)
. For l ∈ [0,1], we have T (0, l) = 0,

and T (1, l) = l.

86

Proof. We check that it is true for d = 0 and then for d = 1, from the definition cond.

Then, we also need to modify the way we do the conditions (conditional loops), by
rewriting them to avoid multiplications and introducing a function send:

Lemma 3.1.17
An expression such as, for If defined in the proof of Lemma 3.1.10:

If(q−αn,Tn, If(q−αn−1,Tn−1, · · · , If(q−α1,T1,E1))),

for integers α1 < α2 < · · ·< αn is some piecewise continuous function that val-
ues E1 for x ≤ α1 +

1
4 , Ti on [αi +

3
4 ,αi+1 +

1
4] for i ∈ {1,2, · · · ,n− 1}, Tn for

x≥ αn +3/4. It is equivalent to some function obtained without any multiplic-
ation.

Proof. Observe that any product of the form cond(q−αi)cond
(
q−α j

)
rewrites to:

cond
(
q−α j

)
if αi < α j from the definition of cond.

It follows from induction that above expression rewrites to E1 + cond(q−α1)(T1−
E1)+cond(q−α2)(T2−T1)+ · · ·+cond(q−αn)(Tn−Tn−1), from which the result fol-
lows easily.

Actually, let’s propose the following notation:

Lemma 3.1.18
Assume you are given some integers α1,α2, · · · ,αn, and values V1,V2, · · · ,Vn.

Then there is some function obtained without any multiplication, that we write
send(αi 7→Vi)i∈{1,··· ,n}, mapping any x ∈ [αi− 1/4,αi + 1/4] to Vi, for all i ∈
{1, · · · ,n}.

Proof. Sort the αi so that α1 <α2 < · · ·<αn. Then consider V1+cond(x−α1 +1)(V2−
V1)+ cond(x−α2 +1)(V3−V2)+ · · ·+ cond(x−αn−1 +1)(Vn−Vn−1).

More generally:

Lemma 3.1.19
Let N be some integer. Assume we are given some integers α1,α2, · · · ,αn, and
some values Vi, j for 1≤ i≤ n, and 0≤ j < N. Then there is some function,

send((αi, j) 7→Vi, j)i∈{1,··· ,n}, j∈{0,··· ,N−1},

mapping any x ∈ [αi− 1/4,αi + 1/4] and y ∈ [j− 1/4, j+ 1/4] to Vi, j, for all
i ∈ {1, · · · ,n}, j ∈ {0, · · · ,N−1}, and obtained without any multiplication.

87

Proof. If we define the function by

send((αi, j) 7→Vi, j)i∈{1,··· ,n}, j∈{1,··· ,N}(x,y)

= send(Nαi + j 7→Vi, j)i∈{1,··· ,n}, j∈{1,··· ,N}(Nx+ y)

this works when x = αi for some i.
Considering instead:

send(Nαi + j 7→Vi, j)i∈{1,··· ,n}, j∈{1,··· ,N}(N send(αi 7→ αi)i∈{1,··· ,n}(x)+ y)

works for any x ∈ [αi−1/4,αi +1/4].

We can now prove Theorem 3.1.15:

Proof. We only needed multiplication for the If instructions. The above lemmas give way
to realise similar operations without any multiplication.

For example, we used the formula

q′= If(q−(|Q|−1),nextq|Q|−1, If(q−(|Q|−2),nextq|Q|−2, · · · , If(q−1,nextq1,nextq0)))

where
nextqq = If(v−3,nextqq

3, If(v−1,nextqq
1,nextqq

0))

in the proof of Lemma 3.1.10.
Using this new formalism, we could write instead:

q′ = send((q,r) 7→ nextqq
r)q∈Q,r∈{0,1,3}(q,σ(4r)),

where nextqq
r0 = q′ if δ (q,r0) = (q′,x,m) for m ∈ {←,→}.

This would do exactly the same but without any multiplication.

Generalisations

The results we prove remain true for a more general notion of effective limit (Definition
3.1.2):

Definition 3.1.20 (Operation E2Lim)

Given f̃ : Nd+1→ R ∈ LDL•, g : Nd+1→ R such that for all m ∈ Nd , n ∈ N,
∥f̃(m,2n)− f(m)∥ ≤ g(m,n) under the condition that 0≤ g(m,n) is decreasing
to 0, with ∥g(m, p(n))∥ ≤ 2−n for some polynomial p(n) then E2Lim(f̃,g) is
the (clearly uniquely defined) corresponding function f : Nd → Re.

Theorem 3.1.21
We could replace ELim by E2Lim in the statements of Theorems 3.1.5 and 3.1.6.

It is equivalent to proving the following, and observe from the proof that we can re-
place in the above statement “g(m,n) going to 0” by “decreasing to 0”, and last condition
by ∥g(m, p(n))∥ ≤ 2−n.

88

Theorem 3.1.22

F : Nd→Rd′ is computable in polynomial time iff there exists f : Nd+1→Qd′ ,
with f(m,n) computable in polynomial time with respect to the value of n, and
g : Nd+1→Q such that

• ∥f(m,n)−F(m)∥ ≤ g(m,n);

• 0≤ g(m,n) and g(m,n) converging to 0 when n goes to +∞;

• with a uniform polynomial modulus of convergence p(n).

Proof. (⇒): if we assume that F is computable in polynomial time, we set g(m,n) = 2−n,
and we take the identity as uniform modulus of convergence (see Definition 1.1.10).

(⇐): given m and n, approximate f(m, p(n+ 1)) ∈ Q at precision 2−(n+1) by some
dyadic rational q and output q. It can be done in polynomial time with respect to the value
of n.

We will then have

∥q−F(m)∥ ≤ ∥q− f(m, p(n+1))∥+∥f(m, p(n+1))−F(m)∥
≤ 2−(n+1)+g(m, p(n+1))
≤ 2−(n+1)+2−(n+1) ≤ 2−n

From the proofs, we also get a normal form theorem. In particular:

Theorem 3.1.23 (Normal form theorem)

Any function f : Nd → Rd′ can be obtained from the class LDL• using only
one schema ELim (or E2Lim).

3.2 Algebraic characterisation of FPTIME for functions
over the reals

Now that we have an algebraic characterisation of FPTIME for functions from N to R,
we are going to extend these results to functions in RR.

But we cannot use the same kind of proof as before as the previous encoding function
would not be correct in that framework. It comes from the fact that it is not possible to
continuously send R in base 4 in a set of numbers using only 1s and 3s, intuitively a set
which is not dense in R. Also, it was obtained by assuming that some non-analytic exact
function is among the basic available functions to simulate a Turing machine, namely
cond. We want to avoid this and use only analytic functions.

First, we extend all previous results to real functions. Consider

LDL◦ =
[

0,1,πk
i , ℓ(x) ,+,−, tanh,

x
2
,

x
3

;composition, linear length ODE
]
,

89

where x
2 :R→R is the function dividing by 2 (similarly for x

3) and all other basic functions
defined exactly as for LDL, but are considered here as functions from the reals to reals.

The core of our proof relies on two principles:

• As we need non-continuous functions, such as the integer parts, we provide con-
tinuous approximations of them, using our discrete ODEs schemes.

• We encode the execution of polynomial time or polynomial space Turing machines
into ODEs using, in particular, the previous approximations.

Since LDL◦ is about functions over the reals, and Theorem 2.5.16 is about functions
over the integers, we want a way to compare these classes. Given a function f : Rd →Rd′

sending every integer n ∈ Nd to the vicinity of some integer of Nd , say at a distance less
than 1/4, we write DP(f) for its discrete part: this is the function from Nd→Nd′ mapping
n∈Nd to the integer rounding of f(n). Given a class C of such functions, we write DP(C)
for the class of the discrete parts of the functions of C . It is inspired by the work done in
the BSS model [BCSS98] comparing complexity classes to their discrete part. We have:

Theorem 3.2.1

DP(LDL◦) = FPTIME∩NN.

We improve Theorem 3.1.6: Write LDL◦ for the class obtained by adding some ef-
fective limit operation similar to the one considered in Definition 3.1.2.

Definition 3.2.2 (Operation ELim for LDL◦)

Given f̃ : Rd ×Nd′′ ×N→ Rd′ ∈ LDL◦ such that for all x ∈ Rd,X ∈ N,x ∈[
−2X ,2X

]
,m ∈ Nd′′ ,n ∈ N,

∥f̃(x,m,2X ,2n)− f(x,m)∥ ≤ 2−n,

then ELim(f̃) is the (uniquely defined) corresponding function f : Rd → Rd′ .

We get a characterisation of functions over the reals (and not only sequences as in the
previous section) computable in polynomial time.

Theorem 3.2.3 (Generic functions over the reals)

LDL◦∩RR = FPTIME∩RR. More generally:

LDL◦∩RNd×Rd′
= FPTIME∩RNd×Rd′

.

3.2.1 Preliminary results about continuous functions
Basic results about various common functions

A key part of our proofs is the construction of very specific functions in LDL◦. These
functions will be used to simulate the execution of the Turing machines in the following

90

section. For many of them, we have functions parameterised by some m, providing a
way to approximate some “ideal” function: the error between the function and the ideal
function remains at less than 2−m. This sometimes holds on a subdomain controlled by
some parameter n. We start with some basic facts about the hyperbolic tangent.

Lemma 3.2.4

|1+ tanhx| ≤ 2exp(2|x|) for x ∈ (−∞,0].

Proof. For x ≤ 0, |1+ tanhx| = 1+ tanhx, and |x| = −x. We have f (x) = 2exp(2x)−
tanh(x)−1 = 2exp(2x)− 1−exp(−2x)

1+exp(−2x) −1 = 2exp(4x)
1+exp(2x) ≥ 0.

Lemma 3.2.5

|1− tanhx| ≤ 2exp(−2|x|) for x ∈ [0,+∞).

Proof. This follows from Lemma 3.2.4, using the fact that tanh is odd.

A first observation is that we can uniformly approximate the (very famous in deep
learning context) ReLU(x) = max(0,x) function using an essentially constant function:

Lemma 3.2.6

Consider (see Figure 3.1) Y (x,2m+2) = 1+tanh(2m+2x)
2 . For all integer m, for all

x ∈ R, ∣∣∣ReLU(x)− xY (x,2m+2)
∣∣∣≤ 2−m.

Figure 3.1: Graphical representation of xY (x,22+2) obtained with Maple.

NB 3.2.7
Here, we are basically programming with tanh and sigmoids. We express the sigmoids
in terms of the ReLU function, through Lemma 3.2.6. Function tanh could be replaced
by arctan: the key is to be able to approximate the ReLU function with tanh (Lemma
3.2.6) and this can be proved to hold also for arctan, using error bounds on arctan
established in [Gra07].

91

Proof of Lemma 3.2.6. Let m ∈ N. Consider Y (x,K) = 1+tanh(Kx)
2 , with K > 0.

For 0≤ x, ReLU(x) = x, and |ReLU(x)−xY (x,K)|= x
2 |1− tanh(Kx)| ≤ xexp(−2Kx)

from Lemma 3.2.5.
For x≤ 0, ReLU(x)= 0, and |ReLU(x)−xY (x,K)|= |x|2 |1+tanh(Kx)| ≤ |x|exp(−2K|x|)

from Lemma 3.2.4, which is the same value as above for 0≤ x.
Function g(x) = xexp(−2Kx) has its derivative g′(x) = exp(−2Kx)(1− 2Kx). We

deduce the maximum of this function g(x) over R is in 1
2K , and that the maximum value

of g(x) is 1
e2K .

Consequently, if we take K = 2m+2, then g(x)≤ 2−m for all x, and we conclude.

We deduce we can uniformly approximate the continuous sigmoid functions (when
1

b−a is in LDL◦) defined as: s(a,b,x) = 0 whenever w ≤ a, x−a
b−a whenever a ≤ x ≤ b,

and 1 whenever b ≤ x. We denote by the gothic style the exact function and by C− the
continuous approximation.

Lemma 3.2.8 (Uniform approximation of any piecewise continuous sigmoid)

Assume a,b, 1
b−a is in LDL◦. Then there is some function (illustrated by Figure

3.2) C -s(m,a,b,x) ∈ LDL◦ such that for all integer m,

|C -s(m,a,b,x)− s(a,b,x)| ≤ 2−m.

Figure 3.2: Graphical representations of C -s(2, 1
2 ,

3
4 ,x) and C -s(25, 1

2 ,
3
4 ,x) obtained with

Maple.

Proof. We can write s(a,b,x) = ReLU(x−a)−ReLU(x−b)
b−a . Consider

C -s(z,a,b,x) =
(x−a)Y (x−a,z21+c)− (x−b)Y (x−b,z21+c)

b−a
.

Thus, |C -s(m+ 1+ c,a,b,x)− s(a,b,x)| ≤ 2.2−m−1−c

b−a , using the triangle inequality.
Take c such that 1

b−a ≤ 2c.

Now that we have Lemma 3.2.8, we can continuously approximate other classical
discrete (piecewise affine) functions.

92

Now, given some function f : Rd → Rd′ , some error and some time t, our expressions
provide explicit expressions in LDL◦ of an approximation of what is computed by a
Turing machine at time t uniformly over any compact domain.

Constructing a zoo: continuous approximations of discrete functions

We prove the existence of a continuous approximation of a threshold, written in LDL◦.
We will need it to express continuous approximations of discrete functions, such as
the fractional part (Corollary 3.2.10), the floor function (Corollary 3.2.11), a function
to express an adaptive barycenter (Corollary 3.2.12), inspired by some constructions of
[BCGSH07], the modulo 2 (Corollary 3.2.1), and the Euclidian division by 2 (Corollary
3.2.14). In the same spirit, the function tanh is a uniform controlled approximation of
the piecewise affine function cond. We write {x} for the fractional part of the real x, i.e.
{x}= x−⌊x⌋.

We start with the following function ξ and we will construct the other discrete func-
tions based on this continuous approximation:

Theorem 3.2.9

There exists some function, illustrated by Figure 3.3, ξ :N2→R in LDL◦ such
that for all n,m ∈ N and x ∈ [−2n,2n], whenever x ∈

[
⌊x⌋+ 1

8 ,⌊x⌋+
7
8

]
,∣∣∣∣ξ (2m,2n,x)−

{
x− 1

8

}∣∣∣∣≤ 2−m.

Figure 3.3: Graphical representations of ξ (2,4,x) obtained with Maple: some details on
the right.

Proof. If we take ξ ′ that satisfies the constraint only when x ≥ 0, and that values 0 for
x ≤ 0, then 3

4 − ξ ′(·, ·,−x) would satisfy the constraint when x ≤ 0, but values 3/4 for
x≥ 0. So,

ξ (2m,N,x) = ξ
′
(

2m+2,N,x
)
−ξ

′
(

2m+2,N,−x
)
+

3
4
− 3

4
C -s

(
2m+2,0,

1
8
,x
)

93

would work for all x. So it remains to construct ξ ′ such that for all n ∈ N, x ∈ [0,2n] and
m ∈ N, whenever x ∈

[
⌊x⌋+ 1

8 ,⌊x⌋+
7
8

]
,∣∣∣∣ξ ′(2m,2n,x)−{x− 1

8
}
∣∣∣∣≤ 2−m and

∣∣ξ ′(2m,N,x)−0
∣∣≤ 2−m for x≤ 0.

Let s(x) = 3
4 s
(
⌊x⌋+ 1

8 ,⌊x⌋+
7
8 ,x
)

. Over
[
⌊x⌋+ 1

8 ,⌊x⌋+
7
8

]
, we have s(x) = {x−

1
8}. Actually, we will even construct ξ ′ with the stronger properties that whenever x ∈[
⌊x⌋+ 1

8 −2−m,⌊x⌋+ 7
8 +2−m

]
,∣∣∣∣ξ ′ (2m,2n,x)− s

(
x− 1

8

)∣∣∣∣≤ 2−m

.
It suffices to define ξ ′ by induction by

ξ ′
(

2m,20,x
)

= 3
4 C -s

(
2m, 1

8 ,
7
8 ,x
)

ξ ′
(

2m,2n+1,x
)

= ξ ′
(

2m+1,2n,F
(

2m+1,2n,x
))

where

F
(

2m+1,K,x
)
= x−K ·C -s

(
2m+1,K +

1
32

,K +
3

32
,x
)
.

Let I⌊x⌋ be
[
⌊x⌋+ 1

8 ,⌊x⌋+
7
8

]
, x∈ I⌊x⌋, and let us first study the value of F

(
2m+1,2n,x

)
:

• If x≤ 2n, by definition of C -s,
∣∣∣F(2m+1,2n,x)− x

∣∣∣≤ 2−(m+1), with x ∈ I⌊x⌋.

• The case 2n < x < 2n + 1
8 cannot happen as we assume x ∈ I⌊x⌋.

• If 2n + 1
8 ≤ x then ∣∣∣F(2m+1,2n,x)− (x−2n)

∣∣∣≤ 2−(m+1)

with x−2n ∈ I⌊x⌋−2n.

Now, the property is true by induction. Indeed, it is true for n = 0 by definition of
ξ ′
(

2m,20,x
)

. We now assume it is true for some n ∈ N. We have ξ ′
(

2m,2n+1,x
)
=

ξ ′
(

2m+1,2n,F
(

2m+1,2n,x
))

. Thus, by induction hypothesis,

∣∣∣∣ξ ′(2m+1,2n,F
(

2m+1,2n,x
))
− s
(

F
(

2m+1,2n,x
)
−1/8

)∣∣∣∣≤ 2−(m+1).

Now:

94

• If x≤ 2n, by definition of C -s,∣∣∣F (2m+1,2n,x
)
− x
∣∣∣≤ 2−(m+1),

and as s is 1-Lipschitz,∣∣∣∣s(F
(

2m+1,2n,x
)
− 1

8

)
− s
(

x− 1
8

)∣∣∣∣≤ ∣∣∣F (2m+1,2n,x
)
− x
∣∣∣≤ 2−(m+1).

Consequently,
∣∣∣ξ ′(2m,2n+1,x

)
− s
(

x− 1
8

)∣∣∣≤ 2−m and the property holds for n+
1.

• The case 2n < x < 2n + 1
8 cannot happen with our constraint x ∈ I⌊x⌋.

• If 2n + 1
8 ≤ x then ∣∣∣F (2m+1,2n,x

)
− (x−2n)

∣∣∣≤ 2−(m+1)

and as s is 1-Lipschitz,∣∣∣∣s(F
(

2m+1,2n,x
)
− 1

8

)
− s
(

x−2n− 1
8

)∣∣∣∣≤ ∣∣∣F (2m+1,2n,x
)
− x−2n

∣∣∣≤ 2−(m+1).

Consequently,
∣∣∣ξ ′(2m,2n+1,x

)
− s
(

x−2n− 1
8

)∣∣∣≤ 2−m and the property holds for
n+1.

There remains to prove that the function ξ ′ is in LDL◦. Unfortunately, this is not
clear from the recursive definition, but this can be written in another way, from which this
follows. Indeed, we have from an easy induction that:

ξ
′ (2m,2n,x)=F

2m+n−1,20,F

2m+n−2,21,F

(
2m+n−3,22

(
. . . ,F

(
2m,2n−1,x

)))
 ,

if we define

F
(

2m,20,x
)
= ξ

′
(

2m,20,x
)
=

3
4

C -s
(

2m,
1
8
,
7
8
,x
)
.

Then, we can obtain ξ ′ (2m,2n,x) = H
(

2m,2n−1,2n,x
)

with

H
(

2m,20,2n,x
)
= F

(
2m,2n−1,x

)
H
(

2m,2t+1,2n,x
)
= F

(
2m+t ,2n−1−t ,H

(
2m,2t ,2n,x

))
= H

(
2m,2t ,2n,x

)
−2n−1−t ·C -s

(
2m+t ,2n−1−t ,2n−1−t

+
1
8
,H
(
2m,2t ,2n,x

))
Such recurrence can be then seen as a linear length ordinary differential equation, in

the length of its first argument. It follows that ξ ′ is in LDL◦.

From the construction of ξ , we can then obtain continuous approximations of the
fractional part, the floor function, an adaptative barycenter, the modulo 2 and the Euclidian
division by 2:

95

Corollary 3.2.10 (Uniformly controlled approximation of the fractional part)

There exists (see Figure 3.4) ξ1,ξ2 : N2×R 7→ R ∈ LDL◦ such that, for all
n,m ∈ N, ⌊x⌋ ∈ [−2n +1,2n],

• whenever x ∈
[
⌊x⌋− 1

2 ,⌊x⌋+
1
4

]
,∣∣ξ1(2m,2n,x)−{x}

∣∣≤ 2−m,

• and whenever x ∈
[
⌊x⌋,⌊x⌋+ 3

4

]
,∣∣ξ2(2m,2n,x)−{x}

∣∣≤ 2−m.

Figure 3.4: Graphical representation of ξ1(2,4,x) and ξ2(2,4,x) obtained with Maple.

Proof. Consider

ξ1 (2m,N,x) = ξ

(
2m,N,x− 3

8

)
− 1

2
and ξ2 (2m,N,x) = ξ

(
2m,N,x− 7

8

)
.

Corollary 3.2.11 (Uniformly controlled approximation of the floor function)

There exists (see Figure 3.5) σ1,σ2 : N2×R 7→ R ∈ LDL◦ such that, for all
n,m ∈ N, ⌊x⌋ ∈ [−2n +1,2n],

• whenever x ∈
[
⌊x⌋− 1

2 ,⌊x⌋+
1
4

]
,∣∣σ1(2m,2n,x)−⌊x⌋

∣∣≤ 2−m,

• and whenever x ∈ I2 =
[
⌊x⌋,⌊x⌋+ 3

4

]
,∣∣σ2(2m,2n,x)−⌊x⌋

∣∣≤ 2−m.

96

Figure 3.5: Graphical representation of σ1(2,4,x) and σ2(2,4,x) obtained with Maple.

Proof. Consider σi (2n,x) = x− ξi (2n,x) with the function defined in Corollary 3.2.10.

Corollary 3.2.12 (Uniformly controlled approximation of the indicator function)

There exist (see Figure 3.6) λ : N2×R 7→ [0,1]∈LDL◦ such that for all m,n∈
N, ⌊x⌋ ∈ [−2n +1,2n],

• whenever x ∈
[
⌊x⌋+ 1

4 ,⌊x⌋+
1
2

]
,∣∣λ (2m,2n,x)−0

∣∣ ≤ 2−m,

• and whenever x ∈
[
⌊x⌋+ 3

4 ,⌊x⌋+1
]
,∣∣λ (2m,2n,x)−1
∣∣≤ 2−m.

Proof. Consider λ (2m,2n,x) = F
(

ξ

(
2m+1,2n,x−9/8

))
where

F(x) = C -s
(

2m+1,1/4,1/2,x
)
.

Corollary 3.2.13 (Uniformly controlled approximation of the modulo 2)

There exists (see Figure 3.7) mod 2 : N2×R 7→ [0,1] ∈ LDL◦ such that for all
m,n ∈ N, ⌊x⌋ ∈ [−2n +1,2n], whenever x ∈

[
⌊x⌋− 1

4 ,⌊x⌋+
1
4

]
,∣∣mod 2 (2m,2n,x)−⌊x⌋ mod 2

∣∣≤ 2−m.

97

Figure 3.6: Graphical representation of λ (2,4,x) obtained with Maple.

Figure 3.7: Graphical representation of mod 2(2,4,x) obtained with Maple.

Proof. We can take

mod 2 (2m,N,x) = 1−λ

(
2m,N/2,

1
2

x+
7
8

)
where λ is the function given by Corollary 3.2.12.

Corollary 3.2.14 (Uniformly controlled approximation of ÷2)

There exists (see Figure 3.8) ÷2 : N2×R 7→ [0,1] ∈ LDL◦ such that for all
m,n ∈ N, ⌊x⌋ ∈ [−2n +1,2n], whenever x ∈

[
⌊x⌋− 1

4 ,⌊x⌋+
1
4

]
,∣∣÷2(2m,2n,x)−⌊x⌋//2

∣∣≤ 2−m,

where // is the integer division.

Proof. We can take

÷2 (2m,N,x) =
1
2
(
σ1 (2m,N,x)− mod 2 (2m,N,x)

)
where mod 2 is the function given by Corollary 3.2.13, and σ2 is the function given by
Corollary 3.2.11.

98

Figure 3.8: Graphical representation of ÷2(2,4,x) obtained with Maple.

Some properties of sigmoids

In this section, we encode a conditional function in LDL◦. We observe that, for the
function

if(d, ℓ) = 4s
(
1,2,1/2+d + ℓ/4

)
−2,

with ℓ ∈ [0,1], we have
if(0, ℓ) = 0
if(1, ℓ) = ℓ

Applying Lemma 3.2.8 on this sigmoid, we get:

Lemma 3.2.15 (Generalisation of Lemma 3.1.16)

For ℓ∈ [0,1], if d ∈
[
−1

4 ,
1
4

]
, then if(d, ℓ) = 0, and if d ∈

[
3
4 ,

5
4

]
, then if(d, ℓ) =

4(d−1)+ ℓ.

Consider if(d, ℓ) = if
(
s
(

1
4 ,

3
4 ,x
)
, ℓ

)
.

• if we take |d′−0| ≤ 1
4 , then if(d′, ℓ) = 0,

• and if we take |d′−1| ≤ 1
4 , then if(d′, ℓ) = ℓ.

Proof. Just check that for d≤ 1
4 , we have 1

2 +d+ ℓ
4 ≤ 1, and hence s

(
1,2, 1

2 +d + ℓ
4

)
= 0,

so if(d, ℓ) = 0. For 3
4 ≤ d ≤ 5

4 , we have 5
4 ≤

1
2 +d+ ℓ

4 ≤ 2, and hence s
(

1,2, 1
2 +d + ℓ

4

)
=

d + ℓ
4 −

1
2 , and hence if(1, ℓ) = ℓ. The other observation follows.

Then we go to versions using tanh:

Lemma 3.2.16

Consider C -if(2m,d, l) = 4C -s
(

2m+2,1,2, 1
2 +d + l

4

)
−2.

For ℓ ∈ [0,1], we have
∣∣∣C -if(0, ℓ)−0

∣∣∣≤ 2−m and
∣∣∣C -if(1, ℓ)− ℓ

∣∣∣≤ 2−m.

If d ∈
[
−1

4 ,
1
4

]
, then

∣∣∣C -if(2m,d, ℓ)−0
∣∣∣ ≤ 2−m and if d ∈

[
3
4 ,

5
4

]
, then∣∣∣C -if(2m,d, ℓ)−4(d−1)+ ℓ

∣∣∣≤ 2−m.

99

The proof of the previous lemma is direct from the Lemma 3.2.15 and Lemma 3.2.8.
Then Lemma 3.2.15 follows.

We can now generalise Lemma 3.1.18, using only analytic functions:

Lemma 3.2.17 (Generalisation of Lemma 3.1.18)
Let α1,α2, . . . , αn be some pairwise distinct integers, and V1,V2, . . . ,Vn

some constants. There is some function in LDL◦, that we write
C -send(2m,αi 7→Vi)i∈{1,...,n}, mapping any x ∈ [αi− 1/4,αi + 1/4] to a real
at a distance at most 2−m of Vi, for all i ∈ {1, . . . ,n}.

We see cond(x) as s(1/4,3/4,x) and can consequently consider C -cond(2m,x) as
C -s(2m,1/4,3/4,x). We prove the following lemma about some ideal sigmoids, approx-
imated by analytic functions:

Lemma 3.2.18 (Generalisation of Lemma 3.1.19)
Assume you are given some pairwise distinct integers α1,α2, . . . , αn, and some
constants V1,V2, . . . ,Vn. Then there is some function in LDL◦, writen

send(αi 7→Vi)i∈{1,...,n},

mapping any x ∈ [αi−1/4,αi +1/4] to Vi, for all i ∈ {1, . . . ,n}.

Proof. Sort the αi’s so that α1 < α2 < .. . ,αn. Then consider T1 + cond(x−α1)(T2−
T1)+ cond(x−α2)(T3−E3)+ · · ·+ cond(x−αn−1)(Tn−Tn−1).

We can now go to versions with tanh.

Proof of Lemma 3.2.17. Sort the αi’s so that α1 < α2 < .. . ,αn. Then consider T1 +
C -cond(2m+c,x−α1)(T2−T1)+C -cond(2m+c,x−α2)(T3−T2)+ · · ·+C -cond(2m+c,x−
αn−1)(Tn−Tn−1), for some constant c so that nmax j(Tj−Tj+1)≤ 2c.

More generally:

Lemma 3.2.19 (Continuous send)
Let N ∈ N, α1,α2, . . . ,αn ∈ Nn, pairwise distinct, and, for 1 ≤ i ≤ n and 1 ≤
j ≤ N, let Vi, j be some constants. Then there exists some function

C -send(2m,(αi, j) 7→Vi, j)i∈{1,...,n}, j∈{1,...,N}

in LDL◦, such as, for all i ∈ {1, . . . ,n}, j ∈ {1, . . . ,N}, it maps any x ∈ [αi−
1/4,αi + 1/4] and any y ∈ [j− 1/4, j+ 1/4] to a real number at a distance at
most 2−m of Vi, j.

Before proving Lemma 3.2.19, we prove the following lemma regarding some ideal
sigmoids:

100

Lemma 3.2.20
Let N be some integer. Assume some pairwise distinct integers α1,α2, . . . ,αn,

and some constants Vi, j for 1 ≤ i ≤ n, and 0 ≤ j < N are given. Then there is
some function in LDL◦, that we write send((αi, j) 7→Vi, j)i∈{1,...,n}, j∈{0,...,N−1},
mapping any x ∈ [αi− 1/4,αi + 1/4] and y ∈ [j− 1/4, j+ 1/4] to Vi, j, for all
i ∈ {1, . . . ,n}, j ∈ {0, . . . ,N−1}.

Proof. If we define the function

send
(
(αi, j) 7→Vi, j

)
i∈{1,...,n}, j∈{1,...,N} (x,y)

by send
(
Nαi + j 7→Vi, j

)
i∈{1,...,n}, j∈{1,...,N} (Nx+ y) this works when x = αi for some i.

Considering instead send
(
Nαi + j 7→Vi, j

)
i∈{1,...,n}, j∈{1,...,N} (N send(αi 7→ αi)i∈{1,...,n} (x)+

y) works for any x ∈
[
αi− 1

4 ,αi +
1
4

]
.

We then go to versions with tanh:

Proof of Lemma 3.2.19. If we define the function

C -send
(
2m,(αi, j) 7→Vi, j

)
i∈{1,...,n}, j∈{1,...,N} (x,y)

by C -send
(
2m,Nαi + j 7→Vi, j

)
i∈{1,...,n}, j∈{1,...,N} (Nx + y) this works when x = αi for

some i.
Considering instead

C -send
(
2m,Nαi + j 7→Vi, j

)
i∈{1,...,n}, j∈{1,...,N} (N C -send

(
2m+c,αi 7→ αi

)
i∈{1,...,n} (x)+y)

that works for any x ∈
[
αi− 1

4 ,αi +
1
4

]
, for some constant c selected as above.

We now have continuous approximations of various discrete functions. We use them
in the next section to have a continuous approximation of the execution of a Turing ma-
chine, thus proving our characterisation of FPTIME for functions over the reals.

3.2.2 Simulating Turing machines with functions of LDL◦

This section is devoted to the simulation of a Turing machine using some analytic func-
tions and in particular functions from LDL◦. We use some ideas from Section 3.1 but
with several improvements, as we need to deal with errors and avoid multiplications, as
they are still not necessary in this framework.

First, the key point is to observe that we can write a function in LDL◦ simulating a
one-step reduction of the TM M. The idea is similar to what we did for LDL•, except
here we must deal with controlled errors.

Lemma 3.2.21

Given a TM M, there exists some function Next in LDL◦ simulating one step
of M: for any configuration C of M, writing C′ the configuration after one
transition in M, for all m ∈ N, ∥Next(2m,C)−C′∥ ≤ 2−m.

101

Proof. We reuse the same construction as in the proof of Lemma 3.1.10 for LDL•, with
the real numbers written this way on the tape:

... l• l0 r0 r• ...︸ ︷︷ ︸
l

︸ ︷︷ ︸
r

We also define nextqq
a = q′ if δ (q,a) = (q′, ·, ·), i.e. values (q′,x,m) for some x and

m ∈ {←,→}.
As before, we can rewrite Next

(
q, l,r

)
=
(

q′, l
′
,r′
)

as

l′ = ∑
q,r0

→ (q,r0)

(
l
4
+

x
4

)
+← (q,r0)

{
4l
}

and

r′ = ∑
q,r0

→ (q,r0){4r}+← (q,r0)

(
{4r}
42 +

x
42 +

⌊4l⌋
4

) ,
and, using notation of Lemma 3.2.19, q′ = send

(
(q,r) 7→ nextqq

r
)

q∈Q,r∈{0,1,3}
(
q,⌊4r⌋

)
.

Then, following the intuition of Remark 3.1.11, we can replace ⌊4r⌋ by σ (4r) if we
take σ as some continuous function that would be affine and values respectively 0, 1 and
3 on {0}∪ [1,2]∪ [3,4] (that is to say matches ⌊4r⌋ on this domain). A possible candidate
is σ(x) = s

(
1
4 ,

3
4 ,x
)
+ s
(

9
4 ,

11
4 ,x
)

. Then considering ξ (x) = x−σ(x), then ξ (4r) would
be the same as {4r}: that is, considering r0 = σ(4r), replacing in the above expression
every {4·} by ξ (·), and every ⌊·⌋ by σ(·), and get something that would still work the
same, but using only continuous functions.

But here, we need to go to some analytic functions and not only continuous functions,
and it is well-known that an analytic function that equals some affine function on some
interval (e.g. on [1,2]) must be affine, and hence cannot be 3 on [3,4]. But the point is that
we can try to tolerate errors and replace s(·, ·) by C -s(2m+c, ·, ·) in the expressions above
for σ and ξ , taking c such that

(
3+ 1

42

)
3|Q| ≤ 2c. This would just introduce some error

at most
(

3+ 1
42

)
3|Q|2−c2−m ≤ 2−m.

We can also replace every→ (q,r) in above expressions for l
′ and r′ by

C -send
(
k,(q,r) 7→→ (q,r)

)(
q,σ(4r)

)
,

for a suitable error bound k, and symmetrically for ← (q,r). However, if we do so, we
still might have some multiplications in the above expressions.

The key is to use Lemma 3.2.15: we can also write the above expressions as

l′ = ∑q,r

[
C -if

(
2m+c,C -send(22,(q,r) 7→→ (q,r))(q,σ(4r)), l

4 +
x
4

)
+ C -if

(
2m+c,C -send(22,(q,r) 7→← (q,r))(q,σ(4r)),ξ (4l)

)]

102

r′ = ∑q,r

[
C -if

(
2m+c,C -send(22,(q,r) 7→→ (q,r))(q,σ(4r)),ξ (4r)

)
+ C -if

(
2m+c,C -send(22,(q,r) 7→← (q,r))(q,σ(4r)), ξ (4r)

42 + x
42 +

σ(4l)
4

)]
and still have the same bound on the error.

Once again, as for LDL•, we can simulate one step and we would like to simulate
some arbitrary computation of a Turing machine, by considering the iterations of function
Next.

The problem with the above construction is that even if we start from the exact en-
coding C of a configuration, it introduces some error (even if at most 2−m). If we want to
apply the function Next again, we will start not exactly from the encoding of a configura-
tion.

Looking at the choice of the function σ , a small error can be tolerated (roughly if
the process does not involve points at a distance less than 1/4 of I), but this error is
amplified (roughly multiplied by 4 on some component), before introducing some new
errors (even if at most 2−m). The point is that if we repeat the process, very soon it will
be amplified, up to a level where we have no true idea or control about what becomes the
value of the above function.

However, if we know some bound on the space used by the Turing machine, we can
correct it to get at most some fixed additive error: a Turing machine using a space S uses
at most S cells to the right and the left of the initial position of its head.

Consequently, a configuration C = (q, l,r) of such a machine involves words l and
r of length at most S. Their encoding l, and r are expected to remain in IS+1. Con-
sider roundS+1(l) = ⌊4S+1l⌋/4S+1. For a point l of IS+1, 4S+1l is an integer, and l =
roundS+1(l). But now, for a point l̃ at a distance less than 4−(S+2) from a point l ∈IS+1,
roundS+1(l̃) = l. In other words, roundS+1 “deletes” errors of order 4−(S+2).

Consequently, we can replace every l in the above expressions by

σ1

(
22S+4,22S+3,4S+1l

)
/4S+1,

as this is close to roundS+1(l), and the same for r, where σ1 is the function from Corollary
3.2.11. We could also replace m by m+2S+4 to guarantee that 2−m ≤ 4−(S+2).

We get the following major improvement of the previous lemma:

Lemma 3.2.22 (Generalisation of Lemma 3.1.10)

For any TM M, there exists a function Next ∈ LDL◦ simulating one step of M,
i.e. computing the Next function sending any configuration C of M to the next
configuration C′, such as ∥Next(2m,2S,C)−C′∥ ≤ 2−m.
Furthermore, it is robust to errors on its input, up to space S: considering ∥C̃−
C∥ ≤ 4−(S+2), ∥Next(2m,2S,C̃)−C′∥ ≤ 2−m remains true.

We can deduce the following proposition, adding a time complexity constraint:

103

Proposition 3.2.23 (Generalistion of Proposition 3.1.12)

Consider some Turing machine M computing some function f : Σ∗ → Σ∗ in
some time T (ℓ(ω)) on input ω . Then, there exists some function f̃ : N2×R→
R in LDL◦ such that ∥ f̃ (2m,2T (ℓ(ω)),γword(ω))− γword(f (ω))∥ ≤ 2−m.

Proof. The idea is to define the function Exec that maps some time 2t and some initial
configuration C to the configuration at time t. It can be obtained using previous lemmas
by 

Exec
(

2m,0,2T ,C
)

= C

Exec
(

2m,2t+1,2T ,C
)

= Next
(

2m,2T ,Exec
(

2m,2t ,2T ,C
))

.

We can then get the value of the computation as Exec
(

2m,2T (ℓ(ω)),2T (ℓ(ω)),Cinit

)
on input ω , considering Cinit =

(
q0,0,γword(ω)

)
. By applying some projection, we get

f̃ (2m,2T ,y) = π3
3

(
Exec

(
2m,2T ,2T ,(q0,0,y)

))
satisfying the property.

3.2.3 Converting integers and dyadics to words, and conversely
It is necessary to encode and decode the real numbers to do the computations, as in Section
3.1.1. As before, we need to prove that the encoding and decoding functions are in LDL◦.

Lemma 3.2.24 (From N to I , generalisation of Lemma 3.1.14)

There exists some function Decode : N2 → R in LDL◦, mapping m and n to
some point ηm,n such that ∥γword(n)−ηm,n∥ ≤ 2−m.

Proof. Recall the functions provided by Corollaries 3.2.13 and 3.2.14. The idea is to
iterate ℓ(n) times the function

F(r1, l2) =


(
÷2(r1),

l2+5
4

)
whenever mod 2(r1) = 0(

÷2(r1),
l2+7

4

)
whenever mod 2(r1) = 1.

over (n,0), and then projects on the second argument.
This can be done in LDL◦ by considering

F
(

2m,2M,r1, l2
)
= C -send(2m+1,0 7→ (÷2 (2m+1,2M,r1),(l2 +5)/4),

1 7→ (÷2(2m+1,2M,r1),(l2 +7)/4))(r1)

and then, we define

Decode(2m,n) = π
2
2

(
G
(

2m+ℓ(n),2ℓ(n)+1,2ℓ(n),n,0
))

,

with

104


G
(

2m,2M,2l,20,n,0
)

= (n,0)

G
(

2m,2M,2l+1,r, l
)

= F
(

2m,2M,G
(

2m,2l,r, l
))

.

The global error will be at most 2−m−ℓ(n)× ℓ(n)≤ 2−m.

This technique can be extended to consider decoding of tuples: there is a function
Decode : Nd+1→ R in LDL◦ that maps m and n to some point at distance less than 2−m

from γword(n), with n defined componentwise.
Conversely, given d, we need a way to construct d. As we will need to avoid multi-

plications, we state that we can even do something stronger: given d, and (some bounded)
λ we can construct λd.

We give a generalisation of Lemma 3.1.13 in our new framework:

Lemma 3.2.25 (From I to R, multiplying in parallel)

We can construct some function EncodeMul : N2× [0,1]×R→ R in LDL◦
that maps m, 2S, γword(d) and (bounded) λ to some real at distance at most 2−m

from λd, whenever d is of length less than S.

Proof. The idea is to do as in the proof of previous lemma, but considering

F
(

r1, l2,λ
)
=



(
σ (16r1) ,2l2 +0,λ

)
whenever i(16r1) = 5(

σ (16r1) ,2l2 +λ ,λ
)

whenever i(16r1) = 7(
σ (16r1) ,

(
l2 +0

)
/2,λ

)
whenever i(16r1) = 13(

σ (16r1) ,
(

l2 +λ

)
/2,λ

)
whenever i(16r1) = 15

iterated S times over suitable approximation of the rounding roundS+1

(
γword

(
d
)
,0,λ

)
,

with σ and ξ constructed as an approximation of the integer and fractional part, as before.

We have the continuous approximations in LDL◦ of the functions we need to prove
our characterisation of FPTIME.

3.2.4 Proof of Theorem 3.2.3: LDL◦ characterises FPTIME for real
functions

We prove that: LDL◦ ∩RR = FPTIME∩RR. We reason, as previously, by double
inclusion.

LDL◦ ⊆ FPTIME

Theorem 3.2.1 follows from the next Proposition for one inclusion and the previous sim-
ulation of Turing machines for the other.

105

Proposition 3.2.26

All functions of LDL◦ are computable (in the sense of computable analysis) in
polynomial time, with

LDL◦ =
[

0,1,πk
i , ℓ(x) ,+,−, tanh,

x
2
,

x
3

;composition, linear length ODE
]
.

Proof of Proposition 3.2.26. It is proved by induction. It is true for basis functions, from
basic arguments from computable analysis. In particular, tanh is computable in polyno-
mial time from standard arguments. It is stable by composition (Lemma 1.3.56) and
closed under the linear length ODE schema: it is Lemma 2.5.12.

We now go to various applications of the proposition and our toolbox. First, we state
a characterisation of FPTIME for general functions, covering both the case of a function
f :Nd→Rd′ and f :Rd→Rd′ as a special case: only the first type (sequences) was covered
by Section 3.1.

Theorem 3.2.27

A function f : Rd×Nd′′→Rd′ is computable in polynomial time iff there exists
f̃ : Rd×Nd′′+2→ Rd′ ∈ LDL◦ such that for all x ∈ Rd , X ∈ N, x ∈

[
−2X ,2X

]
,

m ∈ Nd′′ , n ∈ N, ∥f̃(x,m,2X ,2n)− f(x,m)∥ ≤ 2−n.

The reverse implication of Theorem 3.2.27 follows from Proposition 3.2.26, (1.) and
arguments from computable analysis, as for LDL•.

Proof of Theorem 3.2.27. Assume there exists f̃ : Rd×Nd′′+2→ Rd′ ∈ LDL◦ such that
for all x ∈ Rd , X ∈ N, x ∈

[
−2X ,2X

]
, m ∈ Nd′′ , n ∈ N, ∥f̃(x,m,2X ,2n)− f(x,m)∥ ≤ 2−n.

From Proposition 3.2.26, (1.), we know that f̃ is computable in polynomial time (in
the binary length of its arguments). Then f(x,m) is computable: indeed, given x, m and
n, we can approximate f(x,m) at precision 2−n on [−2X ,2X] as follows: approximate
f̃(x,m,2X ,2n+1) at precision 2−(n+1) by some rational q, and output q. We will then have

∥q− f(x,m)∥ ≤ ∥q− f̃(x,m,2X ,2n+1)∥+∥f̃(x,m,2X ,2n+1)− f(x,m)∥
≤ 2−(n+1)+2−(n+1)

≤ 2−n.

All of this is done in polynomial time in n and the size of m, and hence we get that f is
polynomial time computable from definitions.

For the direct implication, for real sequences, we are almost done: reasoning com-
ponentwise, we only need to consider f : Nd′′ → R (i.e. d′ = 1). As the function is poly-
nomial time computable, this means that there is a polynomial time computable function
g : Nd′′+1 → {1,3}∗ so that on m,2n, it provides the encoding φ(m,n) of some dyadic
φ(m,n) with ∥φ(m,n)− f(m)∥ ≤ 2−n for all m.

This is basically what is done in Subsection 3.1.2, except that we do it here with
analytic functions. However, as already observed in Section 3.1, this cannot be done for
the case d ≥ 1, e.g. for f : R→ R. The problem is we used the fact that we can decode:

106

Decode maps an integer n to its encoding n (but is not guaranteed to do something valid
on non-integers). There cannot exist such functions that would be valid over all reals, as
such functions must be continuous, and there is no way to map continuously real numbers
to finite words. It is where the approach of Section 3.1 for LDL• is stuck.

The problem is then to decode, compute and encode the result to produce this dyadic
number, using our previous toolbox.

More precisely, from Proposition 3.2.23, we get g̃ with∣∣∣g̃(2e,2p(max(m,n)),Decode(2e,m,n)
)
− γword

(
g(m,n)

)∣∣∣≤ 2−e

for some polynomial p corresponding to the time required to compute g and e =
max(p(max(m,n)),n). We need to transform the value to the correct dyadic: we mean

f̃(m,n) = EncodeMul
(

2e,2t , g̃
(
2e,2t ,Decode(2e,m,n)

)
,1
)
,

where t = p(max(m,n)), e=max
(

p
(
max(m,n)

)
,n
)

provides a solution such that ∥f̃(m,2n)−
f(m)∥ ≤ 2−n.

To solve this, we use an adaptive barycentric technique. For simplicity and pedagogy,
we discuss only the case of a polynomial time computable function f : R×N→R. From
standard arguments from computable analysis (see e.g. [Corollary 2.21][Ko91]), the fol-
lowing holds and the point is to be able to realize all this with functions from LDL◦.

Lemma 3.2.28
Assume f : R×N→ R is computable in polynomial time. There exists some
polynomial m : N2→ N and some f̃ : N4→ Z computable in polynomial time
such that for all x ∈ R, |2−n f̃ (⌊2m(n,M)x⌋,u,2M,2n)− f (x,u)| ≤ 2−n whenever

x
2m(n,M) ∈ [−2M,2M].

Considering an approximation σi (with either i= 1 or i= 2) of the floor function given
by Lemma 3.2.11. Then, given n,M, when 2m(n,M)x falls in some suitable interval Ii for σi
(see the statement of Lemma 3.2.11), we are sure σi(2e,2m(n,M)+X+1,2m(n,M)x) is at some
distance upon control from ⌊2m(n,M)x⌋. Consequently,

2−n f̃
(

σi

(
2m(n,M)+X+1,2m(n,M)x

)
,u,2M,2n

)
provides some 2−n-approximation of f (x,u), up to some error upon control. When this
holds, we then use an argument similar to what we describe for sequences: using functions
from LDL◦, we can decode, compute, and encode the result to provide this dyadic. It is
provided by an expression Formulai(x,u,M,n) of the form EncodeMul(2e,2t , ˜̃f (22,2t ,
Decode(2e,σi(2e,2M,2m(n,M)x))),2−n).

The problem is that it might also be the case that 2m(n,M)x falls in the complement
of the intervals (Ii)i. In that case, we have no clear idea of what could be the value of
σi(2e,2m(n,M)+X+1,2m(n,M)x), and consequently of what might be the value of the above
expression Formulai(x,u, M,n). But the point is that when it happens for an x for σ1,
we could have used σ2, and this would work, as one can check that the intervals of type
I1 cover the complements of the intervals of type I2 and conversely. They also overlap,

107

but when x is both in some I1 and I2, Formula1(x,u,M,n) and Formula2(x,u,M,n) may
differ, but they are both 2−n approximations of f (x).

The key is to compute some suitable "adaptive" barycenter, using function λ , provided
by Corollary 3.2.12. Writing ≈ for the fact that two values are closed up to some con-
trolled bounded error, observe from the statements of Corollary 3.2.12 and 3.2.11

• that whenever λ (·,2n,x)≈ 0, we know that σ2(·,2n,x)≈ ⌊x⌋;

• that whenever λ (·,2n,x)≈ 1 we know that σ1(·,2n,x)≈ ⌊x⌋;

• that whenever λ (·,2n,x)∈ (0,1), we know that σ1(·,2n,x)≈⌊x⌋+1 and σ2(·,2n,x)≈
⌊x⌋.

That means that if we consider

λ (·,2n,x)Formula1(x,u,M,n)+(1−λ (·,2n,n))Formula2(x,u,M,n)

we are sure to be close (up to some bounded error) to some 2−n approximation of f (x).
There remains that this requires some multiplication with λ . But from the form of
Formulai(x,u,M,n), this could be also be written as follows, ending the proof of The-
orem 3.2.27.

EncodeMul

(
2e,2t , ˜̃f

(
2e,2t ,Decode

(
2e,σ1(2e,2M,2m(n,M)x)

))
,λ
(

2e,2M,2m(n,M)x
)

2−n

)
+

EncodeMul

2e,2t , ˜̃f

(
2e,2t ,Decode

(
2e,σ2

(
2e,2M,2m(n,M)x

)))
,

(
1−λ

(
2e,2M,2m(n,M)x

))
2−n


(3.1)

NB 3.2.29
The formula (3.1) can be seen as a function that generates uniformly a family of cir-
cuits/formal C -s approximating a given function at some given precision over some
given domain. The functions we obtain are the composition of essentially linear func-
tions, which can be considered as layers of formal neural networks using a concept
not assuming the last layer of the network to be made of neurons and that result may
be outputted by some linear combination of the neurons in the final layer.

Which enables us to prove Theorem 3.2.1:

Proof of Theorem 3.2.1. We know that a function f : Rd → Rd′ from LDL◦ is polyno-
mial time computable by Proposition 3.2.26, (1.). That means we can approximate it with
arbitrary precision, in particular, precision 1

4 in polynomial time. Given such an approx-
imation q, if we know it is some integer, it is easy to determine which integer it is: return
(componentwise) the closest integer to q.

Conversely, if we have a function f : Nd → Nd′ that is polynomial time computable,
our previous simulations of Turing machines provide a function in LDL◦ that computes
it at any required precision, in particular 1/4.

From the fact that we have the reverse direction in Theorem 3.2.27, it is natural to
consider the operation that maps f̃ to f.

108

Theorem 3.2.30
A continuous function f is computable in polynomial time if and only if all its

components belong to LDL◦, where

LDL◦=
[

0,1,πk
i , ℓ(x) ,+,−, tanhx,

x
2
,

x
3

;composition, linear length ODE,ELim
]

with ELim defined in Definition 3.2.2.

For the reverse direction, by induction, the only thing to prove is that the class of
functions from to integers computable in polynomial time is preserved by the operation
ELim. The proof is the same as Proposition 3.1.3. This also gives directly Theorem 3.1.6
as a corollary.

From the proofs, we also get a normal form theorem, namely formula (3.1). In partic-
ular,

Theorem 3.2.31

Any function f : Nd ×Rd′′ → Rd′ can be obtained from the class LDL◦ using
only one schema ELim.

3.3 Chapter Conclusion
In this chapter, we proved that real sequences and functions over the reals, computable
in polynomial time, can be algebraically characterised using discrete ordinary differential
equations (ODE). We have provided algebras LDL• for FPTIME∩RN (Theorem 3.1.6)
and LDL◦ for FPTIME∩RR (Theorem 3.2.3).

Actually, our characterisations also cover FPTIME∩RNd×Rd′
for integers d and d′.

A major improvement of our characterisation of functions over the reals with LDL◦, in
comparison to the one for real sequences, is that it uses only analytic functions (i.e. no
need for sg(·) function). It required continuous approximations of several discontinuous
or non-analytic functions (floor function, the Euclidean division, etc.). Furthermore, it
also required a barycentric method, inspired by some constructions of [BCGSH07].

In a more abstract view, the core of the proofs was proving that we can simulate
Turing machines with analytic discrete ordinary differential equations. We believe this
result opens the way to many applications, as it opens the possibility of programming
with (discrete time) ordinary differential equations, with an underlying well-understood
time and space complexity. We will use this in Chapter 5 to algebraically characterise
FPSPACE with discrete and continuous ODEs.

109

Chapter 4

Robustness and applications

Det är underligt med vägar och floder, funderade Sniff,
man ser dem gå förbi och får en hemsk lust att vara
nån annanstans. Att följa med och se var de slutar...

Tove Jansson, Kometen Kommer

NB 4.0.1
This chapter is based on an article published in CSL 2024 ([BB24c]), co-authored
with Olivier Bournez, except Section 4.6, which is co-authored with Nathalie Aubrun
and Olivier Bournez. A journal version of the CSL article has been submitted.

Reasoning about dynamical systems evolving over the reals is well-known to lead to
undecidability. In particular, there are no reachability decision procedures for first-order
theories over the reals extended with even very basic functions, for logical theories reas-
oning about real-valued functions, or decision procedures for state reachability. It mostly
comes from the fact that reachability for dynamical systems over the reals is undecidable,
as Turing machines can be embedded into dynamical systems.

However, various results in the literature have shown that decision procedures ex-
ist when restricting to robust systems, with a suitably-chosen notion of robustness. In
particular, in the field of verification, if the state reachability is not sensitive to infinites-
imal perturbations, then decision procedures for state reachability exist. In the context
of logical theories over the reals, decision procedures exist if we focus on properties not
sensitive to arbitrarily small perturbations. For example, by considering properties that
are either true or δ -far from being true for some δ > 0.

In this chapter, we first propose a unified theory explaining in a uniform framework
these statements, established in different contexts. We will extend the results of this
chapter in Chapter 6.

More fundamentally and additionally, while all the previous statements were only
about computability issues, we consider complexity theory aspects. We prove that robust-
ness to some precision is inherently related to the complexity of the decision procedure.
When a system is robust, we can quantify the level of perturbation we allow: assuming ro-
bustness to a polynomial perturbation on precision leads to a characterisation of PSPACE.
Furthermore, assuming robustness to polynomial perturbation on time or length leads to
similar statements for PTIME.

In other words, precision on computations is related to space complexity, while length
or time of trajectories, is intrinsically related to time complexity.

110

Generally speaking, considering dynamical systems with respect to infinitesimal per-
turbations of dynamics is an old idea, sometimes with concepts reinvented later with
other names, such as noisy dynamical systems (e.g. [BRS15]). In the field of verification,
the idea of infinitely perturbed dynamics has been considered to provide alternative se-
mantics of some models: see e.g. [Pur00] for timed automata. The approaches considered
in [AB01] and [GAC12] belong to the line of investigation considering general dynam-
ical systems and aiming at studying the frontier between decidability and undecidability.
Somehow, our results state that the uncomputability discussed in [RS23] is intrinsically
due to the non-numerical stability of the considered dynamical systems there.

To our knowledge, such a unifying framework has never been established. For the
computability aspects, regarding some of the existing works: compared to [AB01], we
allow more general discrete-time and continuous-time dynamical systems, such as those
with unbounded domains. Some generalisations have also been obtained in [BGH10], but
focusing on dynamical systems as language recognisers and mainly focusing on general-
isations of [AB01, Theorem 4]. The logic considered in [GAC12] allows us to comment
on finite-time reachability properties, but not reachable sets. As far as we know, com-
plexity aspects have never been discussed this way. In [BRS15], the authors study the
space complexity of computing the invariant measure of a dynamical system submitted to
a Gaussian noise, but assume that the dynamic must not be an additional source of com-
putational complexity. We assume here a somewhat more general type of perturbation
and adopt a point of view of graph theory.

In Section 4.1, we review some existing results, due to [AB01] about the definitions
and computability properties of perturbed TMs. Using the constructions of Section 2.3.1,
we study the (polynomial) space complexity of the reachability relation in discrete-time
rational dynamical systems in Section 4.2. We extend those properties to discrete-time
and continuous-time real dynamical systems (Section 4.3 and Section 4.4). We study
the time complexity of the same relation in Section 4.5. In Section 4.6, we study the
robustness of TMs, using Haore’s logic.

4.1 Perturbed TMs
Our theory relies on consideration from [AB01] and some well-known observations from
complexity theory. We start by recalling some facts and a few basic concepts.

Article [AB01] introduces the concept of space-perturbed TM: given n > 0, the idea
is that the n-perturbed version of the machine M is unable to remain correct at a distance
more than n from the head of the machine. Formally, the n-perturbed version Mn of M is
defined exactly as M except before any transition, all the symbols at a distance n or more
from the head can be altered at every step. Hence Mn is nondeterministic.

A word w is accepted by Mn iff there exists a run of this machine stopping in an
accepting state. Let L(M) be the language recognised by a TM M. Let Ln(M) be the
n-perturbed language of M. From definitions, if a word is accepted by M, then it is
also recognised by all the Mn’s: perturbed machines have more behaviours. Moreover,
Ln+1(M)⊆ Ln(M).

Let Lω(M) =
⋂

n Ln(M): this is the set of words accepted by M when subject to arbit-
rarily “small" perturbations. Lω(M) is called the ω-perturbed language of M.

We have L(M)⊆ Lω(M)⊆ ·· · ⊆ L2(M)⊆ L1(M).

111

Here is a key observation: a TM’s ω-perturbed language is co-computably enumer-
able:

Theorem 4.1.1 (Perturbed reachability is co-c.e. [AB01])

Lω(M) ∈Π
0
1.

Proof. We consider the definition of TM similar to Subsection 2.3.1. Given a bi-infinite
configuration C of M of the form

(q, · · ·a−n−1a−n . . .a−1,a0a1 . . .anan+1 · · ·),

we define ϕn(C) = (q,a−n · · ·a−1,a0a1 · · ·an) ∈Q×Σn×Σn+1 made of a state and words
of length n and n + 1. We denote by C[w], where w = a1a2 · · ·an the configuration
(q, · · ·BBB,a1a2 · · ·anBBB · · ·), and C0[w] when q = qinit.

For every n ∈ N, we associate to the n-perturbed version Mn of TM M some graph
Gn = (Vn,→n). The vertices, denoted (Vi)i, of Gn correspond to the |Q| × |Σ+1|2n+1

possible values of ϕn(C) for a configuration C of M. There is an edge between Vi and V j
in Gn iff there exist configurations C and C′ such that ϕn(C) = Vi and ϕn(C′) = V j and Mn
can go from configuration C to configuration C′ in one step. In other words, Gn simulates
the execution of Mn.

Determining whether Vi→ V j holds is easy (and in particular polynomial space com-
putable) by considering that, when the head is moved to the left (resp. to the right) of Vi
a symbol in Σ∪{B} is non-deterministically chosen and appended to the left (resp. right)
of the configuration and the right-most (resp. left-most) one is lost (it belongs now to the
perturbed area of the configuration and hence it can be replaced by any other symbol).

Let Fn = ϕn(Qaccept) correspond to the accepting control states. By construction, the
n-perturbed version Mn of M has an accepting run starting from a configuration C, iff Fn
is reachable from ϕn(C), that is to say PATH(Gn,ϕn(C),Fn). By Corollary 2.3.4, this is
decidable in a space polynomial in n.

Let Basisn be the finite set of sequences (sn)n∈N ∈ Σn, such that Fn is reachable, for all
n ∈ N, from C0[sn]. Let Shortn be the finite set of sequences sk ∈ Σk with k < n, such that
Fn is reachable from C0[sk]. Then Ln(M) = (Shortn∪Basisn)∩Σ∗. Consequently, Ln(M)
is decidable in space polynomial in n and hence its complement also is. Thus, Lω(M) is
co-c.e., as it is a (uniform in n) intersection of decidable sets.

Since a set c.e. and co-c.e. is decidable, following [AB01], we define robustness as:

Definition 4.1.2 (Robust Language)
A language L is robust if there exists a deterministic Turing machine M such

that L = Lω(M) = L(M).

Definition 4.1.3 (Robust Machine)

A TM M is robust if L(M) = Lω(M).

Note that there could be non-robust TM that also have L as accepting language. With
this definition, robust languages are necessarily decidable (i.e. the “robustness conjec-
ture” holds). Actually, robustness is close to decidability for machines that always halt.

From definitions, if M always halts, then L(M) is decidable and Lω(M) = L(M).

112

Corollary 4.1.4 (Robust ≈ decidable [AB01])

If Lω(M) = L(M) then L(M) is decidable.

Thus, a language L is decidable iff it is robust. A direct corollary is that a language
L is undecidable iff it is not robust. Conversely, we think it is instructive to reason on a
non-robust TM. Since we always have L(M) ⊆ Lω(M), we have that Lω(M) ̸= L(M) iff
there exists some word w ∈ Lω(M), but w ̸∈ L(M).

Lemma 4.1.5

Lω(M) ̸⊆ L(M) iff there is a word w nor accepted nor rejected by M, but accep-
ted by any n-perturbed version Mn.

Proof. It is sufficient to prove that some word w ∈ Lω(M), with w ̸∈ L(M) satisfies this.
Since w ̸∈ L(M), w is not accepted by M. As w∈ Lω(M), w is accepted by any n-perturbed
version Mn. Necessarily, such a w is also not rejected by M: it was, this must happen in
finite time for M, using finitely many cells of the TM, so, by definition, there exists an
n sufficiently big such as the behaviour of Mn is similar to the one of M on w on these
cells, and hence Mn also necessarily reaches the rejecting state qreject on input w. Once in
state qreject, from definitions, Mn stops: as M, its internal state and its heads do not move
anymore, and there is no way that w becomes accepted. So, we get that necessarily, we
cannot have w accepted by Mn for n sufficiently big, in contradiction with w ∈ Lω(M).

In general, ω-perturbed languages are not c.e. [AB01]:

Proposition 4.1.6 ([AB01])

For any TM M, we can effectively construct another TM M′ such that Lω

(
M′
)
=

L(M)c.

A simple point, but a key observation for coming discussions, is the following: one
can talk about complexity and not only computability. Indeed, when a language is robust,
it makes sense to measure what level of perturbation s can be tolerated. This is the purpose
of Definition 4.1.8.
NB 4.1.7

Assume L is robust, so there exists a TM M such that L = L(M) = Lω(M). This
means that for any word w, there must exist some n (depending possibly on w) such
that w ∈ L(M) and w ∈ Ln(M) have the same truth value. This n can be read as the
associated tolerated level of perturbation. It quantifies the tolerated level of robustness.
Now, we can always consider that this function that associates n to w depends only
on its length (as there are finitely many words of a given length, and we can always
replace n with a bigger n).

Formally, assuming a language L = L(M), for some TM M, is robust means that L =
L(M) = Lω(M). Let us consider some length ℓ, and reason about words of length ℓ (i.e.
about words of Σℓ where Σ is the alphabet of the Turing machine). We must have L∩
Σℓ = L(M)∩Σℓ = Lω(M)∩Σℓ. Now, by definition of Lω(M), Lω(M)∩Σℓ is necessarily
Ln(M)∩Σℓ for some n. Consequently, we must have L(M)∩Σℓ = Ln(M)∩Σℓ for some
n = s(ℓ) for a robust language.

113

In other words, for a robust language, we have necessarily

L = L(M) = L{s}(M)

for some function s, for the coming definition. This function n = s(ℓ) quantifies the
tolerated level of robustness. If one prefers, a robust language is necessary s-robust for
some s, according to Definition 4.1.10.

Definition 4.1.8 (Level of robustness n given by s)

Given a function s : N→N, we write L{s}(M) for the set of words accepted by
M with space perturbation s:

L{s}(M) = {w| w ∈ Ls(ℓ(w))(M)}.

Lemma 4.1.9

For any function s : N→N and any deterministic Turing machine M, Lω(M)⊆
Ls(M).

Definition 4.1.10 (s-robust language)
For any function s : N→ N, a robust language is s-robust if there exists a TM

M such that L = L(M) = L{s}(M).

It is natural to consider the case where the function s is a polynomial. It turns out that
this corresponds to (and is even a characterisation of) PSPACE:

Theorem 4.1.11 (Polynomial robustness⇔ PSPACE)

L ∈ PSPACE iff for some M and some polynomial p, L = L(M) = L{p}(M).

Proof. (⇒) Let a language L∈PSPACE. Thus, there exists a polynomial p and a determ-
inistic TM M working in space p and recognising L: we have L = L(M). We claim that
L(M) = L{p}(M). It is clear from our definition that L(M) ⊆ Lω(M) ⊆ L{p}(M). For the
other direction, we consider w ∈ L{p}(M). We want to show that w ∈ L(M). We assume
w is of length n. Since w ∈ L{p}(M), w ∈ Lp(n)(M), so Mp(n) accepts w. But, on input
w, M uses at most p(n) cells, so the only run of M on w does not visit any symbol that
could be altered non-deterministically during any run of Mp(n) on w. The same applies
to any run of Mp(n) on w. Hence, the run of M on input w must also be accepting, thus
w ∈ L(M) = L.

(⇐) For any TM M and any polynomial p, Lp(n)(M) ∈ NPSPACE is direct from the
definitions. By Savitch’s theorem, NPSPACE = PSPACE, so Lp(n)(M) ∈ PSPACE.

Non-robust machines

We think it is very instructive to realise that it is not that easy to imagine, in a constructive
way, a machine (or c.e language) that is non-robust. First of all, from definitions and
previous discussions, any machine that always halts is robust. Furthermore, a machine
that would loop over a finite set of configurations is also, from definition, robust (take n

114

sufficiently big, etc). The same is true if we relax and say that it enters a non-possibly
ending loop over finitely many of its internal states. So, non-robustness has to do with the
existence of inputs for which the machine does not reach an accepting state, without even
looping, in many strong senses of “looping”. So, a simple example of non-robust TM?
Example 4.1.12 (An example of non-robust Turing machine)

Consider a TM M that zig-zags writing zeros if it reads a zero, and reach an accepting
state if it reads a 1. The language L(M) is the set of words containing a 1. For all
n ∈ N, Ln(M) contains 0n. Thus M is not robust. It is an example of a decidable
language with a non-robust machine.

By some argument of countability or by the fact that a computably enumerable and co-
computably enumerable set is recursive and that the halting problem of Turing machines is
computable enumerable and non-recursive, we can deduce that there are some non-robust
Turing machines.

The following example, inspired by [Koz97], is based on two well-known facts from
computability and logic.

1. From Kleene’s recursion theorem ([Kle38]), we can consider that a Turing machine
can obtain its own code, using the terminology and its presentation in [Sip97].

2. From logic that given the code m of some Turing machine M, we can explicitly write
some first-order arithmetic formula γm,w that is true if M accepts input w: this for-
mula states, using the β -function from Gödel, that there is some finite sequence of
successive configurations of M, starting from the initial configuration correspond-
ing to w, ending with some accepting configuration. This is the formula considered
in Remark 4.6.7. We write ε for the empty word.

Example 4.1.13 (Another example of non-robust Turing machine)
Let M be the Turing machine that, on any input w and using the recursion theorem,

M obtains its code m. Then it constructs the arithmetic formula ψ = γm,ε . Then, it
enumerates all the provable formulas until it finds the formula ψ in the iteration. If
this loop eventually terminates, then it accepts (otherwise, it runs forever, of course).
It is an example of a undecidable language with a non-robust machine.

We claim that M is not terminating. The formula ψ = γm,ε is not provable: indeed, ψ

is true iff m does accept the empty word and if M finds a proof of ψ , then M accepts the
empty word and hence formula ψ is wrong. Unless the arithmetic is not coherent there is
no way to prove some false formula, hence this case can not happen. Hence, necessarily,
the loop will run forever. Now, if M does not find a proof of ψ , then M does not accept the
empty word by construction. In other words, ψ is some valid formula that is not provable
and M is not terminating, but there is no proof of it in arithmetic.
NB 4.1.14

The one used in the proof of Theorem 6.3.1, later in this document, is another example
of a non-robust machine.

We have just used in the reasoning the fact that some things could be true, but with
no proof of it (Gödel’s incompleteness theorem). Thinking about it, from previous con-
siderations, somehow this is mandatory (if one wants to remain “constructive” and give
explicitly a language or machine, and not conclude by arguments like diagonalisation or

115

counting arguments). Indeed, coming arguments show that non-robustness has to do with
statements that could hold but are not provable, with proofs of a specific form, namely
finite abstractions:

Definition 4.1.15 (Finite abstraction)

A finite abstraction of a set X is given by some (labelled) graph G = (V,→g
δ
):

each of its finitely many vertices corresponds to some finite union of basic open
sets Ui. The edges between vertices are labelled by generators. It satisfies that
for all x ∈Ui, if fg(x) = y then there is an edge labelled by g from Ui to some
U j with y ∈U j.

Such a finite abstraction corresponds to the subset of X obtained by taking the union
of the open sets Ui corresponding to its vertices. We will come back to those statements
in Section 4.6.

4.2 Discrete-Time Dynamical Systems
We now study the robustness of general discrete-time systems. We aim to focus on
discrete-time systems of type f : Rd→Rd , but we start with a simpler framework: namely
rational systems.

4.2.1 The case of rational systems
For clarity, as this general case requires talking about computability issues on the reals
(we do so later in Section 4.2.2) we first focus on the case of systems of type f : Rd→Rd

such that f(Qd)⊆ Qd . In other words, we first focus on the case of rational systems, i.e.
f : Qd → Qd (possibly obtained as the restriction to the rationals of a function over the
reals).

A rational discrete-time dynamical system will be called Q-computable when the
function (from the rationals to the rationals) is. A rational discrete-time dynamical sys-
tem will be called Lipschitz when the function is: there exists some constant K such that
d
(
f(x), f(y)

)
≤ Kd (x,y) , for all x, y.

With each rational discrete-time dynamical system H is associated its reachability
relation RH (·, ·) on Qd×Qd . Namely, for two rational points x and y, RH (x,y) holds iff
there exists a trajectory of H from x to y.

The reachability relation of a Q-computable system is computably enumerable: to
enumerate, a Turing machine can just simulate the dynamics. Here is an example of a
Q-system:
Example 4.2.1 (Example of a Q-system)

Take some recurrent neural network, with d neurons, with the ReLU activation func-
tion, defined as ReLU(x)=max(0,x). Its dynamics can be written as xt+1 =ReLU(Ax+
B) where A is some d×d matrix with rational entries and B is some vector of dimen-
sion d with rational entries, where the ReLU function is applied componentwise.

Another example is given by PAM systems:

116

Definition 4.2.2 (PAM System)
A Piecewise affine map system (PAM) is a discrete-time dynamical system H
where f : X ⊂ Rd 7→ X is a (possibly partial) function represented by: f(x) =
Aix+bi,x ∈ Pi, i = 1 . . .N, where Ai are rational d×d-matrices, bi ∈Qd and
Pi are convex rational polyhedral sets in X .

All constants in the PAM definitions are assumed to be rational so it remains a Q-
computable system (or a rational system). Notice that no form of continuity is assumed:
we allow discontinuities between two affine pieces. The computational power of PAMs
has been established in Subsection 2.3.1 using the technique of step-by-step emulation
(with γ[0,1] and f piecewise affine).

In [AB01], the authors consider only the special case of Piecewise Affine Maps (PAM),
as representative of discrete-time systems, which are particular Q-computable Lipschitz
systems. They proved the following:

Theorem 4.2.3 (Computational power of PAMs [Moo91, KCG94, AB01])
Any c.e. language is reducible to the reachability relation of a PAM.

Theorem 4.2.4 (Computational power of PAMs [KCG94])
Any c.e. language is reducible to the reachability relation of a continuous

PAM.

Let us discuss whether undecidability still holds for “robust systems”.
We apply the paradigm of small perturbations: consider a deterministic discrete-

time dynamical system H over a space X with a function f. For any ε > 0 we con-
sider the ε-perturbed system Hε . Its trajectories are defined as sequences xt satisfying
d
(
xt+1, f(xt)

)
< ε for all t. This non-deterministic system is considered as H submit-

ted to a noise of magnitude ε . For convenience, we write y ∈ fε(x) as a synonym for
d
(
f(x),y

)
< ε . We denote reachability in the system Hε by RH

ε (·, ·): RH
ε (x,y) holds iff

from x, it is possible to reach y by finitely many applications of fε . In particular, in zero
steps, only x is reachable from x, so RH

ε (x,x) always holds.
We define the set-valued function fε by fε(S)=

⋃
x∈S B(f(x),ε), for S⊆Rd . We denote

the t-th iteration of a function g by g[t]. Then, RH
ε (x,y) is true iff there exists t ∈ N such

that y∈ f[t]ε

(
{x}
)
. We denote by x→∗ε y and x→+

ε y the analoguous of x→∗ y and x→+ y
but for ε-perturbed systems.

All trajectories of a non-perturbed system H are also trajectories of the ε-perturbed
system Hε . If ε1 < ε2 then any trajectory of the ε1-perturbed system is also a trajectory
of the ε2-perturbed system. Define RH

ω (x,y) iff ∀ε > 0 RH
ε (x,y): this relation encodes

reachability with arbitrarily small perturbing noise. From definitions:

Lemma 4.2.5 ([AB01])

For any 0 < ε2 < ε1 and any x and y the following implications hold: RH (x,y)
⇒ RH

ω (x,y)⇒ RH
ε2
(x,y)⇒ RH

ε1
(x,y).

117

Theorem 4.2.6 (Perturbed reachability is co-c.e.)

Consider a locally Lipschitz Q-computable system whose domain X ⊂Rd is a
closed rational box and dynamic f is continuous. Then the relation RH

ω (x,y)⊆
Qd×Qd is in the class Π1.

NB 4.2.7
A generalisation of this theorem will be given in Chapter 6 (Theorem 6.2.12).

Proof of Theorem 4.2.6. This corrects [AB01, Theorem 5], using an alternative proof.
They use the fact that the function is Lipschitz, but apply it to discontinuous PAMs.
Lipschitz functions being continuous, the argument requires to be adapted to cover the
hypotheses. As f is locally Lipschitz and X is compact, we know that f is Lipschitz:
there exists some L > 0 so that d

(
f(x), f(y)

)
≤ L · d (x,y). For every δ = 2−m, m ∈ N,

we associate some graph Gm = (Vδ ,→δ): its vertices, denoted by (Vi)i, correspond to
some finite discretisation and covering of compact X by rational open balls Vi = B(xi,δi)
of radius δi < δ . There is an edge from Vi to V j in this graph, that is to say Vi →δ V j,
iff B(f(xi),(L+ 1)δ)∩V j ̸= /0. With our hypothesis on the domain, such a graph can be
effectively obtained from m, considering a suitable discretisation of the rational box X .

Before proving the rest of Theorem 4.2.6, we state and prove the two following lem-
mas:

Lemma 4.2.8

Assume RH
ε (x,y) for ε = 2−n. Then, x = y, or, in the case x ̸= y, for all i, j,

with x ∈ Vi and y ∈ V j, Vi
+→ε V j.

It holds because the graph for δ = ε is made to always have more trajectories/beha-
viours than RH

ε . More formally:

Proof. If x= y, then the claim is verified. Else, if y∈ fε(x), then d
(
f(xi),y

)
≤ d

(
f(xi), f(x)

)
+

d
(
f(x),y

)
< Ld (xi,x)+2ε ≤ Lε+2ε =(L+2)ε and hence there is an edge from Vi→εV j

to any V j containing y by definition of the graph.

Lemma 4.2.9

If x = y then RH
ε (x,y). Furthermore, for any ε = 2−n there is some δ = 2−m

so that, if there exist some i, j with Vi →+
δ

V j and x ∈ Vi and y ∈ V j , then
RH

ε (x,y).

Lemma 4.2.9 states that ¬RH
ε (x,y) implies ¬(Vi

+→δ V j) for all i and j, with x ∈ Vi
and y ∈ V j, for the corresponding δ .

Proof. If x = y, the first claim is clear.
Now, consider δ = 2−m with δ < ε/(2L+1): It is sufficient to prove that when Vi

1→δ

V j with x ∈ Vi, y ∈ V j, we have RH
ε (x,y): indeed, then by induction, if we have

Vi=i0→δ Vi1 . . .→δ Vit= j,

118

we can then reason on points y1 ∈ Vi1 , . . . , yt−1 ∈ Vit−1 , and obtain inductively that
RH

ε (x,y1), RH
ε (y1,y2), . . . , RH

ε (yt−1,y), and hence that RH
ε (x,y).

So, assume Vi
1→δ V j with x ∈ Vi, y ∈ V j. As Vi

1→δ V j there is some y ∈ V j with
d
(
f(xi),y

)
< (L+1)δ . Then d

(
f(x),y

)
≤ d

(
f(x), f(xi)

)
+d
(
f(xi),y

)
< Lδ +(L+1)δ =

(2L+1)δ < ε and hence RH
ε (x,y): we get the promised statement.

From Lemma 4.2.8 and Lemma 4.2.9, When x = y, RH
ω (x,y) holds. Now, from the

definitions, and the construction of our covering, when x ̸= y, there exists δ0 = 2−m0 , such
that for all i, j with x ∈ Vi and y ∈ V j, we have i ̸= j, hence ¬(Vi

0→δ0 V j). Consequently,

¬(Vi
∗→δ V j) is the same as ¬(Vi

0→δ V j) for m≥ m0.
Now, when, x ̸= y, then from the two above items, ¬RH

ω (x,y) holds iff x ̸= y and there
exists δ = 2−m, m≥m0, such that for all i, j with x∈ Vi and y∈ V j, one has ¬(Vi

∗→δ V j).
This holds iff for some integer m ≥ m0, NOPATH(Gm,Vi,V j) for all Vi, V j with x ∈ Vi,
y ∈ V j. The latter property is computably enumerable, as it is a union of decidable sets
(uniform in m), as NOPATH(Gm,Vi,V j) is a decidable property over finite graph Gm.

NB 4.2.10
This would work even only assuming the domain to be a computable compact an-
d/or the map to be computable (non-necessarily Lipchitz) in the model of computable
analysis: the proof only requires that given δ = 2−m, there is an effective way to de-
termine an effective cover, using finitely many rational balls of radius strictly smaller
than δ .

Definition 4.2.11 (Robust reachability relation)

We say that the reachability relation is robust when RH = RH
ω .

We get the “robustness conjecture”:

Corollary 4.2.12 (Robust⇒ decidable, [AB01])

Assume the hypotheses of Theorem 4.2.6. If the relation RH is robust then it
is decidable.

A continuous PAM simulating the execution of a Turing machine is an example of
such relation.

Proof. RH is c.e. and we know from Theorem 4.2.6 that RH
ω is co-c.e.. If they are equal,

then they are decidable, as a c.e. and co-c.e. set is decidable.

A similar statement holds even if X is not compact: the existence of some family of
graphs G = (Gm) with Gm = (Vm,→m) is sufficient to get a similar reasoning with the
following properties:

1. RH
ε (x,y) with x ∈ Vi, ε = 2−n, implies x = y or Vi→+

n V j for all V j containing y.

2. For any ε = 2−n, there is some m such that if we have Vi
+→m V j then RH

ε (x,y)
whenever x ∈ Vi, y ∈ V j.

3. For all m, Gm is a finite computable graph: determining whether Vi→m V j in Gm
can be effectively determined given integers m, i and j.

119

When these three properties hold, G is a computable abstraction of the discrete-time
dynamical system.

Robustness versus decidability and δ -decidability

We now discuss how far the above statement is to a characterisation of decidability.
Before stating this in Corollary 4.2.19, we relate robustness to the concept of δ -

decidability defined in [GAC12] and also to the existence of some witness of non-reachability.
We mix the notation δ and ε when talking about precision. They are indeed the

same. Our problem is that the framework considered in [GAC12] uses the terminology
δ -decidability, whereas [AB01] is in a context of analysis over the reals and uses ε to
quantify error bounds. We decided to keep both δ and ε . Otherwise, this would conflict
with their usual meaning in the two contexts.

Given x, RH (x) denotes the set of the points y reachable from x in the dynamical
system H : RH (x) = {y|RH (x,y)}. This is also the smallest set such that x ∈ RH (x)
and f(RH (x))⊆ RH (x).

Definition 4.2.13

RH (x,y) is said to be ε-far from being true if there is R∗ ⊆ X so that

1. x ∈R∗,

2. fε(R∗)⊆R∗,

3. y ̸∈R∗.

When this holds, we have ¬RH (x,y). Indeed, for all ε > 0, RH
ε (x) = {y|RH

ε (x,y)}
is the smallest set satisfying x ∈ RH

ε (x) and fε(RH
ε (x)) ⊆ RH

ε (x). Thus, as R∗ also
satisfies these properties by the first two conditions, RH

ε (x)⊆R∗ and hence y ̸∈ RH (x)
as RH (x)⊆ RH

ε (x)⊆R∗ and y ̸∈R∗ from the third condition.
In other words, R∗ is a witness of the non-reachability of y from x. We will say that

it is at level ε . This provides a relation to δ -decidability considered in [GAC12]:

Proposition 4.2.14 (Robust⇔ Reachability relation true or ε-far from being true)

We have RH
ω = RH if and only if for all x,y ∈Qd , either

1. RH (x,y) is true

2. or RH (x,y) is false and there exists ε > 0 such that it is ε-far from being
true.

Proof. (⇒): For all ε > 0, RH
ε (x) satisfies x ∈ RH

ε (x) and fε(RH
ε (x)) ⊆ RH

ε (x) (this
is even the smallest set such that this holds). Let y ∈ Qd , let us assume that RH (x,y) =
RH

ω (x,y) is not true. Then, there exists ε such that RH
ε (x,y) is false, i.e. y ̸∈ RH

ε (x).
Consider R∗ = RH

ε (x). Then, x ∈ R∗ and from the first paragraph fε(R∗) ⊆ R∗ and
y ̸∈R∗.

(⇐): When RH (x,y) is true, for all ε > 0, RH
ε (x,y) is true, so RH

ω (x,y) is. When
RH (x,y) is false, by hypothesis, RH (x,y) is ε-far from being true for some ε > 0: there

120

exists a set R∗ satisfying x ∈R∗ and fε(R∗) ⊆R∗. As RH
ε (x) is the smallest such set,

RH
ε (x)⊆R∗. As y ̸∈R∗, y ̸∈ RH

ε (x). Hence RH
ω (x,y) is false.

We say that a subset R∗ of X is ε-rejecting (with respect to y) if it satisfies 2. and 3.
of Definition 4.2.13: that is to say, fε(R∗)⊆ R∗, and y ̸∈ R∗. A trajectory reaching such a
R∗ will never leave it.

Definition 4.2.15

A system is eventually decisional if for all x, y, there is some R∗ ε-rejecting
(with respect to y) so that either there is a trajectory starting from x reaches y
or, when not, it reaches R∗.

We come back to the converse of Corollary 4.2.12: from Proposition 4.2.14, a robust
dynamical system (i.e. RH

ω = RH) is eventually decisional, by considering R∗ = R∗ for
the R∗ given by item 2) there. Conversely:

Lemma 4.2.16

Take x and y with RH
ω (x,y) but not RH (x,y). For f Lipschitz, the trajectory

starting from x ∈Qd can not reach any ε-rejecting subset.

Proof. By contradiction, assume the trajectory starting from x reaches an ε-rejecting R∗.
By considering one more step, we can assume that it reaches the interior of R∗ for the first
time at t, since, if it reaches the frontier at x∗, B(f(x∗),ε)⊆ R∗ and f(x∗) is in the interior
of that ball. So, f[t](x) is in the interior of R∗. As f is Lipschitz, so are the s-th iterations
of f, for 0 ≤ s ≤ t. Hence, by choosing ε ′ with 0 < ε ′ < ε sufficiently small, we obtain,
on the one hand, y /∈ f[s]

ε ′ ({x}), for 0≤ s < t, and, on the other hand, f [t]
ε ′ ({x})⊆ R∗. The

second assertion, together with the property fε(R∗) ⊆ R∗, implies f [s]
ε ′ ({x}) ⊆ R∗ for all

s≥ t. As y ̸∈ R∗, we obtain y /∈ f [s]
ε ′ ({x}) for all s≥ t. Thus, we have y /∈ f [s]

ε ′ ({x}) for all
s ∈ N.

This shows ¬RH
ε ′ (x,y), hence, ¬RH

ω (x,y), a contradiction.

Corollary 4.2.17
Consider a Lipschitz rational dynamical system over a rational box. It is robust
iff it is eventually decisional.

We can even compute the witnesses under the hypotheses of Theorem 4.2.6. A dy-
namical system is effectively eventually decisional when there is an algorithm such that,
given x and y, it outputs an R∗ in the form of the finite union of rational balls. We can
reinforce Corollary 4.2.12:

Proposition 4.2.18

Assume the hypotheses of Theorem 4.2.6. If RH
ω = RH then RH is comput-

able and the system is effectively eventually decisional.

Proof. The proof of Theorem 4.2.6 shows that when RH
ω (x,y) is false, then RH

ε (x,y) is
false for some ε = 2−n and there is a δ = 2−m and some graph Gm with vertices Vi and

121

V j, x ∈ Vi, y ∈ V j and ¬(Vi
∗→δ V j). Denote by RGm the union of the vertices Vk such that

Vi
∗→δ Vk, x ∈ Vi in Gm. Consider R∗ = RGm: this is a witness at level δ = 2−m from the

properties of the construction. Then m can be found by testing increasing m until a proper
graph is found. The corresponding R∗ = RGm of the first graph found will be a witness at
level δ = 2−m.

The reachability relation of an effectively eventually decisional system is necessarily
decidable (given x and y, compute the path until it reaches y (then accept), or R∗ (then
reject)):

Corollary 4.2.19
Under the hypotheses of Theorem 4.2.6, the following properties are equival-

ent:

• RH is robust;

• RH is decidable and the dynamical system is effectively eventually de-
cisional;

• The dynamical system is effectively eventually decisional.

Until now, we mainly studied computability properties. We now focus on complexity
in this framework.

Complexity issues

Assume the dynamical system is robust. Hence, for all x,y∈Qd , there exists ε (depending
on x, y) such that RH (x,y) and RH

ε (x,y) have the same truth value (unchanged by smaller
ε). It is then natural to quantify the level of required robustness according to x and y, i.e.
on the value ε . As we may always assume ε = 2−n for some n ∈ N, we write RH

n for
RH

ε=2−n and we introduce:

Definition 4.2.20 (Level of robustness ε given by s)

Given a function s : N→ N, we write RP
{s} for the relation defined as: for any

rational points x and y the relation holds iff RH
s(ℓ(x)+ℓ(y))(x,y).

A robust dynamical system is necessarily s-robust for some function s, according to
the next definition: this follows from the same arguments as the ones we used for the
related concepts for Turing machines. This function s quantifies the tolerated level of
robustness.

Definition 4.2.21 (s-robust system)

We say that a dynamical system is s-robust, when RH = RP
{s}.

122

Lemma 4.2.22

Consider a locally Lipschitz Q-computable system, with f : Qd → Qd com-
putable in polynomial time, whose domain X is a closed rational box. For
δ = 2−m, consider the associated graph Gm considered in the proof of Theorem
4.2.6. Then NOPATH(Gm,Vi,V j) is decidable using a space polynomial in m.

Proof. This graph has less than O(2d∗m) vertices. It has a successor relation→δ comput-
able in polynomial space in m. Hence, the analysis of Corollary 2.3.4 applies and we can
determine if NOPATH(Gm,Vi,V j) using a space polynomial in m.

We can then naturally consider the case where s is a polynomial: considering robust-
ness to polynomial perturbations corresponds to PSPACE:

Theorem 4.2.23

Consider a locally Lipschitz Q-computable system, with f : Qd→Qd comput-
able in polynomial time, whose domain X is a closed rational box. Given some
polynomial p, RP

{p} ∈ PSPACE.

Proof. From Theorem 4.2.6, for all n there exists some m (depending on n), such that
RH

n (x,y) and RGm(x,y) have the same truth value, where RGm denotes reachability in the
graph Gm. With the hypotheses, given x and y, we can determine whether RP

{p}(x,y), by

determining the truth value of RH
n (x,y), taking n= p

(
ℓ(x)+ ℓ(y)

)
, p a polynomial. From

the proof of Theorem 4.2.6, the corresponding m is linearly related to n. The analysis
of Corollary 2.3.4 shows that the truth value of RGm(x,y) can be determined in space
polynomial in m.

Theorem 4.2.24 (Polynomially robust to precision⇒ PSPACE)

With the same hypotheses, if RH = RP
{p} for some polynomial p, then RH ∈

PSPACE.

Proof. RP
{p} ∈ PSPACE by Theorem 4.2.23. As RH = RP

{p}, RH ∈ PSPACE.

This is even a characterisation of PSPACE:

Theorem 4.2.25 (Polynomially robust to precision⇔ PSPACE)
For any language L in PSPACE there exists a PAM H , defined over a closed

rational box, such that L is reducible to RH and such that RH = RP
{p}, for some

polynomial p.

Proof. Let L∈PSPACE. There is a TM M with L(M)= L that works in polynomial space
q(·). Its step-by-step emulation considered in Theorem 4.2.3, using γ[0,1] is done using a
precision O(2−q(n)) on words of length n. The obtained system satisfies RP

{q+O(1)} = RH

from the properties of the emulation.

123

Assuming the hypotheses of Theorem 4.2.24, when RH = RP
{p} for some polynomial

p, we also see that we can determine a witness of ¬RH (x,y) in polynomial space (using
a suitable representation of it).

4.2.2 The case of computable systems
We now consider the case of general discrete-time dynamical systems. Then f may take
some non-rational values and we need the notion of computability of functions over the
reals: this requires the model of computable analysis: see e.g. [Wei00] or [BHW08] for
full presentations.

Computable systems

Given some rational ball B(y,δ), we have to forbid “frontier reachability”: B(y,δ) would
not be reachable, but its frontier B(y,δ)−B(y,δ) would. It comes from the fact that
testing equality is not computable (NB 1.3.50). A natural question arises: given some
rational ball with the promise that either B(y,δ) is reachable (that case implies that B(y,δ)
is) from some x, or that B(y,δ) is not, decide which possibility holds. We call this the ball
(decision) problem. From definitions from computable analysis, when RH (x) is a closed
set, RH (x) is a computable closed set iff its associated ball problem is algorithmically
solvable.

For computable systems, the ball decision problem is c.e: we mean, there is a Turing
machine whose halting set intersected with the rational balls satisfying the promise is the
set of positive instances. Indeed, just simulate the system’s evolution, starting from x until
step T , with increasing precision and T , until one finds the guarantee that xT at time T is
in B(y,δ ′) for some δ ′ < δ . If the ball is reachable, it will terminate by computing a suf-
ficient approximation of the corresponding xT . It cannot terminate without guaranteeing
reachability. It is not co-c.e. in general.
NB 4.2.26

Our framework for discussing the computability of sets seems similar to the concept of
a maximally partially decidable set, formalised in [Neu21, Neu23]. Similar ideas have
also been implicitly used in many other articles considering various real problems,
using computable analysis. A similar formalisation is also considered in [BCD23].

To a discrete-time system, we can also associate its reachability relation RH (·, ·, ·)
over Qd ×Qd ×N. For two points x,y ∈ Q, η = 2−p, encoded by p ∈ N, RH (x,y, p)
iff there exists a trajectory of H from x to B(y,η). We define RH

ε similarly and RH
ω =⋂

ε RH
ε . This relation encodes reachability with arbitrarily small perturbing noise to some

closed ball.

Lemma 4.2.27
For any 0 < ε2 < ε1 and any x and y, η , the following implications hold:
RH (x,y, p)⇒ RH

ω (x,y, p)⇒ RH
ε2
(x,y, p)⇒ RH

ε1
(x,y, p).

Given x and 0< ε2 < ε1, RH (x,y, p)⊆RH
ε2
(x,y, p)⊆ cls

(
RH

ε2
(x,y, p)

)
⊆RH

ε1
(x,y, p)⊆

cls
(

RH
ε1
(x,y, p)

)
. Hence, RH

ω (x,y, p) =
⋂

ε>0 RH
ε (x,y, p) =

⋂
ε>0 cls

(
RH

ε (x,y, p)
)

is
a closed set.

124

Theorem 4.2.28 (Perturbed reachability is co-r.e.)
Consider a locally Lipschitz computable system whose domain X is a com-

putable compact. RH
ω (x,y, p)⊆Qd×Qd×N is in Π1.

This can be considered as an extension of [BGH10, Theorem 1], established in a much
simpler framework. We first prove the following lemma:

Lemma 4.2.29 (Compactness Argument)

Given a ball B(y,η), we have that B(y,η) ∩ RH
ω (x) = /0 iff B(y,η) ∩

cls
(

RH
ε (x)

)
= /0 for some ε > 0.

Proof. ⇐ (easy direction): If B(y,η)∩cls
(

RH
ε (x)

)
= /0 for some ε > 0, we cannot have

B(y,η)∩RH
ω (x) ̸= /0, as it would contain a point that would necessarily be in B(y,η)∩

RH
ε (x).
⇒ (compactness argument): Assume B(y,η)∩RH

ω (x) = /0. Since:

RH
ω (x) =

⋂
ε>0

cls
(

RH
ε (x)

)
,

it means that
⋃

n∈N(cls
(

RH
2−n(x)

)
)c is some covering of B(y,η). As B(y,η) is closed

and bounded, it is compact. So, from the covering, we can extract some finite covering.
Consequently, as n increases, the set RH

2−n(x) decreases, so does cls
(

RH
2−n(x)

)
and its

complements
(

cls
(

RH
2−n(x)

))c

increases. Hence, the set
(

cls
(

RH
2−n0 (x)

))c

, for some

n0, is a covering of B(y,η). In other words, B(y,η)∩ cls
(

RH
ε (x)

)
= /0 for ε = 2−n0 .

This proves the direction from left to right.

Proof of Theorem 4.2.28. The idea is similar to Theorem 4.2.6, by constructing a graph
satisfying Lemma 4.2.8 and Lemma 4.2.9. As f is locally Lipschitz and X is compact, we
know that f is Lipschitz: there exists some L > 0 so that d

(
f(x), f(y)

)
≤ L ·d (x,y).

For every δ = 2−m, m ∈ N, we associate some graph Gm = (Vδ ,→δ): the vertices,
denoted (Vi)i, of this graph correspond to some finite covering of compact X by rational
open balls Vi = B(xi,δi) of radius δi < δ .

There is an edge from Vi to V j in this graph, that is to say Vi→δ V j, iff B(fi,(L+2)δ)∩
V j ̸= /0, given some rational fi given by some (computed) δ -approximation of f(xi), i.e. fi
such that f(xi) ∈ B(fi,δ).

This is done to guarantee to cover B(f(xi),(L+1)δ).
As we assumed compact X to be computable, such a graph can be effectively obtained

from m, by computing suitable approximation fi of the f(xi)’s at precision δ .
We write, as expected, RH (x,y) if there is a trajectory from x to y, allowing y to be

some real point (and similarly for RH
ε (x,y)).

From Lemma 4.2.8 and Lemma 4.2.9, RH
ω (x,y) holds iff for all δ = 2−m, we have

Vi
∗→δ V j, for all Vi, V j with x ∈ Vi, y ∈ V j. If one prefers, ¬RH

ω (x,y) holds iff for some
δ = 2−m, ¬(Vi

∗→δ V j) for some Vi, V j with x ∈ Vi, y ∈ V j.

125

By Lemma 4.2.29, we basically can use arguments really similar to those of the proof
of Theorem 4.2.6, where the role played by y is now played by B(y,η). With more details:

RH
ω (x,y, p) holds iff for all δ = 2−m, we have Vi

∗→δ V j, for all Vi, V j with x ∈ Vi,
V j∩B(y,2−p) ̸= /0.

The direction from left to right is clear from Lemma 4.2.8. Conversely, assume that for
all δ = 2−m, we have Vi

∗→δ V j, for all Vi, V j with x ∈ Vi, V j∩B(y,2−p) ̸= /0. Assume by

contradiction that ¬RH
ω (x,y,η). From Claim*, we know that B(y,η)∩cls

(
RH

ε (x)
)
= /0

for some ε > 0. In particular B(y,η)∩RH
ε (x) = /0. Then for the corresponding δ = 2−m

from Lemma 4.2.9, we cannot have Vi
∗→δ V j, for any Vi, V j with x∈ Vi, V j∩B(y,2−p) ̸=

/0. This proves the direction from right to left.
If one prefers, when x /∈ B(y,2−p), ¬RH

ω (x,y,η = 2−p) holds iff for some integer
m, the following property Pm holds: NOPATH(Gm,Vi,V j), for all i, j, with x ∈ Vi and
V j ∩B(y,2−p) ̸= /0. The latter property is computably enumerable as it corresponds to a
union of decidable sets (uniform in m), as the property Pm is a decidable property over
finite graph Gm.

Corollary 4.2.30 (Robust⇒ decidable)

Given some instance, B(y,δ) of the ball problem, run in parallel the comput-
ably enumerable algorithm for it (and when its termination is detected, accepts)
and the co-computably enumerable algorithm for

(
RH (x)

)c
=
(

RH
ω (x)

)c

(and when its termination is detected, rejects).

For example, it applies to the system described in Theorem 4.2.4, when the underlying
TM is robust.

We now study the complexity of computable systems.

Complexity issues

Definition 4.2.31 (Level of robustness ε given by s)

Given some function s : N→N, we write RH
{s} as: for two rational points x and

y and p, the relation holds iff RH
s(ℓ(x)+ℓ(y)+p)(x,y, p).

As before, a robust dynamical system is necessary s-robust for some function s, ac-
cording to the next definition. The function s quantifies the tolerated level of robustness.

Definition 4.2.32 (s-robust system)

We say that a dynamical system is s-robust, when RH = RH
{s}.

Theorem 4.2.33
Take a locally Lipschitz system, with f polynomial time computable, whose

domain X is a closed rational box. Then RH
{p} ⊆ Qd ×Qd ×N ∈ PSPACE,

when p is a polynomial.

126

Proof. The proof of Theorem 4.2.28 (as in Theorem 4.2.6) shows that when the relation
RH

ω (x,y,q) is false, then RH
ε (x,y,q) is false for some ε = 2−n. With the hypotheses,

given x, y and q, we take n polynomial in ℓ(x)+ ℓ(y)+q. The corresponding m is poly-
nomially related to n (linear in n). An analysis similar to Theorem 4.2.23, shows the truth
value of RGm(x,y, p) can be determined in space polynomial in m.

NB 4.2.34
We prove the PSPACE-hardness of such problem in Section 5.3.

Then, once again:

Theorem 4.2.35 (Polynomially robust to precision⇒ PSPACE)

Assuming Theorem 4.2.33’s hypotheses, and that for all rational x, RH (x)
is closed and RH (x) = RP

{p}(x) for a polynomial p. Then the ball decision
problem is in PSPACE.

Proof. We have RP
{p} ∈ PSPACE by Theorem 4.2.33 and since RH = RP

{p}, then RH ∈
PSPACE.

Now that we have strong complexity properties for rational discrete-time dynamical
systems, we want to extend them first to real systems, and then to continuous-time dy-
namical systems.

4.3 Relating robustness to drawability
We can go further and prove geometric properties: in the previous sections, we associated
with every discrete-time dynamical system a reachability relation over the rationals. But
we could also see it as a relation over the reals and use the framework of computable
analysis, regarding subsets of Rd ×Rd . From the statements of [Wei00], the following
holds:

Theorem 4.3.1
Consider a computable discrete-time system H whose domain is a computable
compact. For all computable x, cls

(
RH (x)

)
⊆ Rd is a c.e. closed subset.

Proof. Write RH ,T (x,y) iff there exists a trajectory of H from x to y in at most T steps.
We can write RH ,0(x,y) as {(x,y)|x= y}, which is a computable closed subset ([Wei00]).
We reason by induction on the size of the trajectory.

• The property holds for RH ,0(x, ·) = {x}, as x is computable.

• We can write RH ,T+1(x, .) = F(RH ,T (x, ·)) where F is the operator that maps
closed set K to F(K) := K∪ f(K).

The function f is computable so we know it is continuous. Thus, by induction on
T , RH ,T+1(x,y) is a compact: K is a closed subset living in a compact and, by

127

induction, it is compact and the image of a compact by some continuous function
is compact.

Hence, we know that f(K) is computable ([Wei00, Theorem 6.2.4]) and so is F(K)
([Wei00, Theorem 5.1.13]). By induction on T , RH ,T (x,y) is a closed computable
subset, so it is c.e. closed (by [BHW08, Proposition 5.16]).

Furthermore, as it can be checked in all the above theorems from [Wei00] (see also
[Wei00, Theorem 6.2.1] for the required iteration), our reasoning is even effective: we can
produce effectively in T a name of cls

(
RH ,T (x, ·)

)
(even effectively from a name of f).

Consequently, this means by doing things in parallel (i.e. dovetailing) we can effectively
enumerate the rational balls intersecting cls

(⋃
T RH ,T (·, ·)

)
, by considering increasing T

and the balls in these enumerations.

A closed set is called co-c.e. closed if we can effectively enumerate the rational closed
balls in its complement. Using proofs similar to Theorems 4.2.28 and 4.2.6:

Theorem 4.3.2
Consider a computable locally Lipschitz discrete-time system whose domain X
is a computable compact. For all computable x, RH

ω (x) = cls
(

RH
ω (x)

)
⊆ Rd

is a co-c.e. closed subset.

Proof. Let x and y be such that RH
ω (x,y) is false. There must exists some ε = 2−n and

some η = 2−p so that B(y,η)∩RH
ε (x) = /0, as otherwise, considering n = p, y would be

the limit of some accumulation points in RH
ω (x), and since RH

ω (x) is closed, we would
have y ∈ RH

ω (x).
Now, given ε = 2−n and η = 2−p, the proof of Theorem 4.2.28 provides a strategy

to find a m, so that graph Gm provides a proof that B(y,η)∩RH
ε (x) = /0: If we denote

by RGm the union of the vertices Vk such that Vi
+→δ Vk, x ∈ Vi in such a Gm, it acts as a

witness of non-reachability from x of B(y,η), in the spirit of witness of non-reachability
considered in previous sections.

Then a strategy to produce all the rational balls whose closure is not intersecting
RH

ω (x) = cls
(

RH
ω (x)

)
, is for increasing n, and p, generate in parallel all such balls in the

corresponding witness RGm when one is found. This will enumerate all such balls, from
previous arguments, and arguments from the proof of Theorem 4.2.28.

Corollary 4.3.3 (Robust⇒ computable))

Assume the Theorem 4.3.2’s hypotheses. For all computable x, if RH (x) is
robust then RH (x) = cls

(
RH (x)

)
⊆ Rd is computable.

Proof. It follows from the fact that a closed set is computable iff it is c.e. closed and
co-c.e. closed ([BHW08, Proposition 5.16]).

Notice that the above statements are effective in giving a name of x.
Following Theorem 1.3.51, we have that being robust means being drawable.

128

Corollary 4.3.4 (Robust⇒ drawable))

Assume Theorem 4.3.2’s hypotheses. For all computable x, if RH (x) is robust
then cls

(
RH (x)

)
⊆ Rd can be plotted.

Proof. This follows from Corollary 4.3.3 and Theorem 1.3.51.

This is even effective in the name of x and f. The converse holds with additional
topological properties.

Theorem 4.3.5

Assume RH (x) is closed and can be plotted effectively in the name of x and f.
Then the system is robust, i.e. RH

ω (x) = RH (x).

We prove the statement: if cls
(

RH (x)
)

can be plotted effectively in a name of x and

f, then RH
ω (x,y) = RH (x,y) except maybe for (x,y) ∈ cls

(
RH (x)

)
−RH (x).

Proof. By Theorem 1.3.51, cls
(

RH (x)
)

is computable which is equivalent to the com-

putability of the distance function d
(
·,cls

(
RH (x)

))
[Wei00, Corollary 5.1.8]. It means

that given a rational ball, a name for x and y, with ¬RH (x,y), the following procedure

ends when (x,y) ̸∈ cls
(

RH (x)
)
−RH (x): compute a name of d

(
(x,y),cls

(
RH (x)

))
until a strictly positive proof is found: we mean, until the machine computing a name of

the distance outputs some rational interval In =(an,bn) containing d
(
(x,y),cls

(
RH (x)

))
is such that an > 0.

Observe that d
(
(x,y),cls

(
RH (x)

))
= 0 would mean (x,y) ∈ cls

(
RH (x)

)
, but not

in RH .
When the machine does so (i.e. answers such an In) it answers by reading m ∈ N

cells of the names of x, y and f. It returns the same if the names are altered after m
symbols. Thus, there exists a precision ε (related to m, usually 2−m for exponentially fast
convergence) so ¬RH (x,y) remains true for an ε-neighborhood of x and y and unchanged
by a small variation of f. Hence, for all x, y, when ¬RH (x,y), there exists some ε such
that ¬RH

ε (x,y) (¬RH
ω (x,y)). When RH (x,y) holds, RH

ω (x,y) holds.

4.4 Continuous-time systems
The previous ideas can be extended to continuous-time or hybrid systems.

The maximal interval of existence of solutions can be non-computable, even for com-
putable Ordinary Differential Equations (ODEs) [GZB06]. To simplify, we assume the
ODEs have solutions defined over all R.
NB 4.4.1

A non-total solution must necessarily leave any compact, see e.g. [Har64], so X is

129

compact is not a restriction.

A trajectory of H starting at x0 ∈ X is a solution of the differential equation with
initial condition x(0) = x0, defined as a continuous right-derivable function ξ : R+→ X
such that ξ (0) = f(x0) and for every t, f(ξ (t)) is equal to the right-derivative of ξ (t).

To each continuous-time dynamical system H we associate its reachability relation
RH as for the discrete-time case.

For any ε > 0, the ε-perturbed system Hε is described by the differential inclusion
d
(
ẋ, f(x)

)
< ε . This non-deterministic system can be seen as H submitted to a noise of

magnitude ε . We denote reachability in the system Hε by RH
ε . The limit reachability

relation RH
ω is introduced as before: RH

ω iff ∀ε > 0, RH
ε (x,y).

Definition 4.4.2 (Effective Local Lipschitz [GZB06])

Let E =
⋃

∞
n=0 B(an,rn) ⊆ Rm+1 be a c.e. open set, an ∈ Qm and rn ∈ Q

yield computable sequences satisfying B(an,rn) ⊆ E. f : E → Rm is called
effectively locally Lipschitz in the second argument if there exists a comput-
able sequence {Kn} of positive integers such that | f (t,x)− f (t,y)| ≤ Kn|y−
x| whenever (t,x),(t,y) ∈ B(an,rn).

Theorem 4.4.3 (Computability of the solutions [GZB06])

Let E ⊆Rm+1 be a c.e. open set and f : E→Rm be effectively locally Lipschitz
in the second argument. Let (α,β) be the maximal interval of existence of
the solution x(t) of the initial-value problem ẋ = f (t,x), let x(t0) = x0, and let
(t0,x0) be a computable point in E. Then:

1. The operator (f ,x0) 7→ (α,β) is semicomputable (i.e. α can be computed
from above and β can be computed from below) and

2. The operator (f ,x0) 7→ x(·) is computable.

Theorem 4.4.4 (Perturbed reachability is co-r.e.)
Consider a continuous-time dynamical system, with f locally Lipschitz, com-

putable, whose domain is a computable compact, then, for all computable x,
RH

ω (x) = cls
(

RH
ω (x)

)
⊆ Rd is a co-c.e. closed subset.

Its proof can be considered as the main technical result established in [PBV95]. An
alternative proof is similar to Theorems 4.2.28 and 4.2.6: adapt the construction of the
involved graph Gm to cover the flow of the trajectory. With our hypotheses, the solu-
tions are defined over all R. It is proved in [GZB06] that Lipschitz (and even effectively
locally Lipschitz) homogeneous computable ODEs have computable solutions over their
maximal domain.

Corollary 4.4.5 (Robust⇒ decidable)

Assume the hypotheses of Theorem 4.4.4. If RH is robust then for all comput-
able x, then for all computable x, RH (x) = cls

(
RH (x)

)
⊆ Rd is computable.

130

4.5 Other type of perturbations
Inspired by analogue computations [BGP17], when time has been related to the length of
trajectories, we can also consider time or length perturbations.

Time-perturbation We can start by considering time-perturbed TM. The idea is that
given n > 0, the n-perturbed version of M is unable to remain correct after a time n. Given
n > 0, the n-perturbed version of M is defined exactly likewise, except after a time greater
than n, its internal state q can change in a non-deterministic manner, if q ̸= qreject. The
associated language is Ln(M). From definitions: L(M)⊆ Lω(M)⊆ ·· · ⊆ L2(M)⊆ L1(M).
We call a language L length-robust if there exists a Turing machine M such that L =
L(M) = Lω(M).

Theorem 4.5.1 (Length robust⇒ decidable)

Lω(M) is in the class Π1. Consequently, whenever Lω(M) = L(M), L(M) is
decidable.

Proof. For a word w, w ̸∈ Lω(M), iff there exists n ∈ N such that w ̸∈ Ln(M). As Ln(M)
is decidable uniformly in n, the complement of Lω(M) is computably enumerable, as it
is the uniform in n union of decidable sets. We get that Lω(M) ∈ Π0

1 (co-computably
enumerable).

Theorem 4.5.2

When M always stops, Lω(M) = L(M).

Proof. We directly have L(M) ⊆ Lω(M). Let w ∈ Lω(M) =
⋂

n∈NLn(M), so ∀n ∈ N,
w ∈ Ln(M). By contradiction, we assume that L(M)⊊ Lω(M). So there exists w ∈ Lω(M)
such that w ̸∈ L(M). Since M always terminates, it rejects w after using a time q(ℓ(w)).
But, then w ̸∈ Ln(M) for any n≥ q(ℓ(w))+2 and hence w ̸∈ Lω(M), a contradiction.

Definition 4.5.3 (Level of robustness n given by t)

Given t : N→ N, we write L{t}(M) for the set of words accepted by M with
time perturbation t: L{t}(M) = {w| w ∈ Lt(ℓ(w))(M)}.

A length-robust dynamical system is necessarily t-robust for some function t, accord-
ing to the next definition:

Definition 4.5.4 (t-robust to time language)
We say that a language L is t-robust to time if there exists a TM M such that

L = L(M) = L{t}(M).

Obviously, if a language is t-robust to time for some function t : N→ N, then it is
length-robust.

131

Theorem 4.5.5 (Polynomially robust to time⇔ PTIME)

A language L is in PTIME iff for some M and some polynomial p, L= L(M) =
L{p}(M).
Furthermore, any PTIME language is reducible to PAM’s reachability: RH =
RP,p for some polynomial p.

Proof. This can be established for space perturbation. In an independent view, the in-
tuition of the proof is that the polynomial in n can be seen as a time-out. M works in
polynomial time p(n), so in at most p(n) steps, so the machine for Ln(M) can reject if it
has not accepted or rejected in p(n) steps.

(⇒) If M always terminates and works in polynomial time, then there exists a polyno-
mial q that bounds the execution time of M, so we have a polynomial p := q(n)+1 such
that, for n ∈ N, L{p}(M)⊆ L(M). We have the other inclusion by definition.

(⇐) We have L{p}(M) ∈ PTIME and since L{p}(M) = L, then L ∈ PTIME.

Length-perturbation As we said, inspired by analogue computations [BGP17], we can
also consider length perturbations: Fix a distance δ (·, ·) over the domain X . A finite
trajectory of a discrete-time dynamical system H is a finite sequence (xt)t∈0...T such that
xt+1 = f(xt) for all 0≤ t < T . Its associated length is defined as L = ∑

T−1
i=0 δ (xi,xi+1).

We consider a length-perturbed discrete-time dynamical system: given L > 0, the L-
perturbed version of the system is unable to remain correct after a length L. We define
RH ,L(x,y) as there exists a finite trajectory of H from x to y of length L ≤ L.

When considering TMs as dynamical systems, δ (·, ·) is a distance over configurations
of TMs. Word w is said to be accepted in length d if the trajectory starting from C0[w] to
the accepting configuration has length ≤ d.

Definition 4.5.6

Distance δ (C,C′) is called time-metric iff for all configurations C and C′ of a
Turing machines, if C ⊢C′, we have δ (C,C′)≤ p(ℓ(C)), and δ (C,C′)≥ 1

p(ℓ(C))

for some polynomial p.

Write L (M, t) for the set of words accepted by M in length less than t.

Definition 4.5.7 (Tolerating some level of robustness L given by f)

Given f : N→ N, we write L(f)(M) for

L(f)(M) = {w| w ∈L (M, f (ℓ(w))}.

Theorem 4.5.8 (Length robust for some time-metric distance⇔ PTIME)

Assume δ (·, ·) is time metric. Then, a language L is in PTIME iff for some
TM M and some polynomial p(n), L = L(M) = L(f)(M).

Proof. Let w be the input of size n. The execution of a TM is a sequence (Ci) = (qi, li,ri).

132

(⇒) If L is in PTIME, so there is a TM M that computes L in polynomial time
p(n). Since the distance between two successive configurations Ci,Ci+1 is bounded by a
polynomial q in the length of Ci, and since ℓ(Ci)≤ n+ i≤ n+ p(n), for i≤ p(n), we have
that the total length L is

L ≤
p(n)−1

∑
i=0

d (Ci,Ci+1)≤
p(n)−1

∑
i=0

q
(
n+ p(n)

)
,

which is a polynomial in n. Thus L is computable in polynomial length.
(⇐) If L is computable in polynomial length p(n). Let T be fixed. Then we have, for

all i ∈ {1 . . .T}: d (Ci,Ci+1)≥ 1
poly(ℓ(Ci))

, thus

T−1

∑
i=0

d (Ci,Ci+1)≥
T

poly(ℓ(Cmin))
,

where Cmin is chosen to minimise the previous lower bound.
Take T = p(n)× poly(ℓ(Cmin)), we have that a TM simulating the trajectory will

accept or reject after a polynomial number of steps, thus L ∈ PTIME.

One way to obtain a distance δ (C,C′) is to take the Euclidean distance between ϒ(C)
and ϒ(C′) for γ = γ[0,1], where γ[0,1] and ϒ are the functions considered in Section 2.3.1.

Proposition 4.5.9
The obtained distance is time-metric.

Proof. We consider Ci = (qi, li,ri) and Ci+1 = (qi+1, li+1,ri+1), with Ci ⊢Ci+1. We write
li = γ(li) and ri = γ(ri). Then, from the definition of ϒ and γ[0,1]:

• |ri+1− ri| ≤ 1.

•
∣∣∣li+1− li

∣∣∣≤ 1.

• And the gaps between ri+1 and ri and li+1 and li remain polynomial in the size of a
configuration.

This provides property 1. By the encoding of the real numbers over the tapes of the TMs,
the gap between two consecutive configurations is at least 1

2 (we assume that the TM is not
allowed not to do anything: that would correspond to a looping situation). This provides
property 2.

Given f : N→ N, we write RM,(f) for the set of words accepted by M with length
perturbation f : RM,(f) = {w| w ∈ RM, f (ℓ(w))}.

Theorem 4.5.10 (Polynomially length robust⇔ PTIME)

Assume distance d is time-metric and RM = RM,(p) for some polynomial p.
Then RM ∈ PTIME.

Proof. Since d is time-metric, a polynomial time and polynomial length are essentially
the same, so the proof is very analogous to the one of Theorem 4.5.8.

133

4.6 Properties of provably robust TM
We adopt a point of view that may help us understand the type of results we established
for dynamical systems in the previous sections. We will see in Chapter 6 that being
robust means that some facts, here reachability properties, hold provably. For example,
Proposition 4.2.14 states that reachability is true or (ε−) false. Somehow, we have a proof
that (non-)reachability holds. We illustrate this idea in this section with TMs and what
robustness means in that context.

In this section we fix some concept of proof: say, provability in first-order logic start-
ing from Peano’s axioms of arithmetic.

On some input w, a Turing machine either halts (in that case the sequence of successive
configurations starting on C0[w] provides a proof of that fact) or it does not. From Gödel’s
incompleteness theorem (Theorem 2.7.1), there is a difference between provable valid
statements and valid statements. We thus distinguish the case where there exists a proof of
non-termination from the case where there is no proof of it. This leads to the introduction
of the following concept:

Definition 4.6.1 (Provably-Robust Turing machine)
A Turing machine M is provably robust if, for all inputs, either the machine M
halts or there is proof that it does not halt.

In other words, a non-provably robust Turing machine is a Turing for which there is
an input w on which it does not halt, but for which there is no proof of that fact.
NB 4.6.2

We dealt with another notion of robustness of TMs in Section 4.1. It is not clear if
those definitions of robustess and provable-robustness are the same or are equivalent.

Theorem 4.6.3 (A statement for Turing machines)
The halting problem is decidable for provably robust Turing machines.

Proof. Given some Turing machine M and some input w, run the two following proced-
ures in parallel

1. simulate M on w: if M accepts w, then halt and accept; if M rejects w, then halt and
reject.

2. search for a proof π of the fact that M does not halt on w. If such a proof is found,
then halt and reject.

By the robustness hypothesis, this algorithm always halts and is correct.

Definition 4.6.1 has similarities with the concept of robustness for Turing machines,
and more general dynamical systems, considered in [AB01]. The reasoning for establish-
ing decidability can be interpreted as a variation on the previous proof, by playing on the
concept of proof π involved: the problem is proved c.e. and co-c.e., hence decidable.
NB 4.6.4

There is no “free lunch theorem”: we can not decide if a Turing machine is provably

134

robust.

Uncompleteness and relative completeness

The statement of Theorem 4.6.3 might be considered as frustrating, as it does not provide
an understanding of what proof of non-termination looks like. We show in this section
that this corresponds to finding an invariant, preserved by the machine’s transitions. We
state that there is a parallel between what is done in this section for Turing machines and
our discussion about more general dynamical systems.

Provably halting

Using the same ideas as in the proof of Theorem 2.7.4, we can derive the following the-
orem. Given a configuration C, we write C |=I φ for the fact that φ ∈ Assn holds in C. As
in Hoare’s logic, this is a semantic notion (I stands for interpretation).

Theorem 4.6.5 (Relative Completeness)
A Turing machine M provably does not halt (resp. does not halt on input w) iff
there is some formula A∗ ∈ Assn (Section 2.7) such that:

1. Initialisation: C0[w] |=I A∗: any (resp. the) initial configuration satisfies
A∗

2. A∗ is provably an invariant:

C |=I A∗ C ⊢C′

C′ |=I A∗
invariance of A∗

3. A∗ implies non-termination: C |=I A∗⇒ nonhalting(C).

Proof. If there is such an A∗ ∈ Assn, then the Turing machine M is not terminating.
Conversely, the point is that there always exists such an A∗.

The key is that Assn (first-order logic or arithmetic), or (any sufficiently expressive
logic) is expressive: for every program c and assertion B ∈ Assn there is an assertion
A0 ∈ Assn corresponding to wp(c,B).

Theorem 4.6.6 ([Win93])
Assn is expressive.

As a consequence, {A}c{B} holds iff only A⇒ A0 iff it can be established using
the rule of consequence in Hoare’s logic. In the specific case of a triplet {A}c{false}
corresponding to the non-termination of Turing machine C, we get Theorem 4.6.5.

NB 4.6.7
It is also possible to do an independent direct proof of the theorem. Consider NotHalt
to be the set of configurations C from which the execution of the Turing machine
diverges. If we write C for the set of configurations, the trick is that for a configuration

135

C and an interpretation I, we have C ∈ NotHalt iff

∀k∀C0, . . . ,Ck ∈ C [C =C0&

∀i(0≤ i < k).
(

Ci |=I nonhalting(Ci)&

Ci ⊢Ci+1)⇒
(

Ck |=I nonhalting(Ck)
) (4.1)

This can be written as an equivalent formula of Assn, using β -predicate of Gödel
(see e.g. [Win93, Lemma 7.4]). The obtained formula satisfies all the conditions 1),
2) and 3) of Theorem 4.6.5.

In short, relatively complete means the difficulty is “just” being able to prove asser-
tions such as A⇒ w[c,B] (i.e. establishing |= A⇒ NotHalt) whenever |= A⇒ NotHalt,
but not on the method of Theorem 4.6.5.

And Theorem 4.6.5, means that a Turing machine is non-provably terminating iff
there is an invariant that is preserved by transitions of the Turing machine and that holds
provably.

4.7 Chapter Conclusion
We have proposed a theory explaining in an unified framework of various statements re-
lating robustness, defined as having a reachability relation non-sensitive to infinitesimal
perturbations, to decidability. We extended the approach of [AB01] in various directions.
In particular, we studied complexity properties of the problems, and not only computab-
ility.

Most of the statements in the spirit of the robustness conjecture have been established
using arguments from computability over the rationals or the reals, playing with variations
on the statement that a semi-computable and co-semi-computable set is decidable.

We also related the approach of [AB01] to the concept of δ -decidability of [GAC12],
as well as the drawability of the associated dynamics, linked with computable analysis.

Notice that the proposed approach could also cover the so-called hybrid systems
without deep difficulties. Various models have been considered in the literature for such
systems, but one common point is that they all correspond to continuous-time dynam-
ical systems, where the dynamics might be discontinuous, so not computable. In a very
general view, a hybrid system H is given by a set X ⊆ Rd , a semi-group T and a flow
function φ : X×T → X satisfying φ(x,0) = x and φ(φ(x, t), t ′) = φ(x, t + t ′).

Regarding analogue models of computation, the theory developed here can be used
to prove formally that space complexity corresponds to precision for continuous-time
models of computation. This is what we do in the next chapter. It has been done over
some compact domains, providing a more natural measure than the conditions considered
in [BGGP23]. A variation on our concept of robustness can also be used to provide
a characterisation of PSPACE for discrete-time ordinary differential equations on non-
bounded domains: this is also presented in Chapter 5.

We will extend the results of this chapter in Chapter 6. More precisely, we will adopt a
topological point of view, consider more general dynamical systems, in particular, defined
by group actions, and generalise the result for reachability to invariance properties. This
will allow us to apply the notion of robustness to subshifts and tilings.

136

Chapter 5

Algebraic Characterisations of
FPSPACE

L’univers engendre la complexité. La complexité en-
gendre l’efficacité. Mais l’efficacité n’engendre pas
nécessairement le sens. Elle peut aussi conduire au
non-sens.

Hubert Reeves

NB 5.0.1
This chapter is based on articles published in MFCS 2023 ([BB23], it received the Best
Paper Award of the conference) and ICALP 2024 [BB24b], except for Section 5.3. A
journal version of the MFCS paper has been accepted for publication in the Journal
of Logic and Analysis ([BB25]). We submitted a journal version of the ICALP paper.
Articles are both co-authored with Olivier Bournez.

We propose and prove in this chapter algebraic characterisations of FPSPACE, using
discrete and continuous ODEs, still in the framework of computable analysis. Notice that
some characterisations of complexity classes corresponding to PSPACE were obtained
[BCdNM03, BCdNM05] in the BSS model. There exist previous characterisations of
FPSPACE without explicit bounds, but for very different models of computation, e.g. for
term rewrite systems in [MP08] and for λ -calculus in [GMR08]. As far as we know, this
is the first time a characterisation of FPSPACE with discrete ODEs is proved.

If we forget the context of discrete ODEs, FPSPACE has been characterised in [Tho72]
but using a bounded recursion scheme, i.e. requiring some explicit bound in the spirit
of Cobham’s statement [Cob62]. We avoid this issue by considering numerically stable
schemes, which are very natural in the context of ODEs.

It is not the first time FPSPACE is characterised using continuous ODEs. However,
the existing characterisation [Goz22, BGGP23] has complicated conditions on ODEs (see
Section 2.6), while we have a simpler statement linking complexity to precision in a direct
manner. Notice that the latter approach dealt with polynomial ODEs, while we do not
restrict to polynomial ODEs. We obtain our statements by revisiting the approach of the
latter papers but working over a compact domain and dealing with error correction more
finely.

We argue here that space complexity is polynomially related and conversely to the nu-
merical stability of ODEs and their associated precision. We prove that a problem can be

137

solved in polynomial space if and only if it can be simulated by some numerically stable
ODE, using a polynomial precision. We prove it holds both for classical complexity over
the discrete (functions over the integers) and for space complexity for real functions in the
model of computable analysis. We give and prove here rather simple characterisations in
the model of computable analysis and without explicit bounds.

We start by giving a characterisation of FPSPACE with a scheme of discrete ODEs.
The proof is very similar to the characterisation of FPTIME by LDL◦ in Chapter 3. The
main difference is the scheme of discrete ODEs we consider.

Then, we give a characterisation of FPSPACE using continuous ODEs, hence with
a more natural concept of continuous time associated with ODEs. We both characterise
the case of polynomial space functions over the integers and the reals. The proof relies
on two inclusions, involving the characterisation with discrete ODEs: The first uses some
original polynomial space method for solving ODEs. For the other, we prove that Turing
machines, with a proper representation of real numbers, can be simulated by continuous
ODEs and not just discrete ODEs.

A significant consequence of our results is that the associated space complexity is
provably related to the numerical stability of involved schemas and the associated required
precision. We obtain that a problem can be solved in polynomial space if and only if it
can be simulated by some numerically stable ODE, using a polynomial precision.

In Chapter 3, we had the motto time complexity = length. In this chapter, we es-
tablish that space complexity corresponds to the precision we need in the computation.
Therefore, we get a motto of the form space complexity = precision here.

We organise this chapter as follows: in Section 5.1 we provide a characterisation of
polynomial space for functions over the reals, using discrete ODEs. We use ideas and
proof from Chapter 3. We generalise our framework, by characterising FPSPACE with
continuous ODEs in Section 5.2.

5.1 Algebraic characterisation of PSPACE for functions
over the reals with discrete ODEs

We prove that by replacing the linear length ODE with a robust linear ODE scheme
(Definition 5.1.1) in LDL◦, we get a class RLD◦ (this stands for Robust Linear Deriv-
ation) with similar statements but for FPSPACE.

Definition 5.1.1 (Robust linear ODE)
A bounded function f is robustly linear ODE definable from g,h,u, with u

essentially linear in f(x,y) if:

1. it corresponds to the solution of

f(0,y) = g(y) and
δ f(x,y)

δx
= u(f(x,y),h(x,y),x,y), (5.1)

2. where the schema (5.1) is polynomially numerically stable (see below).

The main issue for space is the need to prove the schema given by Definition 5.1.1

138

guarantees f is in FPSPACE when u, g, and h are. Assuming condition (1) of Definition
5.1.1 would not be sufficient: the problem is that f(x,y) may polynomially grow too
fast or have a modulus function that would grow too fast. The point is, in Definition
5.1.1, we assumed f to be both bounded and satisfying (2), i.e. polynomial numerical
robustness. (2) means formally there exists some polynomial p such that, for all integer
n, for ε(n) = p(n+ ℓ(y)), with a =ε b standing for |a−b| ≤ ε , considering any solution
of 

ỹ =2−ε(n) y
h̃(x, ỹ) =2−ε(n) h(x, ỹ)
f̃(0, ỹ) =2−ε(n) g(y)
δ f̃(x,ỹ)

δx =2−ε(n) u(f̃(x, ỹ), h̃(x, ỹ),x, ỹ)

then, we have:
f̃(x, ỹ) =2−ε(n) f(x,y).

These hypotheses are sufficient to work with the precision given by this robustness
condition. These conditions guarantee the validity of computing with such approximated
values.

At a technical level, all our results are still obtained by proving Turing machines can
be suitably simulated with analytic discrete ODEs. We believe our constructions could be
applied to many other situations, where programming with ODEs is needed.
NB 5.1.2

For linear length ODEs, we did not have to explicit the numerical stability as a hypo-
thesis, as it comes directly from the fact that we consider solutions at most at some
logarithmic with respect to their arguments. But this is required here to guarantee the
computability of the solution (and even polynomial space computability).

NB 5.1.3
Notice that, over the continuum, even computable ODEs may have no computable
solution [PER79]. Over the discrete, not all dynamics can be simulated and numerical
stability becomes an issue. See Section 2.1 for more details.

In other words:

Proposition 5.1.4

All functions of RLD◦ are computable (in the sense of computable analysis)
in polynomial space.

RLD◦=
[

0,1,πk
i , ℓ(x) ,+,−, tanh,

x
2
,

x
3

;composition, linear robust discrete ODE
]

5.1.1 Characterisation of FPSPACE and generalisations
We now prove that RLD◦ provides a characterisation of FPSPACE.

First, the discrete part of RLD◦ characterises FPSPACE for functions in
(
Nd
)Nd′

:

139

Theorem 5.1.5

DP(RLD◦) = FPSPACE∩NN

Theorem 5.1.6 (Generic functions over the reals)

RLD◦∩RR = FPSPACE∩RR.
More generally:

RLD◦∩RNd×Rd′
= FPSPACE∩RNd×Rd′

.

We obtain these statements for polynomial space computability (Theorems 5.1.5 and
5.2.2) replacing LDL◦ by RLD◦, using similar reasoning about space instead of time in
Proposition 3.2.26, and Proposition 5.1.7 instead of Proposition 3.2.23.

Namely, we prove:

Proposition 5.1.7

Consider some Turing machine M computing some function f : Σ∗ → Σ∗ in
space S(ℓ(w)), for some polynomial S, on input w. There exists some function
f̃ : N2×R→ R in RLD◦ such that ∥ f̃ (2m,2S(ℓ(w)),γword(w))− γword(f (w)) ≤
2−m∥.

Proof. The idea is the same as Proposition 3.2.23, but not working with powers of 2
and with linear ODE: define the function Exec that maps some time t and some initial
configuration C to the configuration at time t. This can be obtained using the fact that:

Exec
(

2m,0,2S,C
)

= C

Exec
(

2m, t +1,2S,C
)

= Next
(

2m,2S,Exec
(

2m, t,2S,C
))

.

In order to claim this is a robust linear ODE, we need to state that Exec
(

2m, t,2S,C
)

is polynomially numerically stable: but this holds, since to estimate this value at 2−n it is
sufficient to work at precision 4−max(m,n,S+2) (independently of t, from the rounding).

We can then get the value of the computation as Exec
(

2m,2S(ℓ(w)),2S(ℓ(w)),Cinit

)
on

input w, considering Cinit = (q0,0,γword(w)). By applying some projection, we get the fol-

lowing function f̃ (2m,2S,y) = π3
3

(
Exec

(
2m,S,2S,(q0,0,y)

))
that satisfies the property.

The proof of Theorem 5.1.6 is then direct, using similar to those of Chapter 3 for
FPTIME.

5.2 Characterisation with Continuous ODEs
When considering space complexity, we now consider the case of ODEs with classical
derivation. Hence, we want to use only functions over the reals and continuous derivation

140

(Definition 1.2.1). As mentioned before, for functions over the reals, an important issue
is numerical stability. While discussing all these issues, we propose an algebraic charac-
terisation of PSPACE, using continuous ODEs with the following algebra (RCD stands
for Robust Continuous Differential) (Schema robust continuous ODE is formally defined
in Definition 5.2.3):

RCD=

[
0,1,πk

i ,+,−,×, tanh,cos,π,
x
2
,

x
3

;composition,robust continuous ODE
]
.

where cos is the cosinus function.

Theorem 5.2.1

DP(RCD) = FPSPACE∩NN

We prove this theorem in Subsection 5.2.6. We also characterise functions over the
reals computable in polynomial space, inspired by the characterisation of Section 5.1: we
add a limit schema ELim to RCD. If we consider

RCD=

[
0,1,πk

i ,+,−,×, tanh,cos,π,
x
2
,

x
3

;composition,robust continuous ODE,ELim
]

then:

Theorem 5.2.2 (Generic functions over the reals)

RCD∩RR = FPSPACE∩RR. More generally:

RCD∩RNd×Rd′
= FPSPACE∩RNd×Rd

.

We prove this theorem in Subsection 5.2.7.
A first step is to study how to solve continuous ODEs and managing space.

5.2.1 Solving efficiently ODEs: a space efficient method
As we saw in Section 2.1, it is not easy to solve ODEs in the general case and it might even
be non-computable or with unbounded complexity. We propose an original alternative ap-
proach to optimize space complexity: this can be seen as either using a non-deterministic
algorithm that “guesses” the correct intermediate positions of the dynamics or, from the
proof of Savitch’s theorem approach, as an original recursive method to solve ODEs.

Concretely, from the flow property, a strategy to compute Φ(f0,T) is either to use a
particular numerical method if T is small, says smaller than ∆ > 0. Otherwise, we know
that Φ(f0,T) = Φ(z,T/2), the trajectory at time T starting from f0, where z = Φ(f0,T/2).
This always holds, so if we can compute both quantities, we will solve the problem.

The difficulty is that we cannot precisely compute z in practice, but some numerical
approximation z̃. If the system is numerically stable, we may assume this strategy works.
The case when this strategy will not work is if the trajectory starting from z̃, for the second
half of the work from time T/2 to T , has a behaviour different from the one starting in z:
in other words, if there is a high instability somewhere, namely in z.

This leads to the following concept:

141

Definition 5.2.3 (Robust (continuous) ODE)

A function f : Rd+1→ Rd′ is robustly ODE definable (from initial condition g,
and dynamic u) if

1. it corresponds to the solution of the following continuous ODE:

f(0,x) = g(x) and
∂ f(t,x)

∂ t
= u(f(t,x), t,x), (5.2)

2. and there is some rational ∆ > 0, and some polynomial p such that the
schema (5.2) is (polynomially) numerically stable on [0,∆]: for all in-
teger n, considering η(n) = p(n+ ℓ(⌈x⌉)) we can compute f(t,x) at pre-
cision 2−n by working a precision 2−η(n): if you consider any solution
of x̃ =2−η(n) x, f̃(0, x̃) =2−η(n) g(x) and ∂ f̃(t,x̃)

∂ t =2−η(n) u(f̃(t, x̃), t, x̃) then
f̃(t, x̃) =2−n f(t,x) when 0≤ t ≤ ∆.

3. For t ≥ ∆, we can compute f(t,x) at precision 2−n by computing

some approximation ˜f(t/2,x) of f(t/2,x) at precision 2−η(n), i.e. of

Φ(g(x), t/2), and some approximation of Φ(˜f(t/2,y), t/2), working at
precision 2−η(n).

NB 5.2.4
For more clarity and conciseness, we will assume in the proofs that d = d′ = 1, as it
can be easily extended to more general cases.

Example 5.2.5
We illustrate the idea of our method. Consider the following dynamic corresponding
to solving some ODE f ′(t) = u(f (t)), where IC stands for “Initial Condition”:

t∆

IC, t0 = 0

We want to solve it, meaning comput-
ing u(t) at t, with t ̸∈ [0,∆] at precision
2−n, with initial condition t0 = 0.

For that we do the computation at t
2 .

Here, t
2 ̸∈ [0,∆].

t∆

IC, t0 = 0

142

t∆

IC, t0 = 0

Thus, we do the computation at t
4 .

Here t
4 ∈ [0,∆]. Then, we can compute

u(t) from u(t
2) and u(t

4).

Concretly:

• Computation at t = x is done at pre-
cision 2−n, with IC t = 0;

• Computation at t = t0 + x
2 is done

at precision 2−η(n), with IC t0 ∈
{0, x

2};

• Computation at t = t0 + x
4 is done

at precision 2−γ(n), with IC t0 ∈

{0, x
4 ,

x
2 ,

3x
4 }.

at 2−n

t∆

at 2−η(n)

at 2−γ(n)IC, t0 = 0

with η(·) and γ(·) being polynomials in our context.

Using this principle, we get:

Theorem 5.2.6
Consider an IVP as in the previous definition. If g and u are computable in

polynomial space, then the solution f can be computed in polynomial space.

Intuitively, from the definitions and previous arguments, all bits of Φ(y, t) can be
computed non-deterministically with precision 2−n using computations with precision
η(n), hence is in NPSPACE, so in PSPACE by Savitch theorem (Theorem 1.3.30). It
can also be proved with a deterministic polynomial space recursive algorithm.

The above theorem is the key argument to obtain one direction of our main theorems.
We now go in the reverse direction. This requires talking about discrete ODEs, and some
previous constructions.

Conversely, we need to simulate TMs with continuous ODEs.

5.2.2 Simulating a discrete ODE using a continuous ODE
We first prove that it is possible to simulate a discrete ODE with a continuous ODE.
The underlying basic idea to simulate a discrete dynamic by an ODE can be attributed
to Branicky in [Bra95] and has been improved in many ways by several authors. We
present here the basic ideas, reformulated in our context. A more precise analysis will
come (Proposition 5.2.26).

143

Definition 5.2.7 (“Ideal iteration trick” [Bra95])
Consider the following initial value problem for a discrete ODE, given by

functions g and u: 
f(0,x) = g(x)

δ f
δ t

(t,x) = u(f(t,x), t,x)
(5.3)

Then, let G(v, t,x) = u(v, t,x)+v, and consider the (continuous) IVP:
y1(0,x) = y2(0,x) = g(x)
y′1 = c(G(r(y2),r(t),x)−y1)

3
θ(sin(2πt))

y′2 = c(r(y1)−y2)
3
θ(−sin(2πt))

(5.4)

where c a constant, θ(x) = 0 if x ≤ 0 and θ(x) > 0 if x > 0. Here, r is a
rounding function: we mean, by construction, G preserves the integers, and r is
a function that maps a real value close to some integer to this integer: assume,
say, that for z ∈ [n− 1

4 ,n+
1
2], r(z) = n, for any integer n ∈ Z. We abusively

write r(y) for applying function r : R→ R componentwise on vector y.

NB 5.2.8
We do not need to specify what r(z) values for a z not in such an interval: the following
reasoning remains correct, whatever it is.

Then,

Proposition 5.2.9
The solution of continuous ODE (5.4) simulates in a continuous way the dis-
crete ODE (5.3).

Indeed, the idea is that y1 corresponds to the actual computation of the iterates of G
(and hence computes the successive values of f) and y2 acts as a “memory” equation. Let
us detail how it works.
NB 5.2.10

We describe here an “ideal” computation, as θ(x) is exacly 0 when x ≤ 0, and r(z)
is exactly some integer on suitable domains. Later in the thesis, we will deal with a
not-so-ideal θ and r.

Initially, f(0,x) = y1 (0,x) = y2 (0,x) = g(x). For t ∈ [0,1/2], we have

θ
(
−sin(2πt)

)
= 0,

and hence y′2 = 0, so y2 is fixed and kept at value g(x) for t ∈
[
0, 1

2

]
. Consequently, for

t ∈
[
0, 1

2

]
, r (y2) is also fixed and kept at value g(x), and r(t) is also fixed and kept at value

0. Consequently, on this interval, if we write C(t) = cθ
(
sin(2πt)

)
, then the dynamics of

y1 is given by

y′1 =C(t)
(

G
(
g(x),0,x

)
−y1

)3
(5.5)

144

Then, a key is to analyse such ODE:

Lemma 5.2.11 (Analysis of ODE (5.5))

The solution y1(t,x) of ODE (5.5) is converging to G
(
g(x),0,x

)
for any initial

condition. Furthermore, for any initial condition y1(0,x) ̸= G(g(x),0,x), we
have

∥∥∥y1

(
1
2 ,x
)
−G

(
g(x),0,x

)∥∥∥≤ √
2

2

√∫ 1
2

0 C(z)dz

.

Proof of Lemma 5.2.11, Adapted from [Bra95]. If initially, or at any instant:

y1(0,x) = G(g(x),0,x)

then the result holds, as y′1 = 0, and y1 remains constant. Otherwise, we have

y′1(
G
(
g(x),0,x

)
−y1

)3 =C(t).

Integrating this equality between 0 and t, we obtain

1

2
(

G
(
g(x),0,x

)
−y1(t)

)2 −
1

2
(

G
(
g(x),0,x

)
−y1(0)

)2 =
∫ t

0
C(z)dz,

hence 1

2
(

G(g(x),0,x)−y1(t)
)2 ≥

∫ t
0 C(z)dz. This yields the property.

In particular, for any m∈N, we can select constant c such that for any initial condition
y1(0,x), ∥∥∥∥y1

(
1
2
,x
)
−G

(
g(x),0,x

)∥∥∥∥≤ 2−m

Consequently, y1(t,x) will approach G(g(x),0,x) = f(1,x) on this interval. Thus,
y1(

1
2 ,x) =ε f(1,x) and y2(

1
2 ,x) = g(x), for some ε > 0, that we can consider less than

1
4 = 2−2, by selecting a big enough constant c (just taking m = 2 above). At t = 1

2 , y1 will
hence have simulated one step of discrete ODE (5.3).

Now, for t ∈
[

1
2 ,1
]

the roles of y1 and y2 are exchanged : y′1(t,x) = 0, so y1 is kept
fixed, y2 approaches r(y1) = f(1,x), thus y1(1,x) =ε y2(1,x) =ε f(1,x).

By induction, from the same reasoning, we obtain that, for all n ∈ N, y1(n,x) =ε

y2(n,x) =ε f(n,x), and actually, we also have

y1

(
t +

1
2
,x
)
=ε y2 (t,x) =ε f(n,x)

for all t ∈
[
n,n+ 1

2

]
, for any integer n.

To implement such an ODE, we must fix a function θ(x) with the above property.
Taking ReLU(x) = max(0,x) would satisfy it, but it is not a derivable function, and hence
would not lead to a (classical) ODE. We could then take θ(x) = 0 for x≤ 0, and exp

(
−1

x

)
for x > 0. The point is that such a function is not real analytic. The base functions we

145

consider in our class RCD are all real analytic, and real analytic functions are preserved by
composition, so we cannot get such a function by compositions from our base functions.
Furthermore, it is known that a real analytic function that is constant on some interval
(we assumed it is 0 for x ≤ 0) is constant. Hence, the above-considered function θ(x)
cannot be real analytic. So, implementing this trick cannot be done directly using our
base functions, using only compositions.

In Proposition 5.2.26, we will do a similar construction, but we improve it to deal
with errors and not exact functions θ(z) and r(x). Furthermore, here the purpose of the
function r was to correct errors around integers, i.e. around Z: this will be possibly
around other Zδ = {nδ |n ∈ Z} for some δ > 0. We will then naturally assume that for
z ∈
[
nδ − 1

4δ ,nδ + 1
2δ

]
, r(z) = n, for any integer n ∈ Z, to have a similar reasoning as

the one above where δ = 1.
Before doing so, we need to revisit some previous constructions.

5.2.3 Revisiting some previous constructions
Our proofs rely on some constructions from Chapter 3. Concretely, we need to simulate
the execution of a Turing machine (TM) by some dynamical system over the reals. This
requires to encode the configurations of a Turing machine into some real numbers.

We denote by RCD∗ the algebra:

[0,1,πk
i ,+,−,×, tanh,cos,π,

x
2
,

x
3

;composition].

NB 5.2.12
This is close to the class:

LDL◦ = [0,1,πk
i , ℓ(x) ,+,−, tanh,

x
2
,

x
3

;composition, linear length ODE],

considered in Chapter 3, but without the function ℓ(x), and without the possibility of
defining functions using linear length ODE (and with multiplication added).

We will reuse some of the construction from Chapter 3 but avoid systematically any
use of linear length ODE and the length function ℓ(x). Furthermore, the class considered
in Chapter 3 is mixing functions from the integers to the reals, and from the reals to the
reals, and we need to keep only functions over the reals. So we need to avoid completely
any discrete function that can be considered there, in particular any computation of 2m

from some m.
First, we improve Lemma 5.2.11 and we observe that considering Y (x,z) = 1+tanh(4xz)

2
would yield a function in RCD∗: we avoid the computation of 2m by a substitution of a
variable, and using a multiplication. We then write ReLU-s(Y,x) for xY (x,z): we have∣∣ReLU-s(2m,x)−ReLU(x)

∣∣≤ 2−m.
In particular, this was used to prove we can uniformly approximate the continuous

sigmoid functions (when 1
b−a is in LDL◦) defined as s(a,b,x) = 0 whenever w ≤ a, x−a

b−a
whenever a≤ x≤ b, and 1 whenever b≤ x.

146

Lemma 5.2.13 (Uniform approximation of any piecewise continuous sigmoid)

Assume a,b, 1
b−a is in RCD∗. Then there is some function C -s(z,a,b,x) ∈

RCD∗ such that for all integer m,∣∣C -s(2m,a,b,x)− s(a,b,x)
∣∣≤ 2−m.

Proof. Take C -s(z,a,b,x) =
(x−a)Y(x−a,z21+c)−(x−b)Y(x−b,z21+c)

b−a . Observing that

(b−a)s(a,b,x) = ReLU(x−a)−ReLU(x−b),

From triangle inequality, it will hold, choosing c with 1
b−a ≤ 2c.

In Chapter 3, Theorem 3.2.9, we proved the existence of some function corresponding
to a continuous (controlled) approximation of the fractional part function in LDL◦. Here,
we prove an approximation of {·} in RCD∗.

Definition 5.2.14 (Real extension)
A real function is a real extension of a function over the integers if they coincide
for integer arguments.

It is not clear that we have an extension over the reals of ξ in our algebra RCD∗, but
if we add a real extension of such a function, from the proof of Corollaries 3.2.10, 3.2.11,
3.2.12, 3.2.13, 3.2.1 and 3.2.14, we obtain a similar bestiary of functions.

Definition 5.2.15 (RCD∗+ξ)

We write RCD∗+ξ for the algebra where some real extension of function ξ is
added as a base function.

We prove in Lemma 5.2.28 that such extension exists.

Corollary 5.2.16

There exist ξ1,ξ2 : N2×R 7→ R ∈ RCD∗+ξ such that, for all n,m ∈ N, ⌊x⌋ ∈
[−2n + 1,2n], whenever x ∈

[
⌊x⌋− 1

2 ,⌊x⌋+
1
4

]
,
∣∣ξ1(2m,2n,x)−{x}

∣∣ ≤ 2−m,

and whenever x ∈
[
⌊x⌋,⌊x⌋+ 3

4

]
,
∣∣ξ2(2m,2n,x)−{x}

∣∣≤ 2−m.

Proof. ξ1 (M,N,x) = ξ

(
M,N,x− 3

8

)
− 1

2 and ξ2 (M,N,x) = ξ

(
N,x− 7

8

)
.

Corollary 5.2.17

There exist σ1,σ2 : N2 ×R 7→ R ∈ RCD∗ + ξ such that, for all n,m ∈ N,
⌊x⌋ ∈ [−2n +1,2n], whenever x ∈

[
⌊x⌋− 1

2 ,⌊x⌋+
1
4

]
,
∣∣σ1(2m,2n,x)−⌊x⌋

∣∣ ≤
2−m, and whenever x ∈ I2 =

[
⌊x⌋,⌊x⌋+ 3

4

]
,
∣∣σ2(2m,2n,x)−⌊x⌋

∣∣≤ 2−m.

Proof. σi (M,N,x) = x−ξi (M,N,x).

147

Corollary 5.2.18

There exist λ : N2×R 7→ [0,1] ∈ RCD∗+ ξ such that for all m,n ∈ N, ⌊x⌋ ∈
[−2n +1,2n], whenever x ∈

[
⌊x⌋+ 1

4 ,⌊x⌋+
1
2

]
,
∣∣λ (2m,2n,x)−0

∣∣ ≤ 2−m, and

whenever x ∈
[
⌊x⌋+ 3

4 ,⌊x⌋+1
]
,
∣∣λ (2m,2n,x)−1

∣∣≤ 2−m.

Proof. λ (M,N,x) = C -s
(

2M,1/4,1/2,ξ
(
2M,N,x−9/8

))
.

Corollary 5.2.19

There exist mod 2 : N2 × R 7→ [0,1] ∈ RCD∗ + ξ such that for
all m,n ∈ N, ⌊x⌋ ∈ [−2n +1,2n], whenever x ∈

[
⌊x⌋− 1

4 ,⌊x⌋+
1
4

]
,∣∣ mod 2(2m,2n,x)−⌊x⌋ mod 2

∣∣≤ 2−m.

Proof. mod 2 (M,N,x) = 1−λ

(
M,N/2, 1

2x+ 7
8

)
.

Corollary 5.2.20

There exist ÷2 : N2×R 7→ [0,1] ∈ RCD∗+ξ such that for all m,n ∈ N, ⌊x⌋ ∈
[−2n +1,2n], whenever x ∈

[
⌊x⌋− 1

4 ,⌊x⌋+
1
4

]
,
∣∣÷2(2m,2n,x)−⌊x⌋//2

∣∣ ≤
2−m, with // the integer division.

Proof. ÷2(M,N,x) = 1
2

(
σ1 (M,N,x)− mod 2 (M,N,x)

)
.

Similarly, the equivalent of Lemmas 3.2.15, 3.2.17, 3.2.19 still hold in RCD∗+ξ :

Lemma 5.2.21 (Generalisation of Lemma 3.2.15)

There exists C -if ∈ RCD∗+ ξ such that, l ∈ [0,1], if we take |d′− 0| ≤ 1/4,
then ∣∣C -if(2m,d′, l)−0

∣∣≤ 2−m

and if we take |d′−1| ≤ 1/4, then∣∣C -if(2m,d′, l)− l
∣∣≤ 2−m.

148

Lemma 5.2.22 (Generalisation of Lemmas 3.2.18 and 3.2.17)
Let α1,α2, . . . ,αn be some integers, and V1,V2, . . . ,Vn some constants. We

write
send(αi 7→Vi)i∈{1,...,n}

for the function mapping any x ∈
[
αi−1/4,αi +1/4

]
to Vi, for all i ∈

{1, . . . ,n}.
There is some function in RCD∗+ξ , that we write

C -send(2m,αi 7→Vi)i∈{1,...,n} ,

mapping any x∈
[
αi−1/4,αi +1/4

]
to a real at distance at most 2−m of Vi, for

all i ∈ {1, . . . ,n}.

Lemma 5.2.23 (Generalisation of Lemmas 3.2.19 and 3.2.20)
Let N ∈ N. Let α1,α2, . . . ,αn be some integers, and Vi, j for 1 ≤ i ≤ n some

constants, with 0≤ j < N. We write

send
(
(αi, j) 7→Vi, j

)
i∈{1,...,n}, j∈{0,...,N−1}

for the function that maps any x ∈
[
αi−1/4,αi +1/4

]
and y ∈[

j−1/4, j+1/4
]

to Vi, j, for all i ∈ {1, . . . ,n}, j ∈ {0, . . . ,N−1}.
There is some function in RCD∗+ξ , that we write:

C -send
(
2m,(αi, j) 7→Vi, j

)
i∈{1,...,n}, j∈{0,...,N−1} ,

mapping any x ∈
[
αi−1/4,αi +1/4

]
and y ∈

[
j−1/4, j+1/4

]
to a real at

distance at most 2−m of Vi, j, for all i ∈ {1, . . . ,n}, j ∈ {0, . . . ,N−1}.

Working with one step of a Turing machine

As in the proof of Lemma 3.2.22, we encode one transition in a Turing machine using the
functions of Corollaries 5.2.16, 5.2.17, 5.2.18, 5.2.19, 5.2.20:

Lemma 5.2.24 (Generalisation of Lemma 3.2.21)

We can construct some function Next in RCD∗+ ξ that simulates one step
of M, i.e. computing the Next function sending a configuration C of Turing
machine M to C′, where C′ is the next one: ∥Next(2m,2S,C)−C′∥ ≤ 2−m.
Furthermore, it is robust to errors on its input, up to space S: considering
∥C̃−C∥ ≤ 4−(S+2), ∥Next(2m,2S,C̃)−C′∥ ≤ 2−m remains true.

Converting integers and dyadics to words and conversely

In Chapter 3, we defined some functions for converting integers and dyadics to their
encoding as words, and conversely. Namely, we consider the following encoding: every
digit in the binary expansion of dyadic d is encoded by a pair of symbols in the radix 4

149

expansion of d ∈I ∩ [0,1]: digit 0 (respectively: 1) is encoded by 11 (resp. 13) if before
the “decimal” point in d, and digit 0 (respectively: 1) is encoded by 31 (resp. 33) if after.
For example, for d = 101.1 in base 2, d = 0.13111333 in base 4. Conversely, given d, we
provided a way to construct d: Lemma 3.2.24 and Lemma 3.2.25.

As for ξ , it is not clear that we have some real extensions of these functions in RCD∗:
we write RCD∗+ξ +Decode+Encode for the algebra where we add some real extension
of these functions as a base function.

5.2.4 Constructing the missing functions
We need to construct some substitute of “missing functions” (ξ , Decode and EncodeMul).
All of them were defined in Chapter 3 using discrete ODEs. An idea is to use a continuous
ODE to simulate the respective discrete ODEs: we hence revisit the construction of the
ideal iteration trick of Section 5.2.2, dealing with errors and not exact functions θ(z) and
r(x).

The key is to revisit Lemma 5.2.11 and do a more detailed analysis of possible in-
volved errors in dynamics of the form (5.5). Various authors have studied this dynamic
in several articles, including [Bra05, CMC00, GCB05, BGP16a, Goz22]. We use the fol-
lowing statement from [Goz22, Lemma 4.5], [BGGP23, Lemma 5.2], obtained basically
by a case analysis of error propagations in Lemma 5.2.11.

Lemma 5.2.25 (Improved error analysis of ODE (5.5), [Goz22], [BGGP23])
Consider a point b∈R, some γ > 0 some reals t0 < t1, and a function φ :R→R
with the property that φ(t) ≥ 0 for all t ≥ t0 and

∫ t1
t0 φ(t)dt > 0. Let ρ,δ ≥ 0

and let b,E : R→ R be functions such that that |b(t)− b| ≤ ρ and |E(t)| ≤ δ

for all t ≥ t0. Then the IVP defined by

z′ = c(b(t)− z)3
φ(t)+E(t)

with the initial condition z(t0) = z0, where γ > 0 and c≥ 1
2γ2 ∫ t1

t0
φ(t)dt

satisfies

1.
∣∣z(t1)−b

∣∣ < ρ + γ + δ (t1− t0), independently of the initial condition
z0 ∈ R

2. min(z0,b−ρ)− δ (t1− t0) ≤ z(t) ≤ max(z0,b+ρ) + δ (t1− t0) for all
t ∈ [t0, t1].

Now, assume G is almost constant around Nδ and r is a rounding function around Nδ

for some δ > 0: for z ∈
[
nδ − 1

4δ ,nδ + 1
2δ

]
, r(z) = n, for any integer n ∈ Z:

150

Proposition 5.2.26 (Simulating a discrete ODE by a continuous ODE)

Suppose that, in (5.4), we replace function θ(z) and function r(z) by some
suitable approximations: we take θ(x) = ReLU(x), θε ′(x), rε ′(z) such that
θ(z) =ε ′ θε ′(z) and r(x) =ε ′ rε ′(x), and take constant c big enough. Then
the solution of the obtained ODE will continuously simulate the discrete ODE
(5.3), with the same bounds as in the analysis in Section 5.2.2, i.e. with error at
most ε if ε ′ is taken sufficiently small. To guarantee ε = 2−n, it is sufficient to
take ε ′ = 2−p(n) and θε ′(x) = ReLU-s(2p(n),x) for some polynomial p.

Proof. The key is that the involved errors additively propagate from Lemma 5.2.25.
Namely, they are in O(ε ′), but they are corrected from the reasoning in Section 5.2.2:
rounding function corrects errors or order ε whenever its argument is at a distance less
than 1

4δ of some nδ exactly as in the reasoning in Section 5.2.2 (where δ = 1, even if
now it introduces some error ε ′ at every step; but the latter is corrected at the next step).
Observe that the involved constant c is of order 2n.

More formally, we claim that for all n ∈ N,

y1(n,x) =ε y2(n,x) =ε f(n,x)

and

y1

(
t +

1
2
,x
)
=ε y2 (t,x) =ε f(n,x)

for all t ∈
[
n,n+ 1

2

]
.

For n = 0, initially f(0,x) = y1 (0,x) = y2 (0,x) = g(x). For t ∈
[
n,n+ 1

2

]
, we then

have θ
(
−sin(2πt)

)
=ε ′ 0, and hence y′2 =ε ′ 0, so y2 is kept close to value g(x) for t ∈[

0, 1
2

]
, with an error less than 1

2ε ′.

Consequently, for t ∈
[
0, 1

2

]
, r(y2) is kept close to a constant value g(x), when an

error less than ε ′, if we choose ε ′ < 1
4δ . Meanwhile, r(t) is also at a value close to n with

an error lesser than ε ′.
Consequently, on this interval, if we write C(t) = cθ

(
sin(2πt)

)
, then the dynamics of

y1 is given by a dynamic of the form of Lemma 5.2.25. This lemma states that y1(t,x)
will approach G

(
g(x),0,x

)
= f(1,x) on this interval, with an error of order ε ′+ ε ′+ 1

2ε ′.
Here the hypothesis that G is almost constant around Nδ means that its value is guar-

anteed to be at ε ′ from G
(
g(x),0,x

)
on the interval.

Thus, y1

(
1
2 ,x
)
=ε/2 f(1,x), if we choose 5

2ε ′ < ε

2 . At t = n+ 1
2 , y1 will hence have

simulated one step of discrete ODE (5.3), with an error less than ε

2 , and y2 will be close
to g(x) with an error less than ε ′ < ε

2 .

Now, for t ∈
[
n+ 1

2 ,n+1
]

the roles of y1 and y2 are exchanged: y′1(t,x) =ε ′ 0, so

y1 is kept almost fixed, with a new error less than 1
2ε ′. In the same time y2 approaches

r(y1) = f(1,x) by Lemma 5.2.25, with some new error of order less than 5
2ε ′ < ε

2 .
Consequently, we get the property at rank n+1.

NB 5.2.27
Somehow, the main idea is that the constructions always replace every function with

151

another that does not change much locally (i.e. changes in a controlled way). This is
the key that provides a robust ODE as in Definition 5.2.3, leading to polynomial space
complexity by Theorem 5.2.6.

In other words, whenever we have some discrete ODE as in (5.3) defining some func-
tion f(t,x), we can construct some continuous ODE, using only functions from RCD∗,
such that one of its projection provides a function f(z, t,x), with the guarantee f(2n, t,x)
is 2−n close to f(n,x), whenever t is close (at a distance less than 1

4) to some integer n.
This works, as we can obtain such a rε ′(x) from the functions from Corollaries 5.2.16,

5.2.17, 5.2.18, 5.2.19, 5.2.20: consider r (x,2m) = σ2

(
2m,2n,x+ 1

4

)
that works over

⌊x⌋ ∈ [−2n +1,2n], and observe that this is sufficient to apply the trick for the required
functions, from the form of the considered discrete ODE in Chapter 3.

Except that we have a bootstrap problem: ξ was defined using a discrete ODE in
Chapter 3 and as the functions from Corollaries 5.2.16, 5.2.17, 5.2.18, 5.2.19, 5.2.20 are
constructed above using ξ , we cannot apply this reasoning to get function ξ . But the point
is that for the special case of ξ , it is easy to construct a function in RCD that corresponds
to some real extension of ξ , as we have functions such as sin(x) = cos

(
π

2 − x
)

and π .

Lemma 5.2.28

Function ξ has some real extension in RCD∗.

Proof. If we succeed to obtain i(2m,2n,x) valuing ⌊x⌋ whenever x ∈
[
⌊x⌋,⌊x⌋+ 3

4

]
, we

are done, as we have ξ (2m,2n,x) by considering ξ (2m,2n,x) = x+ 7
8 − i

(
2m,2n,x+ 7

8

)
.

A possible solution is then the following: consider function Re(x) := s
(
x,0, e

2

)
, and

then te(x) =
(

1−Re
(
sin(2πx)

))(
1−Re

(
sin(4πx)

))
. If we put aside some interval of

width e
2 around 1

2 and 7
8 where it takes values in [0,1], it values 0 on

[
⌊x⌋,⌊x⌋+ 7

8

]
, and

then 1 on
[
⌊x⌋+ 7

8 ,⌊x⌋+1
]
. We can then consider Ie(t) = 8

∫ t
0 te(x)dx (i.e. the solution

of ODE l′e = 8te), and then i(t) =e·t le(t).
It is then sufficient to replace s by C -s, in the above expressions, in order to control

the error and make it smaller than 2−m.

Here is a graphical representation of
R 1

10
(x):

Then of R 1
10

(
sin(2πx)

)
:

152

and R 1
10

(
sin(4πx)

)
: We then get t 1

10
(x):

The integral of t 1
10
(·) is then close to 1

8⌊x⌋ on
[
⌊x⌋,⌊x⌋+ 3

4

]
.

Consequently, we can substitute a discrete ODE with a continuous ODE for the re-
quired functions Decode and EncodeMul: just replace ξ in the involved schemas with
the above function. Notice that we can also easily get a real extension of the function
that maps n to 2n. Now that we have proved real extensions of the approximations of
basic discrete functions, we can show we can encode the execution of a polynomial space
Turing machine in RCD.

5.2.5 Working with all steps of a Turing machines
We can then go from one step of a Turing machine, to arbitrarily many steps. We are
following the idea of Chapter 3, but replacing discrete ODEs with continuous ODEs.

Theorem 5.2.29

Consider some Turing machine M that computes some function f : Σ∗ → Σ∗

in some polynomial space S(ℓ(w)) on input w. One can construct some func-
tion f̃ : N2 ×R → R in RCD doing the same: if we consider the value of
f̃
(

2m,2S(ℓ(w)),γword (w)
)

, it is at most 2−m far from γword
(

f (w)
)
.

Proof. We denote by M the Turing machine computing f . The idea is to simulate the dis-
crete ODE encoding the execution of M by a continuous ODE, using Proposition 5.2.26.
We can state that there exists a function Exec solution of a robust linear discrete ODE (E)
that "computes" the execution of M, with Cinit the initial configuration :

(E) :



Exec
(

2m,0,2S,Cinit

)
=Cinit

δExec
(

2m, t,2S,Cinit

)
δ t

= Next
(

2m,2S,Exec
(

2m, t,2S,Cinit

))
−Exec

(
2m, t,2S,Cinit

)
.

For any configuration C of M, let write

F
(

C
)
= F

(
2m,2S,C

)
= Next

(
2m,2S,C

)
+C,

153

associated to the righthand side of the above discrete ODE. Denoting by C̃ the errorless
encoding of the configuration C, from the constructions of Lemma 5.2.24), it is true that
if
∣∣∣C−C̃

∣∣∣ ≤ 4−(S+2), then
∣∣∣F(C)−F(C̃)

∣∣∣ ≤ 4−(S+2). F does not change much locally
on the space of configuration. Denoting by S the space of M, and replacing m by m+

2S+ 4, we have
∣∣∣Next(2m,2S,C)−C

∣∣∣ ≤ 4−(S+2). So at each step of the TM, the error
is fixed (and bounded). We can then apply the above arguments (Proposition 5.2.26)
to simulate continuously (E), with some controlled error: all involved quantities have
encoding polynomials in the size of the inputs.

Hence, we prove that Next is definable in continuous settings. We now must prove
that RCD characterises FPSPACE for function over the reals. We start by proving that
RCD characterises FPSPACE in discrete settings.

5.2.6 Proof of Theorem 5.2.1: the algebra also characterises FPSPACE
in discrete settings

We prove Theorem 5.2.1, stating that DP(RCD) = FPSPACE∩NN.

Proof. ⊆: In this direction, we just need to prove that RCD contains only functions over
the reals that are computable in polynomial space. Indeed, then for a function f :Rd→Rd′

sending every integer n ∈ Nd to the vicinity of some integer of Nd , at a distance less than
1
4 , by approximating its value with precision 1

4 on its input arguments, and taking the
closest integer, we will get a function from the integers to the integers, that corresponds
to DP(f), and that will be in FPSPACE∩NN.

This is indeed the case, since

• all the base functions of RCD are in FPSPACE: they are even in FPTIME (see
[Ko91]);

• RR∩FPSPACE is stable under composition;

• stability under robust continuous ODE follows from Theorem 5.2.6.

⊇: In the other direction, we use an argument similar to Chapter 3: namely, as the
function is polynomial space computable, this means that there is a polynomial space
computable function g :Nd′′+1→{1,3}∗ so that on m,2n, it provides the encoding φ (m,n)
of some dyadic φ (m,n) with ∥φ (m,n)− f(m)∥ ≤ 2−n for all m. The problem is then to
decode, compute and encode the result to produce this dyadic. More precisely, from
Theorem 5.2.29, we get g̃ with∣∣∣g̃(2e,2p(max(m,n)),Decode(2e,m,n))− γword(g(m,n))

∣∣∣≤ 2−e

for some polynomial p corresponding to the time required to compute g and e =

max
(

p
(
max(m,n)

)
,n
)

. Then we need to transform the value to the correct dyadic: we
mean

f̃(m,n) = EncodeMul
(

2e,2t , g̃
(
2e,2t ,Decode(2e,m,n)

)
,1
)
,

154

where
t = p(max(m,n)), e = max

(
p
(
max(m,n)

)
,n
)

provides a solution with ∥f̃(m,2n)−
f(m)∥ ≤ 2−n.

5.2.7 Proof of Theorem 5.2.2: RCD characterises FPSPACE for real
functions

The aim to prove that: RCD∩RR = FPSPACE∩RR.

Proof. ⊆: To prove that RCD ⊆ RR ∩FPSPACE, we only need to add to the previous
arguments that RR∩FPSPACE is also stable under ELim (from Proposition 3.1.3).
⊇: In this direction, we have the same issue as in Chapter 3: the strategy of decoding,

working with the Turing machine, and encoding is not guaranteed to work for all inputs.
But, we can also solve it by using an adaptative barycenter technique.

We recall the principle here for a function whose domain is R, but it can be generalised
to Rd . The idea is to construct some function λ : N2×R→ [0,1] definable in RCD∗ as in
Corollaries 5.2.16, 5.2.17, 5.2.18, 5.2.19, 5.2.20, but with a continuous ODE : Adapting
the proof and using the simulation of ξ in our continuous framework, we can consider

λ (2m,N,x) =Ψ

(
ξ

(
2m+1,N,x− 9

8

))
where Ψ(x) = C -s

(
2m+1, 1

4 ,
1
2 ,x
)

. In particular,

by definition, λ ∈ RCD∗. Thus, by Lemma 5.2.28, if λ (2m,N,x) =2−m 0, then:

σ2 (2m,N,x) =2−m ⌊x⌋.

If λ (2m,N,x) =2−m 1, then:
σ1 (2m,N,x) =2−m ⌊x⌋

and if λ (2m,N,x) ∈ (0,1), then:

σ1 (2m,N,x) =2−m ⌊x⌋+1

and furthermore:
σ2 (2m,N,x) =2−m ⌊x⌋.

So,
λ (·,2n,x)Formula1 (x,u,M,n)+

(
1−λ (·,2n,n)

)
Formula2 (x,u,M,n)

and we are sure to be close (up to some bounded error) to some 2−m approximation of a
function f .

5.3 A completeness result on the reachability of dynam-
ical systems

As in Chapter 4, we impose our dynamic functions to be Lipschitz. We are going to use
the notion of reduction given in Definition 1.3.65. For φ ∈ Reg an oracle, we define the
function Φ : γ(w)→ γ(φ(w)).

We write PAM for the algebra of PAMs. We denote by S+Φ the algebra where S is
an algebra and Φ is added as a base function.

We define the problem Discrete Reach Robust Lipschitz:

155

Discrete Reach Robust Lipschitz:
Input: A discrete-time polynomially robust dynamical system H = (X ,g), with X a
closed rational box, g : X → X ∈ LDL◦+Φ Lipschitz and p ∈ N, x,y ∈ X
Output: RH

2−p(x,y)

with RH
2−p(·, ·) as defined in Subsection 4.2.1. The main difference with the problems

considered in [KC12] is that we do not fix the time: there is no fixed number of iterations
of g in H in the input.

We now want a completeness result. We will use the definition of reduction of Defin-
ition 1.3.65.

Transition functions for Type-2 machines

The transition function of a Turing machine can be seen as a PAM (by Theorem 2.3.1).
Now we can extend Theorem 2.3.1 to deal with real numbers. We must prove we can
actually simulate an oracle since we are dealing with an oracle TM.

Proposition 5.3.1

Let M =
(
Q,Σ,qinit,∆M,Qaccept,Qreject

)
be a machine. We denote by f the trans-

ition function of M with oracle φ . We have that f is in PAM+Φ.

From Theorem 3.2.3 and Lemma 3.2.21, we can deduce:

Corollary 5.3.2
The transition function of a (Type-2) Turing machine is computable in polyno-
mial time.

Since g∈LDL◦+Φ in Discrete Reach Robust Lipschitz, it is computable in second-
order polynomial time.

Hence, with Theorem 4.2.33 and Corollary 5.3.2, we have that Discrete Reach Ro-
bust Lipschitz∈ PSPACE2.

Discrete Reach Robust Lipschitz is PSPACE2−≤2
m-hard

The proofs heavily rely on the fact that we are dealing with Lipchitz functions (see Lemma
2.3.3).

Theorem 5.3.3

Discrete Reach Robust Lipschitz is PSPACE2−≤2
m-hard.

First, we state the following lemma:

Lemma 5.3.4

For w = w0w1w2 · · · ∈ Σω , for n ∈N, γword(w0w1 · · ·wn) is computable in poly-
nomial time in n.

The proof of this lemma is direct from the definition of γword .

Proof of Theorem 5.3.3. We are going to reduce from Basic PSPACE2, that we repeat
here:

156

Basic PSPACE2:
Input: < M,µ,φ >, with M a Type-2 Turing machine, µ ∈ Reg such that µ(u) =
0µ(|u|) where µ : N → N a non-decreasing polynomial bounding the space of M,
φ ∈ Reg and a string u.
Output: Does M with an oracle φ accept u?

Let M,µ,φ and u be the inputs of Basic PSPACE2. Without loss of generality, we
assume that Mφ =

(
Q,Σ, f,qinit,Qaccept,Qreject

)
has a unique accepting state qaccept with

0µ(|u|) being the content of the tape. We also assume that, if f(C), for some configuration
C, is not defined, then Mφ directly goes to a rejecting state.

We construct the inputs of Discrete Reach Robust Lipschitz
Let us now define the functions s and t from Definition 1.3.65.

• The initial configuration is x and 0µ(|u|) = y.

• t :< M,µ,φ >→ H = (X ,g), p, where X is the set of all the real numbers en-
coded by possible configurations of Mφ , g ∈ XX such that f(C) = C′ if and only if
g(γconfig(C)) = γconfig(C′) and p = µ is the polynomial bounding the space.

• s : φ ∈ Reg→Φ

The function s maps each configuration of Mφ to its successor, after one step of Mφ , in
R. It is Lipschitz by Lemma 2.3.3 and it is computable in polynomial time by Corollary
5.3.2.

The function t encodes an input string into a representation of a dyadic number (ap-
proximating some real number). It is computable in polynomial time by Lemma 5.3.4.

Thus, we have Discrete Reach Robust Lipschitz is PSPACE2-≤2
m-hard.

Corollary 5.3.5

Discrete Reach Robust Lipschitz is PSPACE2-≤2
m-complete.

5.4 Chapter Conclusion
In this chapter, we characterised polynomial space using algebraically defined classes of
functions, in the spirit of Chapter 3: a finite set of basic functions closed under composi-
tion and a schema for defining functions from robust discrete ODEs and robust (continu-
ous) ODEs. We gave an algebraic characterisation of FPSPACE for functions over the
reals, using discrete ODEs.

We also characterised FPSPACE with continuous ODEs. To do so, we proposed a
concept of robust ODEs solvable in polynomial space. As far as we know, this is an ori-
ginal method for solving ODEs optimising space, which was an open problem. It is based
on classical constructions such as Savitch’s theorem. We extended existing characterisa-
tions to a characterisation of functions over the reals and not only over the integers.

Of course, from our statements, adding any FPSPACE-computable function over the
reals among the base functions would not change the class. However, we did not intend to
minimise the number of base functions. For example, tanh(t) is the solution of the ODE

157

f ′ = 1+ f 2 and cos(t) can be obtained by the two-dimensional ODE y′1 = −y2, y′2 = y1.
Minimising the number of base functions is also left for future work. We believe that even
in this setting, proving space complexity corresponds to precision is already significant,
independently of this question of a minimal set of base functions.

Using previous algebraic characterisations, we also proved the PSPACE2-hardness,
for the reduction described in Definition 1.3.65, of the reachability problem for dynamical
systems such as in Chapter 4.

158

Chapter 6

Robustness in Tilings and Subshifts

Vous êtes maximalement problématiques.
Titouan Carette

NB 6.0.1
This chapter is based on an article co-authored with Nathalie Aubrun and Olivier
Bournez. It has been submitted to a conference.

In computer science, the continuum is often seen as a limit of the discrete world. Many
other communities view things dually: they see discrete settings as a particular limit of
the continuum. For example, the optimal solution of a purely continuous optimal control
problem may be a so-called bang-bang solution [SVV64, KK06]. Many approaches, of-
ten developed in the continuum, can help with discrete objects. An example where this
duality is visible is the context of the verification/control of the hybrid systems, which
mix some continuous evolution with discrete steps. This is an example of context where
the approach from continuous mathematics, mostly from control theory, meets with a
dual approach emanating from computer science, mostly from the verification community
[Mal02, Lyg04, AMJ24].

In this chapter, we revisit and extend Chapter 4 and we discuss notions of languages
for various objects: the space-time diagram of a Turing machine, the effective subshifts
and tilesets (i.e. subshifts of finite type, Definition 1.5.7). For all of them, as in Chapter
4, we prove that decidability holds unless some non-robustness is involved. Stated oth-
erwise, for Turing machines, undecidability holds only for non-robust machines. In par-
ticular, it is true for Turing machines running in a space that cannot be bounded by some
computable function or for which there is no provable bound on their space. For tile-
sets, undecidability of the language (e.g. the domino problem) holds only for tilesets (or
effective subshifts) involving explicitly a non-robust Turing machine.

In this chapter, we extend the statements of Chapter 4 and we consider more general
properties, like invariance properties. Our theory provides a valid and relatively complete
proof method (see Section 2.7 and [Win93] for the concept of relative completeness) to
decide questions about subshifts, and, in particular, tiling problems like the domino prob-
lem. It applies to all known famous examples and explains some observed experimental
facts on tilesets, such as the one of [JR21].

Thus, we provide a sound and relatively complete method for proving that a tileset can
tile the plane. Our analysis also provides explanations for the similarities between proofs
in the literature for various tilesets, as well as of phenomena that have been observed

159

experimentally in the systematic study of tilesets using computer-assisted methods (e.g.
[JR21]).

The relation to (non-)provability and the existence of a proof of non-reachability is
original. For example, fundamental discussions stating a clear connection to the non-
provability of termination of Turing machines are original. The application to subshift is
original. Several of our statements may be new, as we did not find any proof of them.
Also, our statements about the soundness and completeness of methods based on finite
state abstraction and the resulting fundamental explanation of why all proofs of aperiod-
icity look so similar are also original. We also prove other notions of robustness related
to properties of the transducers associated with tilesets can also be applied.

In Section 6.2, we introduce global properties like invariance kernels or viability ker-
nels. In Section 6.3, we apply this theory to the case of Turing machines. We prove that
deciding the language of patterns of the space-time diagram of a given Turing machine is
a co-c.e.-complete problem. We prove that for robust Turing machines, this language is
decidable. In Section 6.4, we apply the general theory to the case of subshifts and tilings.
In Section 6.5, we introduce the Robinson tileset and we prove that it is robust.

6.1 Some representation aspects
As in Chapter 4, we will mainly be interested in the case of dynamical systems over a
space X = Σω (the Cantor space, e.g. for the statements related to subshifts, tilings),
X = CM = Σω ×Q×Σω (for the statements related to Turing machines) and X a closed
rational box (for the statements related to dynamical systems, about the motivation from
verification of some of our statements).

In this chapter, we assume the underlying space X to be a metric space with the dis-
tance d (·, ·). In all these contexts, the dynamics we consider involved by the application
context are Lipschitz, the space is compact and we can enumerate a class of basic open sets
(Bi)i∈N generating the topology. In the general case, we can take the balls B

(
α(n),2−m)

for some integers n,m where α(n) is a sequence of elements of X dense in X : for the reals,
these can be rational open balls but they could also be dyadic open balls. For the Cantor
space, these can be cylinders: subsets of the form [w] = wΣω for w ∈ Σ∗. We assume a
fixed representation of these basic open sets as words over the finite alphabet Σ.

Let A denote a finite alphabet and Z is either Z or N, or a finite products of Z or N,
such as Z×N. Given a configuration x, we write xU for the pattern corresponding to the
restriction of x to U, as in Section 1.5.

6.1.1 About representation of involved sets
We can consider various suitable data structures to represent sets according to the applica-
tion domain. We take the following minimal assumption about this structure: a closed set
K can be represented by its language L(K) ⊂ Σ∗, where L(K) corresponds to the repres-
entations of all basic open sets intersecting K. Dually, we write L−(K) for the language
corresponding to the representations of all basic open sets, such that its closure does not
intersect K. Indeed, closed sets (respectively: open sets) K are characterised by their
languages L(K) (respectively: L−(K)).

160

Proposition 6.1.1

Given closed sets A and B, we have A = B iff L(A) = L(B) iff L−(A) = L−(B).

Proof. Assume A and B to be closed. If A = B, then L(A) = L(B) and L−(A) = L−(B).
Conversely, if A ̸=B, without loss of generality, there must be some point x in A and x ̸∈B.

If int(A)∩Bc = /0, then A and B differ only by their frontier and, since they are closed,
A = B.

Thus, we assume that x ∈ int(A)∩Bc. Since int(A)∩Bc is some open set, it contains
some basic open set containing x. It is in L(A) but not in L(B) and hence L(A) ̸= L(B). By
restricting if necessary this open set to B(x,d) for some small enough d, we can assume
that B(x,d) does not intersect B. The latter contains some basic open set. Then the closure
of this basic open set does not intersect B, but it intersects A, and hence L−(A) ̸= L−(B).

6.1.2 About allowed inputs
In the coming contexts, we are interested in questions related to a subset of points of X .
NB 6.1.2

We cannot guarantee that some x (e.g. irrational) leads to “hard-to-decide” questions
when robustness holds, but this is not a problem if the inputs we consider are never of
this type (e.g. rational x).

In particular, to use classical computation theory, inputs must necessarily belong to
some countable set, e.g. finite words over some finite alphabet or rational numbers. The
space X , in all the examples, is not countable, e.g. X is a product of intervals in Rd .

We write Inputs for the class of allowed/possible inputs and S ∈Subsets for a class
of sets S such that x ∈ L(S) is decidable for x ∈ Inputs. For example, when consider-
ing dynamical systems, Inputs could be Inputs = Qd , while X = [0,1]d is a compact
domain of real numbers. For Turing machines, while they evolve on X = CM, allowing
infinite tapes, we often need to reason on Inputs = Σ∗Bω ×Q×Σ∗Bω , corresponding to
configurations associated to finite words.

6.2 Viability and Invariance Kernels
We present methods to discuss invariance properties, point-to-set or set-to-set reachability
and non-reachability for (possibly non-deterministic) dynamical systems. In the rest of
the chapter, we will consider non-deterministic dynamical systems. H (with no inputs)
is now given by a domain X and some set-valued function F : X →P(X). A called
trajectory in this framwork is some sequence such that xt+1 ∈ F (xt) for all t. As before,
we say x∗ (or a set X∗) is reachable from x if there is a run with x0 = x and xt = x∗

(respectively xt ∈ X∗) for some t.

161

6.2.1 Some vocabulary from verification, control and dynamical sys-
tems theory

We review some basic concepts from verification, control and dynamical systems theory.
The following are discussed, for example, in [Aub91, Lyg04, SP94] for even more general
classes of dynamical systems such as continuous-time systems or hybrid systems, and
with possibly some inputs. Some of their statements are generalised here, in particular for
Z -actions.

Definition 6.2.1 (Viable trajectory)
An infinite trajectory of a dynamical system H is called viable in a set K ⊆ X
if x(t) ∈ K for all t.

Viability kernel

We study the subset of initial points in K from which there exists at least one viable
solution. A set K ⊆ X is called viable under a (possibly non-deterministic) dynamical
system H if, for all x0 ∈ K, there exists an infinite trajectory starting at x0 that is viable
in K.

The viability kernel, denoted by ViabH (K), or ViabF(K) for F a set-valued map, of a
set K ⊆ X under a dynamical system H is the set of states x0 ∈ X for which there exists
an infinite trajectory viable in K starting from x0. The viability kernel is also the largest
closed viability domain contained in K. When F : X →P(X) is a set-valued map, a
subset D⊂ X is a viability domain of F if ∀x ∈ D,F(x)∩D ̸= /0.

Any infinite trajectory viable in K starting from any initial point x0 ∈ K \ViabH (K)
never meets the viability kernel ViabH (K) while it remains in K. Moreover, any infinite
trajectory which does not start from ViabH (K) must leave K in a finite number of steps.

Proposition 6.2.2 ([SP94])
The viability kernel can be obtained by considering the sequence of subsets

K0 = K,K1, . . . ,Kn, . . . with Kn+1 :=
{

x ∈ Kn|F(x)∩Kn ̸= /0
}

. Write Kω :=⋂
n∈NKn. Assume F is an upper-semicontinuous (Definition 1.1.13) set-valued

map with closed values and K is a compact subset of Dom(F). Then Kω =
ViabH (K).

The viability kernel is insensitive to arbitrary small perturbations:

Definition 6.2.3 ([SP94])

Let F : X →P(X) be a set-valued map and ε > 0. An extension of F with a
ball of radius ε is the set-valued map Fε : X →P(X) defined by : Fε(x) :=
B
(
F(x),ε

)
.

162

Proposition 6.2.4 ([SP94])

Consider the sequence of subsets (Kε,n)n∈N defined as follows: Kε,0 = K and
Kε,n+1 :=

{
x ∈ Kε,n|Fε(x)∩Kε,n ̸= /0

}
,Kε,∞ :=

⋂+∞

n=0 Kε,n. If F is an upper-
semicontinuous set-valued map, Fε : X →P(X) is also upper-semicontinuous
and from Proposition 6.2.2: ∀ε > 0, Kε,∞ = ViabFε

(K).
When ε decreases to 0 , the viability kernel of K under Fε converges to the
viability kernel of K under F : Let F be upper-semicontinuous and K a compact
subset of X . The following property holds: ViabH (K) =

⋂
ε>0 ViabFε

(K).

Invariance kernel

Our purpose is now to study the subset of initial points in K from which all solutions are
viable. A set K is called invariant under the dynamical system H , if for all x0 ∈ K all
trajectories starting from x0 are viable in K. The invariance kernel, InvH (K) of K ⊆ X
under H is the set of initial states x0 ∈X for which all runs are viable in K. The invariance
kernel is also the largest closed invariance domain contained in K: A subset D ⊂ X is a
viability invariance of F if ∀x ∈ D,F(x)⊂ D.

Proposition 6.2.5 (adapted from [Lyg04] and [Aub91])
Invariance kernel can be obtained by considering the sequence of subsets
(Kn)n∈N with K0 = K and Kn+1 :=

{
x ∈ Kn|F(x)⊂ Kn or F(x) = /0

}
. Write

Kω :=
⋂

n∈NKn. Assume F is a lower-semicontinuous (Definition 1.1.14) set-
valued map and K is closed. Then Kω = InvH (K).

Proof. We reason by double inclusion.

• (⊆) : Consider Kω . It contains any closed subset of K invariant under F : every set
L⊆ K which is invariant must be contained in InvH (K), since all runs starting in L
stay in L and therefore in K.

• (⊇) : Kω is closed: K0 =K is closed. If Ki is closed, since F is lower-semicontinuous,
from the definition of Ki+1 is closed. By induction, the Ki form a sequence of nested
closed sets, and therefore Kω is closed (possibly the empty set).

Consider a point x0 ∈ InvH (K) and show that x0 ∈ Kω . Assume, for the sake of
contradiction, that x0 /∈ Kω . Then there exists N ≥ 0 such that x /∈ KN . If N = 0,
then x0 /∈ K0 = K, therefore there exists a run starting at x0 that is not viable in K.
This contradicts the assumption that x0 ∈ InvH (K). If N > 0, we show that there
exists a run stating at x0 that after at most one discrete transition finds itself outside
KN−1. The claim then follows by induction on N. Indeed, since x0 /∈ KN , we must
have F(x0) ̸= /0 and outside of KN−1. But then there exists a run starting at x0 that
transitions outside KN−1 and we reach a contradiction as x0 /∈ KN−1.

Now, Kω is equal to InvH (K) as the latest is the largest closed invariance domain
contained in K.

163

We see that a true difficulty is that, unlike the viability kernel, the invariance kernel is
possibly sensitive to arbitrary small perturbations.

Indeed, we can consider a similar framework as above, and consider Fε(x), and then
the sequence of subsets

(
Kε,1

)
n∈N

defined as:

Kε,0 = K and Kε,n+1 :=
{

x ∈ Kε,n|Fε(x)⊂ Kε,n or Fε(x) = /0
}
,Kε,∞ :=

+∞⋂
n=0

Kε,n.

If F is a lower-semicontinuous set-valued map, Fε : X → P(X) is also a lower-
semicontinuous, and from Proposition 6.2.5, assuming K closed, we have ∀ε > 0, Kε,∞ =
InvFε

(K), corresponding to the invariance kernel of Fε .
We have InvH (K) ⊂

⋂
ε>0 InvFε

(K). Unfortunately, this is not true in the general
case that when ε decreases to 0 , the invariance kernel of K under Fε converges to the
invariance kernel of K under F : we might have InvH (K)⊊

⋂
ε>0 InvFε

(K). See Example
4.1.13 for Turing machines.

6.2.2 Robustness of dynamical systems
Inspired from, and extending [AB01] and the statements of Chapter 4, it is then very
natural to define the following.

Definition 6.2.6 (Language-robust dynamical system)
A dynamical system with a set-valued map is said to be language-robust over

K, when InvH (K) =
⋂

ε>0 InvFε

(K).

In other words, a system is language robust when there is indeed convergence in the
above discussion. As closed sets are characterised by their languages, this can be formu-
lated equivalently:

Proposition 6.2.7
The following are equivalent:

• A dynamical system is language-robust over a closed set K.

• L(InvH (K)) =
⋂

r>0 L(InvFr
(K))

• L−(InvH (K)) =
⋂

r>0 L−(InvFr
(K))

The proof is direct from the definitions and the previous propositions.

Corollary 6.2.8 (Alternative view)
Robustness holds on some closed sets K iff for all basic open set Bi, Bi is not

intersecting InvH (K) iff Bi is not intersecting InvFr
(K) for some r = r (Bi).

As in Chapter 4, we will prove that many problems are solvable/decidable for robust
systems.

We think it helps to read all these statements in a dual way: decidability holds un-
less some non-robust systems are considered. If one thinks about it, non-robustness

164

means that the answer to the question of reachability is somehow badly formulated, as it
requires talking about arbitrary small perturbations. We will also see that non-robustness
is always involving some frontier points, hence somehow limit points. This comes from
the Proposition above. We think it helps to understand Example 4.1.13.

While the previous theory is very nice from a mathematical point of view and is mostly
about closed sets, if we want to talk about computability and complexity issues, it is more
natural to formulate statements in terms of open sets (their complements, or their interior):
the reason is that computability is more naturally about open sets than closed sets, as a
c.e. set for example is a recursively open set: examine the formalisation of all concepts in
[BHW08, Wei00]. This leads to getting closer to considerations done in Chapter 4, which
originated from computability issues. This also leads first to relate invariance concepts to
reachability issues:

Definition 6.2.9 (Invariance envelope)

The invariance envelope EnvF(K) of K ⊂ X is the smallest closed subset in-
variant under F containing K.

Since the intersection of closed subsets invariant under F is still a closed subset in-
variant under F , the invariance envelope of a closed subset does exist.We write RH (S)
for all the y reachable from some x ∈ S, and RH (x) for RH ({x}). A map F : X →P(X)
is said to be Lipschitz if and only if there exists a constant λ > 0 such that for all x,x′ ∈ X ,
F(x)⊆ B

(
F
(
x′
)
,λ
∥∥x− x′

∥∥) .
Proposition 6.2.10 (Relating reachability and Invariance Envelope [Aub91])

Assume that F : X →P(X) is Lipschitz with nonempty closed values. Then
EnvF(K) = RH (K).

Proof. The subset RH (K) is contained in any closed invariant subset S containing K
and, in particular, in the invariance envelope of K. Conversely, we just need to prove
that RH (K) is invariant. If not, there would exist x0 ∈ RH (K) and some trajectory x(t)
starting from x0 and T such that x(T) ̸∈ RH (K). By the hypotheses (F is Lipschitz), there
exists δ > 0 such that for every y0 ∈ B(x0,δ), one can find a trajectory y(·) starting from
y0 such that y(T) ∈ B(x(T),ε)⊂ X \RH (K). Since x0 belongs to the closure of RH (K),
one can find some initial state y0 ∈ RH (K) so that there exists z0 ∈ K, that reaches y0 at
time T0. Then the concatenation of that trajectory up to time T0, and then the one starting
from y0 is a solution starting from K that remains in RH (K): we reach a contradiction.

But, why such issues are interesting if they cannot happen on a computer? If no input
to the problem in Inputs can ever lead to a problematic point or issue, why studying this?
If something bad can happen with irrational numbers and not rational numbers, should we
consider dynamical systems over rationals? Similarly for infinite TM configurations vs
finite ones? We hence now relativise the above concept to the considered Inputs.

Definition 6.2.11 (Language-robust dynamical system with respect to Inputs)
A dynamical system is said to be language-robust over K with respect to

Inputs, when InvH (K)∩RH (Inputs) =
⋂

ε>0 InvFε

(K)∩RH (Inputs).

165

This corresponds to the previous definition, but considering K∩RH (Inputs), instead
of K. Consequently, we continue our discussion with general K. A key is that INVω(K) =⋂

ε>0 InvFε

(K) can always be determined and obtained by reasoning about a discretisation
F .

We say that a (possibly. non-deterministic) dynamical system (X ,F) is Inputs-stable
when F (Inputs)⊂Inputs: all its runs live in Inputs. We say it is Inputs-computable
when y ∈ F(x), for x,y ∈Inputs.

This is a generalisation of the concept of Q-systems considered in Chapter 4. We
obtain a generalisation of Theorem 4.2.6:

Theorem 6.2.12 (INVω can always be obtained by discretising over a grid)

Assume X is a compact, and that F is Lipschitz. Then, INVω(K) =⋂
ε>0 InvFε

(K) is independent of the metric.
In particular, considering the metric to be the sup-norm, Fε corresponds to
some box/griddy (over-estimation) of the discretisation of F . Any such Fε is a
dynamical system over a finite space: it can hence be seen as a finite graph Gε .
Assume F is Inputs-stable and computable and X is a product of closed inter-
vals with Inputs-bounds. Then L(INVω) is co-c.e..

Before proving this theorem, we need two auxiliary lemmas, adapted from Chapter 4
in this context:

Lemma 6.2.13 (Adaption of Lemma 4.2.8)

Assume RH
+ε(x,y) for ε = 2−n. Then, x = y, or, for all i, j, such that x ∈ Vi and

y ∈ V j, Vi
+→ε V j: the graph for δ = ε always has more trajectories/behaviours

than RH
+ε .

The proof of Lemma 6.2.13 is very similar to the proof of Lemma 4.2.8.

Lemma 6.2.14 (Adaptation of Lemma 4.2.9)

If x = y, then RH
+ε(x,y). Moreover, for any ε = 2−n, there is some δ = 2−m

so that there exists i, j such that Vi
+→δ V j. Thus, RH

+ε(x,y) whenever x ∈ Vi,
y ∈ V j: This says that ¬RH

+ε(x,y) implies ¬(Vi
∗→δ V j) when x ∈ Vi, y ∈ V j,

for the corresponding δ .

Proof of Lemma 6.2.14. If x = y, the first claim is clear. Let L be the Lipschitz constant.
Consider δ = 2−m with δ < ε/(2L+1): It is sufficient to prove that when Vi

1→δ V j
with x ∈ Vi, y ∈ V j, we have RH

+ε(x,y): indeed, then by induction, if we have

Vi=i0→δ Vi1 . . .→δ Vit= j,

we can then reason on points y1 ∈ Vi1 , . . . , yt−1 ∈ Vit−1 , and obtain inductively that
RH
+ε(x,y1), RH

+ε(y1,y2), . . . , RH
+ε(yt−1,y), and hence that RH

+ε(x,y).
So, assume Vi

1→δ V j with x ∈ Vi, y ∈ V j. As Vi
1→δ V j there is some y ∈ V j with

d
(
Fε(xi),y

)
< (L+ 1)δ . Then d

(
Fε(x),y

)
≤ d

(
Fε(x),Fε(xi)

)
+ d

(
Fε(xi),y

)
< Lδ +

(L+1)δ = (2L+1)δ < ε and hence RH
+ε(x,y): we get the promised statement.

166

Proof of Theorem 6.2.12. It is sufficient to prove the statement starting from the second
sentence. As F is Lipschitz Inputs-computable and X is compact, we know that: there
exists some λ > 0 so that for all x,x′ ∈ X , F(x) ⊆ F(x′)+λ∥x− x′∥B(0,1). For every
δ = 2−m, m ∈ N, we associate some graph Gm = (Vδ ,→δ): its vertices, denoted by (Vi)i,
correspond to some finite discretisation and covering of the compact K by rational open
balls Vi = B(xi,δi) of radius δi < δ .

There is an edge from Vi to V j in this graph, that is to say Vi→δ V j, iff F(λ+1)δ (xi)∩
V j ̸= /0. With the hypotheses, when F is Inputs-stable, such a graph can be effectively
obtained from m, considering a suitable discretisation of X .

From Lemma 6.2.13 and Lemma 6.2.14, ¬RH
+ω(x,y) holds iff for x ̸= y, there exists

δ = 2−m, for all i, j, x ∈ Vi, y ∈ V j, hence ¬
(
Vi

∗→δ V j

)
. This holds iff for all integer

m, NOPATH
(
Gm,Vi,V j

)
for all Vi, V j with x ∈ Vi, y ∈ V j, where NOPATH(G,u,v) is

the following decision problem: Given a directed graph G = (V,→) and some vertices
u,v ∈ V , determine whether there is no path between u and v in G. The latter property
is c.e., as it is a union of decidable sets (uniform in m), as NOPATH

(
Gm,Vi,V j

)
is a

decidable property over finite graph Gm.

An invariance set can be non-minimal: it is minimal if it does not contain a non-empty
invariance set. When this holds, it makes sense to reason on a c.e. union of basic open
sets on which we have local minimality, when it exists. This will preserve c.enumerability.
Consequently, w.l.o.g, we can assume we restrict to some open set U , on which INVω ∩U
is minimal. We continue the discussion by considering this is the case, replacing possibly
INVω by INVω ∩U in the coming discussions.

A specific case: when an isomorphism holds

From above discussions, consequently, INVω can be described by considering any sub-
sequence (εn)n∈N going to 0. Then, we have INVω =

⋂
n∈N InvFεn

(K). If we write Gn for
the graph Gεn , as defined in the proof of Theorem 6.2.12, we get that INVω =

⋂
n∈NGn.

This is the general case: Gn can depend on n in some complicated manner.
An interesting and simple case is when all the involved graphs for various n are iso-

morphic for the following concept:

Definition 6.2.15 (Label-preserving graph isomorphism)

Let S,T be two Zd-finite abstractions (Definition 4.1.15) over X . A mapping
φ : S→ T is a label-preserving graph isomorphism if φ is a bijection and

• for all u,v ∈ X , there is an edge between u and v in S iff there is one
between φ(u) and φ(v) in T

• the generator of the edge between u and v is the generator of the edge
between φ(u) and φ(v).

Definition 6.2.16
We write in this case this phenomenon as Gn+1 ≡ Gn.

167

This case actually holds in many examples that we will discuss later. The existence of
such a case makes the analysis simple/concise for various dynamical systems, in particular
subshifts.

6.2.3 Space-time of dynamical systems and related problems
Space-time diagram of a dynamical system

Consider a dynamical system H over (semi)-group/time-space Z . The space-time dia-
gram of an infinite trajectory (xt)t∈Z of H is this sequence as an element of XZ . We
write ST(H) for the set of the space-time diagrams of H : it is a subset of XZ . We
write ST(H ,x) for the set of the space-time diagrams of trajectories in H starting from
x. From definitions, the allowed inputs of ST(H) are InvH (X), and they are non-empty
iff there is some infinite trajectory for the dynamical system in X .

We write L (ST(H)) for its set of patterns: L (ST(H ,x))= {p⊑ ST(H ,x), p a pattern}
and L (ST(H)) = {p⊑ ST(H ,x), p a pattern,x ∈ X}.

Definition 6.2.17 (Pattern-robustness)

A dynamical system is pattern-robust over a closed set K if L (InvH) =⋂
r>0 L (InvFr

(K))

Proposition 6.2.18 (Pattern-robustness and language-robustness are the same)
A dynamical system is pattern-robust over a closed set K iff it satisfies all the
(equivalent) conditions of Proposition 6.2.7.

Dynamical systems and subshifts

The space-time diagram ST(H) over a dynamical system over X is always a generalised
subshift (with respect to shifts over Z).

Put this in perspective with the discussions in NB 6.2.19: any subshift can be seen as
the invariance set of some dynamical systems and conversely, any dynamical system over
a compact can be abstracted as a subshift.

NB 6.2.19 (Subshifts vs Nd/Zd-dynamical systems)

Let A be a finite set. Then (X ,σ) with X = A Z d
and σ the shift is a particular Z d-

dynamical system. Conversely, consider a dynamical system, or Z d-dynamical sys-
tem, and some (abstraction) function a : X →A . Then, we can consider Φ′(t,U) :=
a(Φ(t,a−1(U))) that is a non-deterministic Nd-dynamical system over X ′ = a(X).

Finite dynamical systems, their graph representation, Wang tiles

As discussed in Subsection 2.3.2, we can always see a dynamical system (X ,F) as a
labelled graph, with possibly not finitely many vertices.

Vertices correspond to elements of X . An edge between x and x′ labelled by g encodes
the fact that x′ ∈ f g (x) for some generator g.

168

Definition 6.2.20 (Dual representation of a dynamical system)
We can dually represent the previous graph by its line graphs. For each gen-
erator g, we can consider the graph whose vertices are edges of the previous
graph (hence encoding the fact that x′ ∈ f g (x)). Two vertices are then adjacent
if and only if their corresponding edge for the previous graph share a common
endpoint (hence they involve the same x or x′).

When X is finite, determining whether some point is reachable from another, or com-
puting the invariance kernel, etc. can be solved in polynomial time and space, see discus-
sions in Section 2.3. However, in classical complexity, we assume the graph is given as
an input.

Furthermore, when X (or equivalently the graph) is finite, such a graph can always be
seen as colours of finitely many Wang tiles (over Z).

6.2.4 Relating robustness to reachability
From Proposition 6.2.10, reachability questions and invariance kernel/envelope computa-
tions are related. Also, considering some dynamical system H , write Halt = {x|F(x) =
/0}: invariance kernel computation and Reach Set computation problems from x reduce
one to the other, for non-halting instances, that is to say for x ∈ InvH (X). A dynamical
system is non language-robust over K, iff there is some x ̸∈ InvH (K), but x ∈ InvFε

(K)
for all ε .

We tackle more general questions than in Chapter 4, such as, given a dynamical system
H , to compute the invariance kernel of H . Consequently, we need generalisations of
Chapter 4 to non-determinism, control or Zd actions.
NB 6.2.21

Only over-approximations have been considered in [AB01] and in Chapter 4. In this
chapter, we generalise this idea to more general systems.

For any ε > 0, we consider here the ε-perturbed system H+ε . The flow/action of
the obtained non-deterministic system is defined by y ∈ Φ+ε(g,x) iff d

(
y,Φ(g,x)

)
< ε

for all the generators g ∈ G of the subgroup. As in Chapter 4, all trajectories of a non-
perturbed system H are also trajectories of the ε-perturbed system H+ε . If ε1 < ε2, then
any trajectory of the ε1-perturbed system is also a trajectory of the ε2-perturbed system.
We denote reachability in the corresponding system H+ε by RH

+ε (·, ·).
Define RH

ω

−
(x,y) iff ∃ε > 0 RH

−ε (x,y): this relation encodes reachability with arbit-
rarily small perturbing noise. From definitions, we have generalisations of Lemma 4.2.5
to non-deterministic systems:

Lemma 6.2.22

For any 0 < ε2 < ε1 and any x and y the following implications hold: RH (x,y)
⇐ RH

ω

+
(x,y)⇐ RH

−ε2
(x,y)⇐ RH

−ε1
(x,y).

Define RH
ω

+
(x,y) iff ∀ε > 0 RH

+ε (x,y): this relation encodes reachability with arbit-
rarily small perturbing noise.

169

Lemma 6.2.23

For any 0 < ε2 < ε1 and any x and y the following implications hold: RH (x,y)
⇒ RH

ω

+
(x,y)⇒ RH

+ε2
(x,y)⇒ RH

+ε1
(x,y).

Theorem 6.2.24 (Generalisation of Theorem 4.2.6)
Consider a Lipschitz Inputs-computable system, with a compact domain X .
Then the relation RH

ω

+
(x,y)⊆Inputs×Inputs is in the class Π1.

Proof. As f is locally Lipschitz and X is compact, we know that f is Lipschitz: there
exists some L > 0 so that d

(
f(x), f(y)

)
≤ L · d (x,y). For every δ = 2−m, m ∈ N, we

associate some graph Gm = (Vδ ,→δ): its vertices, denoted by (Vi)i, correspond to some
finite discretisation and covering of the compact X by rational open balls Vi = B(xi,δi)
of radius δi < δ . There is an edge from Vi to V j in this graph, that is to say Vi →δ V j,
iff B(f(xi),(L+ 1)δ)∩V j ̸= /0. With our hypothesis on the domain, such a graph can be
effectively obtained from m, considering a suitable discretisation of the rational box X .

From Lemma 6.2.13 and Lemma 6.2.14, ¬RH
ω (x,y) holds iff for some δ = 2−m,

¬(Vi
∗→δ V j) for some Vi, V j with x ∈ Vi, y ∈ V j. This holds iff for some integer m,

NOPATH(Gm,Vi,V j) for some Vi, V j with x ∈ Vi, y ∈ V j. The latter property is c.e.,
as it is a union of decidable sets (uniform in m), as NOPATH(Gm,Vi,V j) is a decidable
property over the finite graph Gm.

Definition 6.2.25 (Robust reachability relation)

We say that the reachability relation is reachability-robust when RH ∩
Inputs = RH

ω

+∩Inputs.

We get the “robustness conjecture”, from the fact that a c.e and co-c.e. set must be
decidable: with the hypotheses of Theorem 4.2.6, if the relation RH is reachability-robust
then it is decidable.

Complexity issues

Assume the dynamical system is robust. Hence, for all x,y ∈Inputs, there exists ε (de-
pending on x, y) such that RH (x,y) and RH

ε (x,y) have the same truth value (unchanged
by smaller ε).

We can generalise some statements of Chapter 4:

Definition 6.2.26 (Level of robustness ε by s, generalisation of Definition 4.2.31)

Given a function s : N→ N, we write RH
{s} for the relation defined as: for any

points x ∈Inputs and y ∈Inputs the relation holds iff RH
s(ℓ(x)+ℓ(y))

(x,y).

Definition 4.2.21 still holds in that context.

170

Theorem 6.2.27 (Generalisation of Theorem 4.2.33)
Consider a system satisfying the hypotheses of Theorem 6.2.24. Given some

polynomial p, RH
{p} ∈ PSPACE.

Proof. From Theorem 4.2.6, for all n there exists some m (depending on n), such that
RH

n (x,y) and RGm(x,y) have the same truth value, where RGm denotes reachability in the
graph Gm. With the hypotheses, given x and y, we can determine whether RP

{p}(x,y),
by determining the truth value of RH

n (x,y), taking n polynomial in ℓ(x)+ ℓ(y). From
Theorem 4.2.6, the corresponding m is linearly related to n. The analysis of Corollary
2.3.4 shows that the truth value of RGm(x,y) can be determined in space polynomial in m.

6.2.5 Reachability and Witness of non-reachability
Robustness turns out to be related to the existence of (witness of) proofs of non-reachability
in a specific form, namely in the form of a finite abstraction graph. Assume the dynam-
ical system Φ′ over X ′ simulates some dynamical system Φ over X (as in Figure 6.1): by
induction, if y is reachable from x in Φ, then from any x′ with R(x,x′) there must exist
some y′ with R(y,y′) reachable from x′ in Φ′.

y

x

Figure 6.1: A dynamical system simulating the dynamical system of Figure 1.1: its states
are indicated by boxes and the possible transitions between states by an arrow. The fact
that y cannot be reached from x is witnessed by this dynamical system, as trajectories
starting from x will remain forever in color boxes and hence away from y.

Dually, this can be used as a witness that a point is not reachable from another point:

Definition 6.2.28 (Finite abstraction witness of non-reachability of y from x)

A graph/dynamical system Φ′ over a finite set (i.e a graph) is called a finite-
abstraction witness of non-reachability of y from x in Φ if there is no such y′ is
reachable from any such x′ in Φ′.

Theorem 6.2.29 (generalisation of Proposition 4.2.18)

Assume the hypotheses of Theorem 6.2.24. If RH
ω =RH then RH is decidable

and whenever RH (x,y) is false, there always exists some finite abstraction wit-
ness of non-reachability of y from x. This witness has a non-empty invariance
kernel. Furthermore, this witness can be computed effectively.

171

The proof is the same as the proof of Proposition 4.2.18: finding a finite abstraction to
reason about discretisations of the space considered in the proof of Theorem 6.2.12: To
every δ = 2−m, m ∈N, is associated some graph Gm. Then, the proof consists in showing
that the strategy of increasing m until we find a witness in that form must necessarily
terminate under the hypotheses. Decidability comes from the fact that a c.e and co-c.e.
decision problem is decidable.

Proof of Theorem 6.2.29. (⇒): For all ε > 0, RH
ε (x) satisfies x∈RH

ε (x) and fε(RH
ε (x))⊆

RH
ε (x) (this is even the smallest set such that this holds). Let y ∈ Qd , let us assume

that RH (x,y) = RH
ω (x,y) is not true. Then, there exists ε such that RH

ε (x,y) is false,
i.e. y ̸∈ RH

ε (x). Consider R∗ = RH
ε (x). Then, x ∈ R∗ and from the first paragraph

fε(R∗)⊆R∗ and y ̸∈R∗.
(⇐): When RH (x,y) is true, for all ε > 0, RH

ε (x,y) is true, so RH
ω (x,y) is. When

RH (x,y) is false, by hypothesis, RH (x,y) is ε-far from being true for some ε > 0: there
exists a set R∗ satisfying x ∈R∗ and fε(R∗) ⊆R∗. As RH

ε (x) is the smallest such set,
RH

ε (x)⊆R∗. As y ̸∈R∗, y ̸∈ RH
ε (x). Hence RH

ω (x,y) is false.

NB 6.2.30 (The necessity of a non-empty kernel and loops)
In particular, the associated graph must have loops: consider any generator g, there

must be a path in Φ′ corresponding to the sequence Φ′
(
ng,x′

)
for increasing n. The

values of this sequence must come from the pigeonhole lemma.

y

x

Figure 6.2: In a robust system, when y is not reachable from x, there exists some finite
abstraction witness, obtained by discretising the space. It is effectively computed by
considering a thinner discretisation until one is found

Reasoning about non-reachability: a topological view

It is possible to go further and use this to obtain more global properties, using a topological
explanation of what happens in the case of robustness. Let NRH (y) be the sets of points
not reaching y (or a class of y’s): NRH

+ε (y) =
{

x|¬RH
+ε (x,y)

}
. The point is that, when

there is such a finite abstraction, each vertex of it represents a subset of the space X .
Namely, x belongs to some vertex Vi. But we also get that all points of int(Vi) must
also necessarily be points such that RH (x,y) is false. We also get that there exists some
neighbourhood of x inside NRH

+ε (y).

172

Hence, given some δ = 2−m, the graph Gm provides informations about a subset
of points x not reaching y: it provides some open Om included in NRH

+ε (y). Let O =⋃
n∈NOn.

From Corollary 6.2.8, robustness holds iff, for all basic open set Bi, Bi is in NRH iff
Bi is in L(On) for some n = n(Bi). It is immediate from Proposition 6.2.7.

If we come back to previous considerations of Subsection 6.2.3, this means, that for
all basic open set Bi, there is some n = n(Bi) so that we can reason on some finite graph
to tell whether it is in NRH .

We consider n(B), the function of the radius 2−n of the ball Bi. We know from all
these arguments that the graph Gn+1 for a given n+1 simulates the graph Gn for n in the
general case.

6.2.6 A specific case
An interesting case is when the graph Gn, for various n ∈ N, is isomorphic for the fol-
lowing concept: we can describe all these graphs in a concise way. We say that this an
isomorphism invariant, written Gn+1 ≡ Gn to indicate this invariant holds.

We will see that such graphs provides a sound and complete methods to prove that a
given subshift can tile the plane and even to discuss aperiodicity.

6.3 Robustness of Turing machines
We can apply all the previous frameworks to the case of Turing machines, to revisit some
of the statements of [AB01] and of Chapter 4.

6.3.1 Space-time diagrams of a Turing machine
We write ST(M,w) for the space-time diagrams of a (possibly non-deterministic) TM M
on input w and ST(M) for the set of all its space-time diagrams. With each space-time
diagram, we associate its patterns language.

The space-time diagram of a Turing machine is not always decidable. It is co-c.e, even
co-c.e complete, in the general case. Theorem 6.3.1 remains true even when M is fixed.

Theorem 6.3.1

Given M and p, determining whether a pattern p is in L (ST(M)) is co-c.e.
complete.

First, we state and prove the following lemma:

Lemma 6.3.2

Given a Turing machine M, L (ST(M)) is always co-c.e..

Proof. This is a usual argument about tiling (but here on a space-time diagram): pattern
p does not appear in ST(M) if and only we can find a sufficiently large rectangle where
it is impossible to complete the tiling (this is a compactness argument, see Proposition
1.5.20).

173

Indeed, if such a rectangle cannot be found, by compactness, we can construct a con-
figuration of ST(M) with pattern p. If such a rectangle is found, we know it is a contra-
diction.

Proof of Theorem 6.3.1. First, it is co-c.e.-hard: this is exactly what the proof of [JV20,
Theorem 7] states, which they attribute to Robinson [Rob71] (while omitting the tiles in
their proof).

Namely, we can construct a Turing machine Muniv that operates on a half-plane bounded
by |: it starts with |wq0, performs its operations, and never moves to the left of |. We design
this machine to simulate M(w) on the empty word.

We observe that:

• The pattern p given by |wq0 is part of its patterns if and only if the machine w does
not halt on w: by definition.

• Therefore, determining whether a pattern p is in L (ST(Muniv)) is co-c.e.-hard.

This is also co-c.e. from Lemma 6.3.2.

Pattern-robustness of Turing machines

We can adapt the notion of robustness to space-time diagrams. We introduce:

Definition 6.3.3 (Pattern-robustness)

A Turing machine M is pattern-robust iff L
(
ST(M)

)
= Lω

(
ST(M)

)
, where

Lω

(
ST(M)

)
=
⋂

n∈NL
(
ST(Mn)

)
.

Pattern-robustness for dynamical systems and Turing machines are equivalent. It is
also equivalent to the definition of robustness presented in Chapter 4.

It is also possible to quantify pattern-robustness, using the fact that the language of
L (ST(Mn)) is decidable in space polynomial in n, we get:

Theorem 6.3.4

Assume M is some polynomial pattern-robust Turing machine. L
(
ST(Mn)

)
∈

PSPACE can be decided in space polynomial in n from the description of M.

Also, on some input w ∈ L is n-pattern-robust iff there exists n ∈ N such that w ∈ Ln.
In other words, all the patterns of pattern-robust Turing machine are n-robust for some
n ∈ N. The fact that n can be chosen to be a polynomial in the length of w corresponds
exactly to polynomial space languages.

6.4 Robust Subshifts

6.4.1 Computability and uncomputability issues for subshits
The language of an effectively closed subshift is not decidable in the general case, but it is
always co-c.e. (see discussions in Subsection 1.5.1). However, we can state the following:
a minimal, effectively closed subshift has a decidable language. We can prove:

174

Theorem 6.4.1
Assume Tem is some effectively closed subshift, that is essentially minimal

(Definition 1.5.14). Then min(Tem) is computably enumerable.

So, in an essentially minimal effectively closed subshift, we always have Tem co-c.e.
and min(Tem) is a c.e. subset of it, but possibly undecidable.

Before proving Theorem 6.4.1, we must introduce some notation (Definition 6.4.2)
and prove Theorem 6.4.3:

Definition 6.4.2 (Forcing relation ⊩)
Consider a subshift T. Write p ⊩ q if there exists some integer n, such that for

every pattern U avoiding F of [−n,n]d , we have p ⊏U ⇒ q ⊏U .

Theorem 6.4.3

Consider patterns p and q in Recurrent(Tem). Then necessarily p ⊩ q

Proof. Consider x ∈min(Tem). We know that p and q are recurrent in any configuration
of min(Tem) (Proposition 1.5.15). So, in particular in x. So they are among patterns of
x. Consider Tem∩ [p], that is a closed set. If it was wrong, that means that for all n, we
could fill [−n,n]d , in Tem∩ [p], hence with pattern p, and avoiding patterns of F and q.
By compactness, there is consequently a configuration x′ ∈ Tem, but without q. Consider
min(O(x′)). It should be avoiding [q], but as Tem is essentially minimal, it should be
min(Tem). We reach a contradiction, as q is a pattern of x ∈min(Tem).

Theorem 6.4.4

Assume p ∈Recurrent(Tem). Assume p ⊩ q. Then q ∈Recurrent(Tem).

Proof. Pattern p appears by definition in a configuration x ∈min(Tem). From the defini-
tion of p ⊩ q, q cannot be avoided. So in particular, it cannot be avoided in x. So q appears
also in configuration x.

Then, we can get the proof:

Proof of Theorem 6.4.1. Either min(Tem) is empty, and then it is computably enumer-
able. Otherwise: take p ∈min(Tem). We know from the two statements of Theorem 6.4.3
and 6.4.4, that min(Tem) = {q : p ⊩ p}. The relation ⊩ is computably enumerable from
its definition.

NB 6.4.5
The proof is “non-constructive”: it requires to know whether min(Tem) is empty or
not, and when it is not, it requires some p ∈min(Tem).

175

6.4.2 Robustness of subshifts
We now apply our general theory to the case of subshifts and tilings.

Fix a set of forbidden patterns F . We write T[n1,n2] for the x ∈A S avoiding patterns
p ∈F over the strip S[n1,n2] = Z× [n1,n2]. We write ◦ for composition, to mean T[n1,n2] ◦
T[n2,n3] = T[n1,n3]. We write L[n,m] (T) = {p ⊏ T[n,m]}.

Definition 6.4.6 (Robustness of a subshift)

Let g : N→N be some increasing function, g(n)≥ n, such that, for all pattern p
of size ℓ(p) = s, the support of p is included in [−s,s]d , up to some translation.
Consider any n∈N such that s≤ n. An effectively closed subshift T is subshift-

robust for g if p ∈L (T) iff p ∈Ln,g(n) = L[−n,n]

(
T[−g(n),g(n)]

)
.

We say an effectively closed subshift T is subshift-robust if it is for some g.

Definition 6.4.7 (Level of robustness n given by s)
Given a function g : N→ N, we write L{s} for the set of patterns defined by
L{g} = {p| p ∈Lℓ(p),g(ℓ(p))}.
We say that a subshift, is g-robust, when L = L{g}.

Given a pattern p, compute n = ℓ(p), m = g(n) and determine whether p ∈ Ln,m.
Thus:

Theorem 6.4.8
A polynomial-robust subshift language L is decidable in polynomial space.

We illustrate the necessity of this concept, as it holds for many famous tilesets, in the
following section.

6.5 The Robinson tileset is polynomially robust
We write TRobinson for the SFT corresponding to the Robinson tileset (accordingly to the
discussions of Subsection 1.5.1). Its associated graph is in Figure 6.4.

We convert this tileset into a transducer by defining two alphabets for horizontal and
vertical colours

H := { , , , , , } ;

V :=
{

, , , , ,
}
.

Note that with this choice for H and V , we forget about the corner types (bumpy or
dented). However, this will not be an issue later on, since no two tiles are wearing the same
colours from H and V with different corner types. Robinson’s tileset can be associated
with the transducer TRobi depicted in Figure 6.4. For more readability, in this figure, we
label a transition from a state q to a state q′ by the corresponding tile from Figure 6.3 with
the proper orientation.

176

1 2 3

4 5 6

Figure 6.3: To the left is Robinson’s tileset, where tiles can be rotated and reflected. To
the right a pattern that appears in every tiling by Robinson’s tileset.

Figure 6.4: The line graph of the graph Robi that corresponds to Robinson’s tileset. From
the symmetry of the tileset, we actually represent only the east edges.

Theorem 6.5.1 (Fundamental remark, technical version from [Fer21])

Consider a pattern of size s. Consider n ∈N such that s≤ g(n) and assume the
pattern is surrounded by at least g(s) lines above or below. It has either 0, 1, 2,
or 3 arms. In the quarter, or half delimited by these arms, we have patterns that
are subpatterns of bumpy’s.

We must prove some auxiliary lemmas before proving Theorem 6.5.1:
Conventions:

177

• We write
B

to mean a bumpy tile.

• We write
¬B

to mean a “not bumpy‘” tile.

• We write to mean an unspecified tile.

• We write
n

for a north-east n-bumpy.

Lemma 6.5.2 (Bumpy/NotBumpy Parity)
Consider a 3×2 windows of a configuration of Robinson. It matches either

¬B
¬B
¬B

¬B
B
¬B

¬B
¬B
¬B

case A

or

¬B
B
¬B

¬B
¬B
¬B

¬B
B
¬B

case B

or

¬B
¬B
¬B

B
¬B
B

¬B
¬B
¬B

case C

or

B
¬B
B

¬B
¬B
¬B

B
¬B
B

case D

or

¬B
B
¬B

¬B
¬B
¬B

B
¬B
B

case E

or

B
¬B
B

¬B
¬B
¬B

¬B
B
¬B

case F

or

¬B
¬B
B

B
¬B
¬B

¬B
¬B
B

case G

or

B
¬B
¬B

¬B
¬B
B

B
¬B
¬B

case H

Proof. We reason by cases. We only show Case A here, the proofs for the other cases are
similar. Case A is necessarily of the form

¬B

¬B

¬B

¬B

¬B

¬B

¬B

¬B

case A.1

or

¬B

¬B

¬B

¬B

¬B

¬B

¬B

¬B

case A.2

or

¬B

¬B

¬B

¬B

¬B

¬B

¬B

¬B

case A.3

or

¬B

¬B

¬B

¬B

¬B

¬B

¬B

¬B

case A.4

A sketch of proof of Theorem 6.5.1 is the following: take a pattern p of size s.
Consider n such that s ≤ g(n). We establish p is a pattern of L (Robinson) iff p ∈
L[−s,s]

(
Robinson[−g(s),g(s)]

)
. This follows from a case discussion as in the previous

lemma and the discussions of various possible patterns in the Robinson tileset. See e.g.
[Fer21].

Thus, we have the following consequences:

Corollary 6.5.3
The Robinson tileset is polynomially robust.

178

Corollary 6.5.4
The language of the Robinson is in PSPACE.

6.5.1 Robustness and invariants
We can now illustrate the observations of Subsection 6.2.5. The graphs mentioned there
are described by the following graph that we call Hn (Figure 6.5) and we can restate the
observations of Subsection 6.2.5, with the following vocabulary, which may be easier to
understand in this context.

n n

n

n

n

n

n

n n n

n n n

n n

n

n-1

n-1

n-1

n-1

n-1

n-1

n-1

n-1

n-1

n-1

n-1

n-1

Figure 6.5: Graph Hn

Definition 6.5.5 (Meta-pattern)

Let P be a set of patterns. Let U ⊂ Zd be a finite set. A meta-pattern is an
element P ∈PU, the support of P is supp(p) = U.

Notice that a pattern, is a meta-pattern, by considering P to be A : size 1 patterns.
It describes the graph(s) described in Subsection 6.2.5. Indeed,

1. Its edges are labelled with meta-patterns: that is to say by basic open sets;

179

2. Each node corresponds to the east-compatibility: any ingoing edge in a node is
east-compatible with any outgoing edge from the node: we draw here only the
edges with the east label.

3. From the symmetry of the Robinson tileset, we could replace east, with west, south,
or north in the above statements (or consider Hn to be an east-graph, while it is also
a west, south, or north graph) to get the other edges.

4. The graph has loops, following remark 6.2.30.

5. We are in the case of an isomorphism invariant: consider Hn for various values of
n: the meta-pattern sn in a given vertex are label-isomorphic: if we consider n = n1
and n = n2, then sn1 and sn2 are label-isomorphic.

Notice the following:

6. From 1., and 2., a path in the graph provides a pattern avoiding the forbidden pat-
terns F . In particular, a simple loop in the graph provides a pattern p = pn. All
such patterns pn appear in meta-patterns of all loops of Hn′ for some n′ ≥ n.

A sound and complete method for the domino problem:

Finding such a graph(s) provides a sound and complete method to prove that we can tile
the plane with a given subshift.

Theorem 6.5.6 (A sound and complete method for the domino problem)

• Suppose we have a graph Hn with the Properties 1. to 5. (or d graphs for
all d generators of Zd). Then, we can tile Zd with this subshift.

• Suppose that we have Property 6. Then all the patterns pn appear induct-
ively, for all n, and the subshift is essentially minimal. Conversely, if the
subshift is essentially minimal, then Property 6. holds.

Indeed, we already observed that Properties 1., to 4. are mandatory for robust sub-
shifts. Conversely, if we have Properties 1. to 4., we know that we can tile arbitrarily
large supports. By compactness (Definition 1.5.20), we can tile Zd .

The Robinson(M) tileset is robust iff M is

What we stated holds for many other tilesets. In particular: Robinson described in
[Rob71] a method to convert a Turing machine M into a Wang tileset τM such that M
does not halt on the empty tape iff τM tiles the plane.

Theorem 6.5.7
If the Turing machine M is robust and not terminating, then the tileset τM is

robust. The associated language is in PSPACE iff M is polynomially robust.

180

6.6 Application to other tilesets

6.6.1 Extension: Tiling equivalence
In Section 1.5.4 we defined meta-transducers not to get new or stronger results, but rather
to simplify notations and proofs. With the same objective in mind, we define a notion of
equivalence between tilesets that are not necessarily Wang tilesets.

If τ is a tileset, we say that a tileset τ̃ is equivalent (denoted by ≡) to τ if (1) each tile
in τ̃ is a valid pattern on τ (2) every tiling x by τ can be decomposed into patterns from τ̃ .

Proposition 6.6.1
Provably robustness and aperiodicity are preserved by tiling equivalence.

Proof. For provably robustness this follows directly from the definitions, since the bijec-
tion involved in tiling equivalence is chosen provable. Assume that x is a periodic tiling
by τ which is tiling equivalent to τ ′ through sets of patterns τ̃ , τ̃ ′ and a provable bijection
Φ. Then Φ(x) is a tiling by τ̃ ′ that is also periodic. So aperiodicity is also preserved by
tiling equivalence.

6.6.2 Jeandel-Rao’s tileset
In this section, we prove the polynomial robustness of Jeandel Rao’s aperiodic tileset T
considered in [JR21].

Definition 6.6.2

A tileset τ is tiling equivalent to a tileset τ ′ if there exist τ̃ (resp. τ̃ ′) equivalent
to τ (resp. to τ ′) and a provable bijection Φ : τ → τ ′ such that x is a tiling by τ̃

iff Φ(x) is a tiling by τ̃ ′.

Example 6.6.3

is tiling equivalent to the tileset τ2 pictured below, where not two north (resp. south)
black decorations have the same width.

Indeed, from a tiling from the first, by ignoring colours we get a tiling from the
second. Conversely, a tiling from the second can be transformed into a tiling from the
first, as colours can be recovered by only looking at the width of black decorations.

181

The two previous tilesets are tiling equivalent to the Jeandel-Rao’s Wang tileset [JR21],
composed with the 11 tiles pictured below.

The discussion of [JR21] proves that T is tiling equivalent to g(0) = 1, g(1) = 2 and
g(n+2) = g(n)+g(n+1) for all n, these finite abstractions are defined by

• for n even:

• for n odd:

The proof of Lemma 9 in [JR21] can be rephrased as a proof that for every n even one
has

(An+1∪Cn+1)◦ (γn∪αn∪δn)◦ (Dn+1∪An+1)≡ An+3.

Similar expressions can be established for Bn+3, Cn+3, Dn+3, En+3, On+3, from the proof
of same lemma. For n odd we can formulate similar relations, mainly by inverting the
role of Greek and Latin letters. It follows that Tn+1 ◦Tn ◦Tn+1 ≡ Tn+3. The fact that Tn
contains a loop is clear from its definition.

Theorem 6.6.4
Jeandel Rao’s aperiodic tileset T is polynomially robust.

6.6.3 Kari’s tilings
Here, we briefly present a technique due to Kari to encode piecewise rational affine maps
computations inside Wang tilings. We encourage readers to refer to [Kar07] for details
about the construction.

182

Balanced representation of real numbers

Let i ∈ Z. We say that a bi-infinite sequence (xk)k∈Z of i’s and (i+ 1)’s represents a
real number x ∈ [i, i+1] if there exists a sequence of intervals I1, I2, · · · ⊆ Z of increasing

lengths n1 < n2 < .. . such that limk→∞

∑ j∈Ik
x j

nk
= x, that is to say, the averages of (xk)k∈Z

over the intervals converge to x.
For a real number x, we write ⌊x⌋ for the integer part of x, which is the largest integer

that is less than or equal to x.

Definition 6.6.5 (Balanced representation)

Let x∈R. For k∈Z define Bk(x) := ⌊kx⌋−⌊(k−1)x⌋. The bi-infinite sequence(
Bk(x)

)
k∈Z is called the balanced representation of x. For x⃗ ∈Rd , define ⌊⃗x⌋ or

Bk (⃗x) coordinatewise.

Clearly Bk(x) ∈
{
⌊x⌋,⌊x⌋+1

}
and

(
Bk(x)

)
k∈Z is a representation of x in the sense

defined above. A key observation is that balanced representations of irrational x /∈ Q are
Sturmian sequences [FBF+02], while for rational x ∈Q the sequence is periodic.

Rational piecewise affine maps

A rational piecewise affine map is given by finitely many pairs (Ui, fi) where each Ui are
disjoint unit cubes of Rd with integer corners; fi are affine maps with rational coefficients.

Each set Ui is the domain where fi can be applied. The system (Ui, fi)i=1...n determines
a function f : D→ Rd , its domain is D =

⋃
iUi and f (⃗x) = fi(⃗x) for all x⃗ ∈Ui.

Tileset associated with a rational piecewise affine map

Kari’s constructions are based on the idea that we can associated with some Wang tileset
a rational (piecewise) affine map f .

Bk(fi(⃗x))

C fi,k−1(⃗x)

Bk(⃗x)

C fi,k(⃗x)

Figure 6.6: Tile τ fi

Definition 6.6.6 (Tileset τ fi associated with fi)

The tileset τ fi corresponding to a rational affine map fi (⃗x) = Y x⃗+ b⃗ and its
domain cube Ui consists of all tiles as shown in Figure 6.6, where k ∈Z, x⃗ ∈Ui,
and C fi,k (⃗x) is a rational number depending on fi, x⃗ and k (details can be found
in [Kar07]).

Every tile as pictured above locally computes fi with some error since we have

fi
(
Bk(⃗x)

)
+C fi,k−1(⃗x) = Bk

(
fi (⃗x)

)
+C fi,k(⃗x).

183

Moreover, because fi is rational, there are only finitely many such tiles (even though there
are infinitely many k ∈ Z and x⃗ ∈Ui). Kari then considers the tileset τ f obtained as the
union of the τ fi , with additional rules to ensure that only tiles from the same τ fi can appear
on a given row:

. . .

Bk(fi(⃗x))

Bk(⃗x)

Bk+1(fi(⃗x))

Bk+1(⃗x)

Bk+2(fi(⃗x))

Bk+2(⃗x)

Bk+1(fi(⃗x))

Bk+1(⃗x)

Bk+4(fi(⃗x))

Bk+4(⃗x)

. . .

Tiling problem and iterations of a rational piecewise map

Let (D, f) be a rational piecewise affine map. A real number x ∈ D is an immortal point
for f if for all k ∈ N∗, f [k](x) ∈ D. If such an x exists, f is called immortal. A non-empty
set I ⊆D is a rational invariant box if I is non-empty, I∩Q ̸= /0 and f (I)⊂ I. Every x∈ I,
where I is a rational immortal box, is an immortal point for f .

Proposition 6.6.7

Let (D, f) be an immortal rational piecewise affine map. Then τ f can tile the
plane. Moreover, if f has a rational invariant box I then τ f is polynomially
robust.

The immortality problem for rational piecewise affine maps is undecidable [BBKT01].
The proof relies on the encoding of any Turing machine M inside a rational piecewise map
fM, such that fM is immortal iff M does not halt. This extends classical ways to simulate
a Turing machine using rational piecewise affine maps [KCG94]. We can then consider
the associated tiling τ fM .

Theorem 6.6.8
Consider a Turing machine M. Then M is polynomially robust and not termin-
ating iff τ fM is polynomially robust.

6.7 Other types of robustness
We consider another approach to robustness in this section. Transducers and meta-transducers
are natural for tilings. We link here the robustness of a tileset to properties on the (meta-
)transducers. Adopting this alternative point of view, the statement “tilesets encoding a
Turing machine are robust iff the Turing machine is itself robust” remains true in this
setting. This approach, using the notion of proof in logic, can also be related to Section
4.6.

Definition 6.7.1 (Notation T ST ′)

Given two transducers T and T ′, we write T ST ′ iff every edge of the trans-
ducer T ′ is an edge of T .

184

This just means that the local constraints associated with T ′ fulfil all the constraints
associated with T . We use a scissor symbol, as this corresponds to deleting (cutting)
some edges.

As such, when we write T ST ′ and the states of T are of height n, then T ′ is
necessarily made of states of height n.

Proposition 6.7.2
Let τ be a tileset and T the associated transducer. If T contains a cyclic loop
of order N then T m contains a periodic loop for some 1≤ m≤ N.

Proof. Assume that T contains a cyclic loop (w,w,uv,vu) with |uv|= N. Said otherwise,
there exists a sequence of states w1 = w, . . .wN such that

T S w1 w2 w3 . . . wN−1

wN

u(1)|v(1)) u(2)|v(2)

v(|v|−1)|u(|u|−1)

v(|v|)|u(|u|)

Thus, we have a sequence of loops

T S(wi,wi,u(i)v(i),v(i)u(i))

for every i = 1 . . .N. Since there are N cyclic permutations of uv and we have exactly
N words bi = u(i)v(i) and N words ti = v(i)u(i), each ti must also be some bσ(i) where
σ : [1;N]→ [1;N] is a permutation. Denote m the size of the orbit of 1 by σ , it is the
size of the cycle

(
1,σ(1), . . . ,σm−1(1)

)
with σm(1) = 1. Using iteratively the rule for

composition on the transducer T , we have that :

T m S(w,w,b1, tm)

and since tm = bσm(1) = b1 this is a periodic loop.

Proposition 6.7.3
Consider a transducer T . Then T n contains a loop iff τ there exists a valid

tiling by τ of Z× [0;n−1] the horizontal strip of height n.

Proof. If T n contains a loop, then there is an infinite path in this loop.
Conversely, there exists some w,w′ ∈ VZ such that wT nw′. Hence, there exists a bi-

infinite sequence of states q= (qi)i∈Z ∈HZ such (qi,qi+1,wi,w′i)∈T that for every i∈Z.
As there are finitely many states, there exists some q not appearing finitely many times: we
must have qi = q j with i < j for some i, j. Then (q,q,wiwi+1 . . .w j−1,w′iw

′
i+1 . . .w

′
j−1) ∈

T . In other words, T has a loop in state q.

This can be reinforced in:

185

Proposition 6.7.4
Consider a transducer T . Then T n contains a loop of order N iff τ there exists
a valid tiling by τ of Z× [0;n−1] the horizontal strip of height n using a pattern
repeated infinitely with period N.

Proof. This follows from the previous proof, using the fact that a loop is associated with
a rectangular pattern, whose width corresponds to its order.

Definition 6.7.5 (Composition pattern)
Consider a finite set S of transducers. Consider the signature made of the sym-
bols of S (with arity 0) and the symbol ◦ (of arity 2). A composition pattern F
over S is a term over this signature.

For example H ◦ τ ◦H is a composition pattern over {H,τ}. Such a composition
pattern is interpreted as expected: ◦ corresponds to composition.

6.7.1 Robinson’s tilings described by a recurrence relation
The notions of robustness are motivated by our exploration of Robinson’s tileset with
transducers. Our result on this particular tileset inspires Theorem 6.7.7, which is import-
ant for two main reasons. First, the transducer associated with the tileset τRobi is quite
complex and things get worse as we compute compositions τn

Robi. So a naive approach
would give complex and complicated proof. Yet this theorem expresses in an extremely
simple way the fact that a valid tiling exists: the recurrence relation (6.1), which can be
read as an invariant, concerning coming discussions. Second Theorem 6.7.7 is not spe-
cific to Robinson tileset: an analogous semantic statement can be written for every tileset
for which one can prove it admits a valid tiling.

We set g(n) := 2n−1 for every integer n≥ 0, so that in the sequel we are only inter-
ested in the meta-transducers Tn :=T

g(n)
Robi . Note that the sequence (g(n))n∈N satisfies the

recurrence relation g(n) = 2g(n− 1)+ 1. We also define notations for some horizontal
and vertical patterns:

• u
n

:= g(n−1)u g(n−1) for u ∈ { , , };

• b
n

:= g(n−1)b g(n−1) for b ∈ { , , }.

We also write
a
n

a
(for example, n) for a pattern made of the tile a repeated g(n) times

vertically, where a can be either , , , , or .
Studying the entire transducer Tn would be too tedious (see Figure 6.7 for an insight

into the combinatorics of T3). We rather consider the meta-transducer Hn defined in
Figure 6.5. As we will see (Theorem 6.7.7), this transducer Hn satisfies that Tn SHn for
every n∈N∗. For the sake of clarity, we choose to label the various edges en

j with patterns.

186

Figure 6.7: One of the many possibilities to tile a 46×3 rectangle with Robinson’s tileset.
All vertical patterns that appear in this pattern are different.

For example the label n for edge en
0 of Figure 6.5 corresponds to | . In the

same spirit, the pattern n corresponds to the pair
n |

n

and similarly for

other patterns.
Example 6.7.6

For n = 2 the label pictured below to the left is realised by the pattern pictured below
to the right. For n = 3 this label is realised by the pattern pictured to the right in
Figure 6.3.

n

Theorem 6.7.7 (Key property of Robinson tiling)
For all n ∈ N,

Hn ◦TRobi ◦Hn SHn+1 (6.1)

The key lemmas to prove Theorem 6.7.7 are listed below.
NB 6.7.8

We just need to prove that any edge of Hn+1 is among the edges of Hn ◦TRobi ◦Hn.
We start by the edges of en+1

0 .

Lemma 6.7.9

For all n, we have en
0 ◦ ◦ en

0 S n+1 .

Proof. We know

en
0 S

n n

n

(6.2)

187

We have:

S

By composition, we deduce:

en
0 ◦ S

n n

n

(6.3)

By composition with (6.2) we obtain the lemma.

Lemma 6.7.10
For all n, we have

en
0 ◦TRobi ◦ en

0 Sen+1
0 ;

en
5 ◦TRobi ◦ en

5 Sen+1
5 .

Proof. Use exactly the same reasoning, but replacing the role of by , ,

, and in previous lemma, for the first assertion.
Replace the role of en

0 by en
5 in all previous arguments, to get the second assertion.

Lemma 6.7.11
For all n, we have

en
0 ◦TRobi ◦ en

0 Sen+1
2 ;

en
0 ◦TRobi ◦ en

0 Sen+1
−2 .

Proof. From (6.2),

T 1
Robi S

188

and (6.2) again at rank n−1 , we obtain

en
0 ◦ ◦ en

0 S

n

n

Similarly, we can obtain:

en
0 ◦ ◦ en

0 S

n

n

and all the other patterns of en+1
2 and en+1

−2 .

Consequently we only need to prove the following lemma to complete the proof of
Theorem 6.7.7.

Lemma 6.7.12
For all n, we have

Hn ◦TRobi ◦Hn Sen+1
1 ;

Hn ◦TRobi ◦Hn Sen+1
3 ;

Hn ◦TRobi ◦Hn Sen+1
−1 ;

Hn ◦TRobi ◦Hn Sen+1
−3 .

Proof. We only prove the first assertion as the second is obtained by replacing the role of
right and left in the following reasoning.

The third and fourth assertions can be obtained by inverting the role of height 1 and
height g(n) in the coming reasoning and by turning a rectangular pattern of some right

189

angle. So, we only need to prove:

Hn ◦TRobi ◦Hn S

n+1 n+1

n+1

n

n+1

(6.4)

6.7.2 Semantically robust tilesets

Definition 6.7.13
A tileset τ is semantically robust (or inductive) if there exists a family of

transducers (Tn)n, of respective heights (g(n))n, with g : N∗ → N∗ increas-
ing and injective with g(1) = 1 and some (fixed) composition pattern F =
F(T1,Tn−k, . . . ,Tn) over T1,Tn−k, . . . ,Tn for some integer k, such that:

1. Initialisation: τ ST1, . . . , τg(k+1) STk+1

2. F provides an invariant:

∀n, F(T1,Tn−k, . . . ,Tn) STn+1 (6.5)

3. For all n, Tn contains a loop.

6.7.3 Properties

Proposition 6.7.14
If a tileset τ admits a tiling, then it is semantically robust.

Proof. Consider g(n) = n and Tn = τg(n) for all n. We have 1) from definition, Condition
2) is satisfied, as we have T n+1 = T n ◦T for all n ≥ 0. Condition 3) comes from
Proposition 6.7.3.

190

Proposition 6.7.15
If a tileset τ is semantically robust (inductif), then it admits a tiling.

Proof. If τ is semantically robust, then by induction and combining conditions 1) and 2,
we have that for all n, τg(n) STn. By Proposition 6.7.3, we can tile horizontal stripe of
height g(n) for arbitrary large n. By a compactness argument, we conclude that τ tile the
plane.

6.7.4 Provably robust tilesets
There might be a strong difference between the fact that ∀n, F(T1,Tn−k, . . . ,Tn) STn+1
holds for some composition pattern F , written as

|= ∃F, ∀n, F(T1,Tn−k, . . . ,Tn) STn+1

and the fact that we can prove it holds, written

⊢ ∃F, ∀n, F(T1,Tn−k, . . . ,Tn) STn+1.

This is for instance the case if a tileset admits a tiling, but we cannot prove the existence
of any valid tiling. The same phenomenon happens for Turing machines, for which non-
termination may hold while there is no proof of it. In the meantime, we introduce the
concept of provably robust tileset to add this condition.

Definition 6.7.16

A tileset τ is provably robust if there exists a family of transducers (Tn)n,
of respective heights (g(n))n, with g : N∗ → N∗ increasing and injective,
g(1) = 1 and some (fixed) composition pattern F = F(T1,Tn−k, . . . ,Tn) over
T1,Tn−k, . . . ,Tn for some integer k,

1. Initialisation: τ ST1, . . . ,τ
g(k+1) STk+1

2. F provides an invariant, and this holds provably:

∀n, F(T1,Tn−k, . . . ,Tn) STn+1 (6.6)

3. For all n, Tn contains a loop.

Proposition 6.7.17
If a tileset τ is provably robust then it admits a tiling.

Proof. If we have ⊢ φ for some formula φ , then we have |= φ . We did not what notion
of proof ⊢ we use (this could be provability in ZF set theory or provability in first-order
logic starting from Peano’s axioms of arithmetic), but of course, we expect it to be sound.
Consequently, if τ is provably robust it is semantically robust.

191

Proposition 6.7.18
A periodic tileset is provably robust.

Proof. Let τ be a periodic tileset. Let x be a tiling by τ . Then it admits a period (a,b) ∈
Z2 \{(0,0)} such that for all (u,v) ∈ Z2

x(u,v) = x(a+u,b+ v).

Consider T the transducer associated with τ . Then by periodicity of x the transducer
T |b| contains a cyclic loop. By Proposition 6.7.2 there exists 1 ≤ m ≤ |b| such that
T1 := T m·|b| contains a periodic loop. Consequently for every n ∈ N∗ the transducer
Tn := T n·m·|b| contains a periodic loop. We are now ready to prove that τ is provably
robust. Define g(n) := n ·m · |b|, k = 0 and F the composition pattern F(T ,T ′) :=
T ◦T ′. Then all three conditions of provable robustness are satisfied:

1. T g(1) = T1 ST1;

2. for all n ∈ N∗, F(T1,Tn) = T1 ◦Tn = Tn+1 STn+1;

3. for all n ∈ N∗, Tn contains a periodic loop.

Proposition 6.7.19
For all n≥ 1, Tn contains a loop.

Proposition 6.7.20
Robinson tileset is provably robust.

Proof. We prove that the three items of Definition 6.7.13 are satisfied: define T1 :=TRobi
and Tn := Hn. The first two items follow from Theorem 6.7.7, considering the pattern
F(Hn,T1) = Hn ◦T1 ◦Hn. The last item follows from Proposition 6.7.19.

Corollary 6.7.21
Robinson’s tileset admits a tiling.

Proposition 6.7.22 (Non-provable robustness for valid but non-provable formulas)
Example 4.1.13 involves the existence of some valid sentence of arithmetic

whose validity is non-provable. This is a necessary condition.

Proof. If a Turing machine M is non-provably robust, it does not terminate but there is no
proof of it on some input w. We can always consider the arithmetic formula ψ = γ(m,w)
which states that the machine M is not terminating. It is true, but we have no proof of φ

by hypothesis. In other words, we have some explicit examples of the formula, namely ψ

that is valid but not provable. Hence, non-provably robustness necessarily involves some
valid formula but non-provable formulas.

192

6.8 Chapter Conclusion
In this chapter, we extended Chapter 4 from robustness for reachability questions to the
robustness of invariance properties by adopting a more topological point of view.

By searching in parallel for a proof of non-membership and a finite abstraction yield-
ing a proof of membership (i.e. a c.e and co-c.e language is decidable), we obtain is
proper notion of robustness. We now have that a robust system is decidable. This also
means that decidability holds unless non-robustness is involved. Of course, there is no
free-lunch phenomenon: robustness is undecidable.

We applied all famous common examples are robust:

Theorem 6.8.1
Robust tilesets have a decidable language (domino problem).

The main difference with Chapter 4 is that we generalised the statements to more
topological properties, allowing us to talk about more frameworks.

The discussion in Section 6.5.1 can be interpreted that reasoning on finite abstractions
such as Figure 6.5 can be seen as a sound and complete method to prove that a given sub-
shift can tile Zd , and even aperiodic tiling. It explains that we found similar phenomena
of discussions of graphs like [JR21]. The existence of an isomorphism invariant here can
be interpreted as the fact that the tiling is substitutive in some particular weak form.

Jeandel-Rao’s tileset T (Section 6.6.2) arose from a systematic computer-assisted
proof of tilesets by considering an increasing number of tiles [JR21]. They explain that
it was very easy for a computer to produce the transducer for T k, even for large values
of k (k ∼ 1000). In contrast, for almost all other tilesets, we were not able to reach even
k = 30. The existence of an invariant seems closely related to their observation that “This
suggested this tileset had some particular structure”. We somehow provide arguments
that the involved “structure” is the existence of an isomorphism invariant.

We prove additional notions of robustness, regarding the properties of the transducers.

193

Conclusion

-Once you make it to the top of the mountain, what’s
left for you but lightning?
-Wait, is the lightning a good thing or a bad thing?
-Depends whether you’re ready for it or not.

Ted Lasso, season 3, episode 10

In this thesis, we aimed to study the complexity of analogue models of computation.
In particular, we were motivated to have a better understanding of time and space in those
models. Doing so, we wanted to see if we could compute more and faster in analogue
models than in classical digital models. We mainly focused in this work on notions to
measure resources like time and space for analogue computations.

For that purpose, we studied time and space for analogue models of computation, in-
cluding continuous-time and discrete-time models, and characterised them with different
types of ODEs. We extended time characterisations to a discrete-time framework, with
discrete ODEs.

For continuous-time models, such as the GPAC, it was known that time complexity
was related to the length of solutions, summarised by the motto time = length of solu-
tions. The question of how to measure space complexity (memory) was still open. It was
known that in the general case, dynamical systems could lead to undecidability. However,
we proved that decidability holds for numerically stable systems. For such systems, one
of the main results of our work is that space corresponds to precision. Hence, we obtain a
simple motto for measuring space complexity: space = precision.

While doing so, we proposed an unusual way to solve ODEs: we solve them re-
cursively, as inspired by the proof of the Savitch theorem. We proved the link between
polynomial space and polynomial precision in the solution of the ODE. The advantage is
that continuous ODEs might be more natural than discrete ODEs, as they are studied in
more fields of science. To our knowledge, it is the first time we have such a measure for
space in analogue models of computation.

These works also leads to drawing more precisely the border between what is de-
cidable and what is not in general dynamical systems. Considering that robustness is
unsensitivity to arbitrarily small perturbations, we obtain a whole set of results demon-
strating that decidability holds for both reachability and invariance properties of dynam-
ical systems, unless non-robust systems are considered. These results provide a unifying
theory explaining various observations of the literature. For example, we related our the-
ory to concepts such as delta-decision in logic, or to various other characterisations of
this concept of robustness. Furthermore, we establish that space and time complexity are
directly related to the tolerated level of robustness.

We proved other points of view of classes over the reals, to make them more usable

194

in other fields of science. All of our results heavily rely on different notions of robustness
and ODEs. These works prove that it is possible to program with ODEs and to ensure we
can do it efficiently. Considering the very wide use of ODEs in many fields of science, we
believe that our results open the way to use tools from computer science, and complexity
theory in many fields of applied science. It also links mathematics, computer science and
physics, paving the way to a common and interdisciplinary research goal.

Let us start by reviewing what we studied and proved in the different chapters.
Chapter 3 was dedicated to giving algebraic characterisations of polynomial time in

the context of computable analysis. Such characterisations existed for continuous-time
systems and functions in NN. Here, we proved characterisations of real sequences (The-
orem 3.1.6) and then for real functions (Theorem 3.2.3), using discrete ODEs.

In Chapter 4, we studied notions of the robustness of dynamical systems leading to
the decidability of the reachability problem: we prove that if robustness is defined as in-
sensitivity an arbitrarily small perturbation, the decidability for reachability holds. We
showed that decidability is closely related to robustness, with various definitions of what
it means. In other words, undecidability does not hold for robust systems. Also, we
proved that complexity is directly related to the level of robustness. Doing so, we proved
PSPACE-membership under some additional hypotheses (Theorem 4.2.25), including
properly quantifying the perturbation. We showed PTIME-membership for another type
of perturbation related to length (Theorem 4.5.5).

We came back to algebraic characterisations of complexity classes in Chapter 5. We
algebraically characterised polynomial space in the framework of computable analysis
using discrete ODEs (Theoroem 5.1.6) and continuous ODEs on continuous-time systems
(Theorem 5.2.2). Using all the previous characterisations and the PSPACE-membership
of the reachability relation for polynomially robust dynamical systems, we proved that it
is PSPACE-hard, leading to a PSPACE-completeness results (Theorem 5.3.3).

Finally, in Chapter 6, we generalised several robustness results and applied them to
tiling theory. We extend the results of Chapter 4 from reachability to invariance property
by adopting a topological point of view. It allowed us to give topological explanations of
the results of Chapter 4. We also applied this to various application fields, including sub
shifts, and tilings, providing some explanations of phenomena observed in literature.

We proved that, for robust tilesets, the tiling problem becomes decidable. We applied
it to several well-known tilesets, like the Robison tileset (Section 6.5). The framework we
develop here unifies the existing proofs regarding the decidability of some tilings.

In the short term, several interesting questions remain:

• It would be interesting to see if the algebras we have in Chapters 3 and 5 are min-
imal. For example, the division by 3 might not be necessary. Similarly, the cosinus
might not be needed in RCD, as it is the solution of simply-stated ODEs.

• We could also relate more precisely the different notions of robustness we studied
here (e.g. robustness and pattern-robustness), to obtain a more unifying theory on
the other concepts we have.

• We have FPTIME and FPSPACE for functions over the reals. We could study
more thoroughly the whole polynomial hierarchy in the framework of comput-
able analysis, for example the classes in-between polynomial time and polynomial
space.

195

There are several tracks we would like to explore in the long term:

• We proved characterisations of FPTIME and FPSPACE for functions over the
reals ((Rm)R

n
for n,m∈N) using ordinary differential equations (ODE) in Chapters

3 and 5. It would be interesting to study the computation of more general con-
cepts of functions, namely distributions. This would imply developing a model in
computable analysis for solving partial differential equations using distributions,
following [Sel22].

• We would like to relate our algebraic characterisations of functions over the reals,
stated in the framework of computable analysis, to algebraic characterisations of
complexity classes over the reals defined with circuits, thus closer to the BSS
model. Also, we are interested in having algebraic characterisations of classes that
are less than polynomial, based on [KO14]. Eventually, we would be interested in
adding continuous ODEs in circuit complexity, based on computable analysis and
on [KO14].

• Additionally, it would be interesting to look at probabilistic complexity classes in
the framework of computable analysis. We use probabilities in computer science for
many problems, including for the training data in neural networks and in quantum
computing. An interesting application is also parallel algorithmics and probabilistic
algorithmics. Having solid computability and complexity results in those areas
would prove the efficiency and feasibility of such algorithms. We would prove
algebraic characterisations of probabilistic complexity classes, such as BPP, but
that depends on the probability distribution we are considering.

• A project would be to prove complexity results for neural network training in the
framework of computable analysis. There already exist theorems regarding that
subject in the Existential Theory of the Reals (ETR) in [HHKV24]. They prove that
the training of neural networks is ∃R-hard. Neural Networks (NN) are a particular
kind of circuit. Under some restrictions regarding computability and feasibility, we
want to prove that the neural network training is NP-complete. Namely, we could
think about a concept of robustness for NN such that the training is NP-complete
and not just ∃R-hard.

196

Bibliography

[AB01] Eugene Asarin and Ahmed Bouajjani. Perturbed Turing machines and hy-
brid systems. In Proceedings of the 16th Annual IEEE Symposium on Lo-
gic in Computer Science (LICS-01), pages 269–278, Los Alamitos, CA,
June 16–19 2001. IEEE Computer Society Press.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, USA, 1st edition, 2009.

[Abe71] Oliver Aberth. The failure in computable analysis of a classical existence
theorem for differential equations. Proceedings of the American Mathem-
atical Society, 30:151–156, 1971.

[AMJ24] Erika Abraham and Manuel Mazo Jr, editors. Proceedings of the 27th ACM
International Conference on Hybrid Systems: Computation and Control,
2024.

[AMP95] Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dy-
namical systems having piecewise-constant derivatives. Theoretical Com-
puter Science, 138(1):35–65, February 1995.

[Aub91] Jean-Pierre Aubin. Viability Theory. Systems & Control: Foundations &
Applications. Springer, 1991.

[BB22] Manon Blanc and Olivier Bournez. A characterization of polynomial time
computable functions from the integers to the reals using discrete ordinary
differential equations. In Jérôme Durand-Lose and György Vaszil, editors,
Machines, Computations, and Universality - 9th International Conference,
MCU 2022, Debrecen, Hungary, August 31 - September 2, 2022, Proceed-
ings, volume 13419 of Lecture Notes in Computer Science, pages 58–74.
Springer, 2022.

[BB23] Manon Blanc and Olivier Bournez. A characterisation of functions com-
putable in polynomial time and space over the reals with discrete ordin-
ary differential equations: Simulation of turing machines with analytic
discrete odes. In Jérôme Leroux, Sylvain Lombardy, and David Peleg,
editors, 48th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2023, August 28 to September 1, 2023, Bor-
deaux, France, volume 272 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023.

197

[BB24a] Manon Blanc and Olivier Bournez. A characterization of polynomial time
computable functions from the integers to the reals using discrete ordinary
differential equations. International Journal of Foundations of Computer
Science, 0(0):1–28, 2024.

[BB24b] Manon Blanc and Olivier Bournez. The complexity of computing in con-
tinuous time: Space complexity is precision. In Karl Bringmann, Martin
Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Col-
loquium on Automata, Languages, and Programming, ICALP 2024, July
8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 129:1–129:22.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[BB24c] Manon Blanc and Olivier Bournez. Quantifiying the robustness of dynam-
ical systems. relating time and space to length and precision. In Aniello
Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on
Computer Science Logic, CSL 2024, February 19-23, 2024, Naples, Italy,
volume 288 of LIPIcs, pages 17:1–17:20, Naples, Italy, February 2024.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[BB25] Manon Blanc and Olivier Bournez. Simulation of turing machines with
analytic discrete odes: Polynomial–time and space over the reals charac-
terised with discrete ordinary differential equations. Journal of Logic and
Analysis, 17,FDS5:1–42, February 2025.

[BBEP10] Marie-Pierre Béal, Jean Berstel, Søren Eilers, and Dominique Perrin. Sym-
bolic dynamics, 2010.

[BBKT01] Vincent D. Blondel, Olivier Bournez, Pascal Koiran, and John Tsitsiklis.
The stability of saturated linear dynamical systems is undecidable. Journal
of Computer and System Science, 62(3):442–462, May 2001.

[BC92] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic charac-
terization of the poly-time functions. Computational Complexity, 2(2):97–
110, 1992.

[BCD23] Olivier Bournez, Johanne Cohen, and Valentin Dardilhac. On the δ -
decidability of decision problems for neural network questions. In Com-
putability, Continuity, Constructivity - from Logic to Algorithms CCC’23,
2023.

[BCdNM03] Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-Yves
Marion. Computability over an arbitrary structure. sequential and paral-
lel polynomial time. In Andrew D. Gordon, editor, Foundations of Soft-
ware Science and Computational Structures, 6th International Conference
(FOSSACS’2003), volume 2620 of Lecture Notes in Computer Science,
pages 185–199, Warsaw, 2003. Springer.

[BCdNM05] Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-Yves
Marion. Implicit complexity over an arbitrary structure: Sequential and
parallel polynomial time. Journal of Logic and Computation, 15(1):41–58,
2005.

198

[BCdNM06] Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-Yves
Marion. Implicit complexity over an arbitrary structure: Quantifier alterna-
tions. Information and Computation, 202(2):210–230, February 2006.

[BCGSH07] Olivier Bournez, Manuel L. Campagnolo, Daniel Graça, and Emmanuel
S. Hainry. Polynomial differential equations compute all real comput-
able functions on computable compact intervals. Journal of Complexity,
23(3):317–335, 2007.

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity
and real computation. Springer, 1998.

[BD19] Olivier Bournez and Arnaud Durand. Recursion schemes, discrete differ-
ential equations and characterization of polynomial time computation. In
Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th
Int Symposium on Mathematical Foundations of Computer Science, MFCS,
volume 138 of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[BD23] Olivier Bournez and Arnaud Durand. A characterization of functions over
the integers computable in polynomial time using discrete ordinary differ-
ential equations. Computational Complexity, 32(2):7, 2023.

[Ber66] R. Berger. The undecidability of the domino problem. Memoirs American
Mathematical Society, 66, 1966.

[BGGP23] Olivier Bournez, Riccardo Gozzi, Daniel S Graça, and Amaury Pouly. A
continuous characterization of PSPACE using polynomial ordinary differ-
ential equations. Journal of Complexity, 77:101755, august 2023.

[BGH10] Olivier Bournez, Daniel S. Graça, and Emmanuel Hainry. Robust computa-
tions with dynamical systems. In Mathematical Foundations of Computer
Science, MFCS’2010, volume 6281 of Lecture Notes in Computer Science,
pages 198–208. Springer, 2010.

[BGH11] Olivier Bournez, Walid Gomaa, and Emmanuel Hainry. Algebraic char-
acterizations of complexity-theoretic classes of real functions. IJUC,
7(5):331–351, 2011.

[BGP12] Olivier Bournez, Daniel S Graça, and Amaury Pouly. On the complexity
of solving initial value problems. In Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation, pages 115–121, 2012.

[BGP16a] Olivier Bournez, Daniel Silva Graça, and Amaury Pouly. Computing with
polynomial ordinary differential equations. Journal of Complexity, 36:106–
140, 2016.

[BGP16b] Olivier Bournez, Daniel Silva Graça, and Amaury Pouly. Polynomial time
corresponds to solutions of polynomial ordinary differential equations of
polynomial length: The general purpose analog computer and computable
analysis are two efficiently equivalent models of computations. In Ioannis

199

Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide San-
giorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55
of LIPIcs, pages 109:1–109:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016.

[BGP17] Olivier Bournez, Daniel S. Graça, and Amaury Pouly. Polynomial Time
corresponds to Solutions of Polynomial Ordinary Differential Equations of
Polynomial Length. Journal of the ACM, 64(6):38:1–38:76, 2017.

[BHW08] Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on comput-
able analysis. In New computational paradigms, pages 425–491. Springer,
2008.

[BP17] Olivier Bournez and Amaury Pouly. A universal ordinary differential equa-
tion. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 116:1–116:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

[BP21] Olivier Bournez and Amaury Pouly. A survey on analog models of com-
putation. In Handbook of Computability and Complexity in Analysis, pages
173–226. Springer, 2021.

[Bra95] M. S. Branicky. Universal computation and other capabilities of hybrid and
continuous dynamical systems. Theoretical Computer Science, 138(1):67–
100, 6 feb 1995.

[Bra96] Vasco Brattka. Recursive characterization of computable real-valued func-
tions and relations. Theoretical Computer Science, 162(1):45–77, 1996.

[Bra05] Mark Braverman. Hyperbolic Julia sets are poly-time computable. Elec-
tronic Notes in Theoretical Computer Science, 120:17–30, 2005.

[BRS15] Mark Braverman, Cristobal Rojas, and Jon Schneider. Tight space-noise
tradeoffs in computing the ergodic measure. Sbornik: Mathematics, 208,
08 2015.

[Bru19] Henk Bruin. Vo special topics in stochastics: Symbolic dynamic, 2019.

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and
complexity over the real numbers; NP completeness, recursive functions
and universal machines. Bulletin of the American Mathematical Society,
21(1):1–46, jul 1989.

[CG08] Pieter Collins and Daniel S Graça. Effective computability of solutions of
ordinary differential equations the thousand monkeys approach. Electronic
Notes in Theoretical Computer Science, 221:103–114, 2008.

200

[CG09] Pieter Collins and Daniel S. Graça. Effective Computability of Solutions of
Differential Inclusions The Ten Thousand Monkeys Approach. Journal of
Universal Computer Science, 15(6):1162–1185, 2009.

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58:345, 1936.

[CK02] Peter Clote and Evangelos Kranakis. Boolean Functions and Computa-
tion Models. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2002.

[Cla24] Laurent Claessens–Donadello. Le Frido. Free Software Foundation, 2024.

[Clo98] P. Clote. Computational models and function algebras. In Edward R.
Griffor, editor, Handbook of Computability Theory, pages 589–681. North-
Holland, Amsterdam, 1998.

[CMC00] Manuel L. Campagnolo, Cristopher Moore, and José Félix Costa. Iteration,
inequalities, and differentiability in analog computers. Journal of Complex-
ity, 16(4):642–660, 2000.

[CMPS23] Robert Cardona, Eva Miranda, and Daniel Peralta-Salas. Computability
and beltrami fields in euclidean space. Journal de Mathématiques Pures et
Appliquées, 169:50–81, 2023.

[Cob62] Alan Cobham. The intrinsic computational difficulty of functions. In
Y. Bar-Hillel, editor, Proceedings of the International Conference on Lo-
gic, Methodology, and Philosophy of Science, pages 24–30. North-Holland,
Amsterdam, 1962.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, page 151–158, New York, NY, USA, 1971. Association for
Computing Machinery.

[CR24] Jordan Cotler and Semon Rezchikov. Computational dynamical systems. In
Proceedings - 2024 IEEE 65th Annual Symposium on Foundations of Com-
puter Science, FOCS 2024, Proceedings - Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pages 166–202, United States,
2024. IEEE Computer Society. Publisher Copyright: © 2024 IEEE.; 65th
IEEE Annual Symposium on Foundations of Computer Science, FOCS
2024 ; Conference date: 27-10-2024 Through 30-10-2024.

[CRBD18] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural ordinary differential equations. In Advances in Neural Information
Processing Systems, pages 6571–6583, 2018.

[Dem96] J.-P. Demailly. Analyse Numérique et Équations Différentielles. Presses
Universitaires de Grenoble, 1996.

[Dev89] R. L. Devaney. An Introduction to Chaotic Dynamical Systems. Addison-
Wesley, 2nd edition, 1989.

201

[FBF+02] N Pytheas Fogg, Valéré Berthé, Sébastien Ferenczi, Christian Mauduit, and
Anne Siegel. Substitutions in Dynamics, Arithmetics and Combinatorics.
Springer Berlin Heidelberg, 2002.

[Fer21] Thomas Fernique. Robinson tilings. Course given at Moscow University,
2021.

[FGBP17] François Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury
Pouly. Strong turing completeness of continuous chemical reaction net-
works and compilation of mixed analog-digital programs. In Jérôme Feret
and Heinz Koeppl, editors, Computational Methods in Systems Biology -
15th International Conference, CMSB 2017, Darmstadt, Germany, Septem-
ber 27-29, 2017, Proceedings, volume 10545 of Lecture Notes in Computer
Science, pages 108–127. Springer, 2017. CMSB’2017 Best Paper Award.

[FGH14] Hugo Férée, Walid Gomaa, and Mathieu Hoyrup. Analytical properties of
resource-bounded real functionals. Journal of Complexity, 30(5):647–671,
2014.

[Frä99] Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save
an infinity of states. In Jörg Flum and Mario Rodríguez-Artalejo, editors,
Computer Science Logic, 13th International Workshop, CSL ’99, 8th An-
nual Conference of the EACSL, Madrid, Spain, September 20-25, 1999,
Proceedings, volume 1683 of Lecture Notes in Computer Science, pages
126–140. Springer, 1999.

[GAC12] Sicun Gao, Jeremy Avigad, and Edmund M Clarke. Delta-decidability over
the reals. In Logic in Computer Science (LICS), 2012 27th Annual IEEE
Symposium on, pages 305–314. IEEE, 2012.

[Gan80] Robin Gandy. Church’s thesis and principles for mechanisms. In Jon Bar-
wise, H. Jerome Keisler, and Kenneth Kunen, editors, The Kleene Sym-
posium, volume 101 of Studies in Logic and the Foundations of Mathemat-
ics, pages 123–148. Elsevier, 1980.

[GC03] Daniel S. Graça and José Félix Costa. Analog computers and recursive
functions over the reals. jcomp, 19(5):644–664, 2003.

[GCB05] Daniel S. Graça, Manuel L. Campagnolo, and Jorge Buescu. Robust sim-
ulations of Turing machines with analytic maps and flows. In B. Cooper,
B. Loewe, and L. Torenvliet, editors, Proceedings of CiE’05, New Compu-
tational Paradigms, volume 3526 of Lecture Notes in Computer Science,
pages 169–179. Springer-Verlag, 2005.

[Gel71] Aleksandr Gelfond. Calculus of finite differences. Hindustan Publ. Corp.,
1971.

[GMR08] Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. A
logical account of pspace. In George C. Necula and Philip Wadler, editors,
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles

202

of Programming Languages, POPL 2008, San Francisco, California, USA,
January 7-12, 2008, pages 121–131. ACM, 2008.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I. Monatschefte fur Mathematik und Physik,
38:173–198, 1931. English translation in Martin Davis. The Undecidable:
Basic Papers on Undecidable Propositions, Unsolvable Problems and Com-
putable Functions. Raven Press, 1965.

[Goz22] Riccardo Gozzi. Analog Characterization of Complexity Classes. PhD
thesis, Instituto Superior Técnico, Lisbon, Portugal and University of Al-
garve, Faro, Portugal, 2022.

[Gra07] Daniel S. Graça. Computability with Polynomial Differential Equations.
PhD thesis, Instituto Superior Técnico, 2007.

[GZ18] Daniel S. Graça and Ning Zhong. Handbook of Computability and
Complexity in Analysis, chapter Computability of Differential Equations.
Springer., 2018.

[GZB06] Daniel S. Graça, N. Zhong, and J. Buescu. Computability, noncomputab-
ility and undecidability of maximal intervals of IVPs. Transactions of the
American Mathematical Society, 2006. To appear.

[Har64] Philip Hartman. Ordinary Differential Equations. John Wiley and Sons,
1964.

[HHKV24] Teemu Hankala, Miika Hannula, Juha Kontinen, and Jonni Virtema. Com-
plexity of neural network training and ETR: extensions with effectively
continuous functions. In Michael J. Wooldridge, Jennifer G. Dy, and Srir-
aam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial Intel-
ligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Van-
couver, Canada, pages 12278–12285. AAAI Press, 2024.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and System
Sciences, 57(1):94–124, August 1998.

[HR00] Thomas A. Henzinger and Jean-François Raskin. Robust undecidability
of timed and hybrid systems. In Nancy A. Lynch and Bruce H. Krogh,
editors, Hybrid Systems: Computation and Control, Third International
Workshop, HSCC 2000, Pittsburgh, PA, USA, March 23-25, 2000, Proceed-
ings, volume 1790 of Lecture Notes in Computer Science, pages 145–159.
Springer, 2000.

[HSD03] Morris W. Hirsch, Stephen Smale, and Robert Devaney. Differential Equa-
tions, Dynamical Systems, and an Introduction to Chaos. Elsevier Aca-
demic Press, 2003.

203

[Imm88] N. Immerman. Nondeterministic space is closed under complementation.
In Structure in Complexity Theory Conference, 1988. Proceedings., Third
Annual, pages 112–115. IEEE, 1988.

[JR21] Emmanuel Jeandel and Michael Rao. An aperiodic set of 11 wang tiles.
Advances in Combinatorics, 2021.

[JV20] Emmanuel Jeandel and Pascal Vanier. The undecidability of the dom-
ino problem. In Substitution and Tiling Dynamics: Introduction to Self-
inducing Structures: CIRM Jean-Morlet Chair, Fall 2017, pages 293–357.
Springer, 2020.

[Kar72] Richard Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, 40:85–103, 01 1972.

[Kar07] Jarkko Kari. The Tiling Problem Revisited. In MCU, pages 72–79, 2007.

[Kaw09] Akitoshi Kawamura. Lipschitz continuous ordinary differential equations
are polynomial-space complete. In 2009 24th Annual IEEE Conference on
Computational Complexity, pages 149–160. IEEE, 2009.

[KC12] Akitoshi Kawamura and Stephen A. Cook. Complexity theory for operators
in analysis. ACM Trans. Comput. Theory, 4(2):5:1–5:24, 2012.

[KCG94] Pascal Koiran, Michel Cosnard, and Max Garzon. Computability with low-
dimensional dynamical systems. Theoretical Computer Science, 132(1-
2):113–128, September 1994.

[Kid22] Patrick Kidger. On neural differential equations. CoRR, abs/2202.02435,
2022.

[KK06] Igor Kluvánek and Greg Knowles. The bang-bang principle. In Math-
ematical Control Theory: Proceedings, Canberra, Australia, August 23–
September 2, 1977, pages 138–151. Springer, 2006.

[Kle36] Stephen C. Kleene. General recursive functions of natural numbers. Math-
ematical Annals, 112:727–742, 1936. Reprinted in Martin Davis. The Un-
decidable: Basic Papers on Undecidable Propositions, Unsolvable Prob-
lems and Computable Functions. Raven Press, 1965.

[Kle38] Stephen C. Kleene. On notation for ordinal numbers. The Journal of Sym-
bolic Logic, 3(4):150–155, 1938.

[Kle43] Stephen Cole Kleene. Recursive predicates and quantifiers. Transactions
of the American Mathematical Society, 53:41–73, 1943.

[KMRZ15] Akitoshi Kawamura, Norbert Müller, Carsten Rösnick, and Martin Ziegler.
Computational benefit of smoothness: Parameterized bit-complexity of nu-
merical operators on analytic functions and gevrey’s hierarchy. Journal of
Complexity, 31(5):689–714, 2015.

204

[Ko83] Ker-I Ko. On the computational complexity of ordinary differential equa-
tions. Information and Control, 58(1-3):157–194, jul/aug/sep 1983.

[Ko91] Ker-I Ko. Complexity theory of real functions, volume 3 of Progress in
theoretical computer science. Birkhäuser, Boston, 1991.

[KO14] Akitoshi Kawamura and Hiroyuki Ota. Small complexity classes for com-
putable analysis. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and
Zoltán Ésik, editors, Mathematical Foundations of Computer Science 2014
- 39th International Symposium, MFCS 2014, Budapest, Hungary, August
25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Com-
puter Science, pages 432–444. Springer, 2014.

[KORZ14] Akitoshi Kawamura, Hiroyuki Ota, Carsten Rösnick, and Martin Ziegler.
Computational complexity of smooth differential equations. Logical Meth-
ods in Computer Science, 10, 2014.

[Koz97] D. Kozen. Automata and computability. Springer Verlag, 1997.

[KST18] Akitoshi Kawamura, Florian Steinberg, and Holger Thies. Parameterized
complexity for uniform operators on multidimensional analytic functions
and ode solving. In International Workshop on Logic, Language, Informa-
tion, and Computation, pages 223–236. Springer, 2018.

[Lei94] Daniel Leivant. Predicative recurrence and computational complexity I:
Word recurrence and poly-time. In Peter Clote and Jeffery Remmel, editors,
Feasible Mathematics II, pages 320–343. Birkhäuser, 1994.

[Lei95] D. Leivant. Intrinsic theories and computational complexity. In LCC’94,
number 960 in Lecture Notes in Computer Science, pages 177–194, 1995.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problemy Pereda-
chi Informatsii, 9:115–116, 1973.

[LM93] Daniel Leivant and Jean-Yves Marion. Lambda calculus characterizations
of Poly-Time. Fundamenta Informatica, 19(1,2):167,184, 1993.

[LM95] Daniel Leivant and Jean-Yves Marion. Ramified recurrence and compu-
tational complexity II: substitution and poly-space. In L. Pacholski and
J. Tiuryn, editors, Computer Science Logic, 8th Workshop, CSL’94, volume
933 of Lecture Notes in Computer Science, pages 369–380, Kazimierz, Po-
land, 1995. Springer.

[Lor63] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric
Science, 20:130–141, 1963.

[Lyg04] John Lygeros. Lecture notes on hybrid systems. In Notes for an ENSIETA
workshop, 2004.

[Mal02] Oded Maler. Control from computer science. Annual Reviews in Control,
26(2):175–187, 2002.

205

[Mil70] Webb Miller. Recursive function theory and numerical analysis. Journal of
Computer and System Sciences, 4(5):465–472, oct 1970.

[Mil85] John Milnor. On the concept of attractor. Communications in Mathematical
Physics, 99:177–195, 1985.

[Moo91] Cristopher Moore. Generalized shifts: unpredictability and undecidability
in dynamical systems. Nonlinearity, 4(3):199–230, 1991.

[Mos47] Andrzej Wlodzimierz Mostowski. On definable sets of positive integers.
Fundamenta Mathematicae, 34:81–112, 1947.

[MP08] Jean-Yves Marion and Romain Péchoux. Characterizations of polynomial
complexity classes with a better intensionality. In Sergio Antoy and Elvira
Albert, editors, Proceedings of the 10th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, July 15-
17, 2008, Valencia, Spain, pages 79–88. ACM, 2008.

[Mus00] E. Muselli. Upper and lower semicontinuity for set-valued mappings in-
volving constraints. Journal of Optimization Theory and Applications,
106:527–550, 2000.

[Neu21] Eike Neumann. Decision problems for linear recurrences involving arbit-
rary real numbers. Logical Methods in Computer Science, 17, 2021.

[Neu23] Eike Neumann. On the complexity of robust eventual inequality testing for
C-finite functions. In International Conference on Reachability Problems,
pages 98–112. Springer, 2023.

[NRTY21] Keng Meng Ng, Nazanin R Tavana, and Yue Yang. A recursion theoretic
foundation of computation over real numbers. Journal of Logic and Com-
putation, 31(7):1660–1689, 2021.

[PBV95] A. Puri, V. Borkar, and P. Varaiya. Epsilon-approximation of differential
inclusions. In Proceedings of the 34th IEEE Conference on Decision and
Control, pages 2892–2897, 1995.

[PER79] Marian Boykan Pour-El and J. Ian Richards. A computable ordinary differ-
ential equation which possesses no computable solution. Annals of Math-
ematical Logic, 17:61–90, 1979.

[PG16] Amaury Pouly and Daniel Silva Graça. Computational complexity of solv-
ing polynomial differential equations over unbounded domains. Theoretical
Computer Science, 626:67–82, 2016.

[Pou15] Amaury Pouly. Continuous models of computation: from computability to
complexity. PhD thesis, Ecole Polytechnique and Unidersidade Do Algarve,
Defended on July 6, 2015. 2015. https://pastel.archives-ouvertes.fr/tel-
01223284, Prix de Thèse de l’Ecole Polyechnique 2016, Ackermann Award
2017.

206

[Pur00] Anuj Puri. Dynamical properties of timed automata. Discrete Event Dy-
namic Systems, 10:87–113, 2000.

[Rat23] Stefan Ratschan. Deciding predicate logical theories of real-valued func-
tions. In Symposium on Mathematical Foundations of Computer Science
(MFCS’2023), 2023.

[Rob71] Raphael M Robinson. Undecidability and nonperiodicity for tilings of the
plane. Inventiones mathematicae, 12:177–209, 1971.

[RS23] Cristobal Rojas and Mathieu Sablik. On the algorithmic descriptive com-
plexity of attractors in topological dynamics. CoRR, abs/2311.15234, 2023.

[Rud87] W. Rudin. Real and Complex Analysis, 3rd edition. McGraw Hills, USA,
March 1987.

[Rud91] Walter Rudin. Functional Analysis. McGraw-Hill, 1991.

[Ruo96] Keijo Ruohonen. An effective Cauchy-Peano existence theorem for unique
solutions. International Journal of Foundations of Computer Science,
7(2):151–160, 1996.

[Sab12] Mathieu Sablik. Pavages: du local au global, 2012.

[Sel22] Svetlana Selivanova. Computational Complexity of Classical Solutions of
Partial Differential Equations, pages 299–312. Springer, 06 2022.

[Sha41] Claude E. Shannon. Mathematical theory of the differential analyser.
Journal of Mathematics and Physics MIT, 20:337–354, 1941.

[Sie99] Hava T. Siegelmann. Neural Networks and Analog Computation - Beyond
the Turing Limit. Birkauser, 1999.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. PWS Publish-
ing Company, 1997.

[SP94] Patrick Saint-Pierre. Approximation of the viability kernel. Applied Math-
ematics and Optimization, 29:187–209, 1994.

[SS95] Hava T. Siegelmann and Eduardo D. Sontag. On the computational power
of neural nets. Journal of Computer and System Sciences, 50(1):132–150,
February 1995.

[Str65] C. Strachey. An impossible program. The Computer Journal, 7(4):313–313,
01 1965.

[SVV64] LM Sonneborn and FS Van Vleck. The bang-bang principle for linear con-
trol systems. Journal of the Society for Industrial and Applied Mathematics,
Series A: Control, 2(2):151–159, 1964.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic
automata. Acta informatica, 26(3):279–284, November 1988.

207

[Tak01] Izumi Takeuti. Effective fixed point theorem over a non-computably sep-
arable metric space. In Jens Blanck, Vasco Brattka, and Peter Hertling,
editors, Computability and Complexity in Analysis, pages 310–322, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[Thi18] Holger Thies. Uniform computational complexity of ordinary differential
equations with applications to dynamical systems and exact real arithmetic.
PhD thesis, University of Tokyo, Graduate School of Arts and Sciences,
2018.

[Tho72] David B. Thompson. Subrecursiveness: Machine-independent notions of
computability in restricted time and storage. Mathematical systems theory,
6:3–15, 1972.

[Tuc02] Warwick Tucker. A rigorous ODE solver and Smale’s 14th problem. Found-
ations of Computational Mathematics, 2:53–117, 2002.

[Tur37] Alan M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230–265, 1937. Reprinted in Martin Davis. The Undecidable: Ba-
sic Papers on Undecidable Propositions, Unsolvable Problems and Com-
putable Functions. Raven Press, 1965.

[Ulm13] Bernd Ulmann. Analog computing. Walter de Gruyter, 2013.

[Ulm20] Bernd Ulmann. Analog and hybrid computer programming. De Gruyter
Oldenbourg, 2020.

[Ver22] Veritasum. Future computers will be radically different (analog computing).
Youtube video, 2022.

[Wan61] Hao Wang. Proving theorems by pattern recognition - ii. Bell System Tech-
nical Journal, 40(1):1–41, January 1961.

[Wei00] Klaus Weihrauch. Computable Analysis - An Introduction. Texts in Theor-
etical Computer Science. An EATCS Series. Springer, 2000.

[Win93] Glynn Winskel. The formal semantics of programming languages: an in-
troduction. MIT press, 1993.

208

Titre : Systèmes à Temps Discret et à Temps Continu: Relier la Complexité à la Robustesse, la Longueur, la
Précision

Mots clés : Complexité, Analyse Calculable, Systèmes Dynamiques

Résumé : Le monde physique qui nous entoure est
continu et décrit par des équations différentielles or-
dinaires (EDO). Mais ce n’est pas le modèle utilisé
dans les ordinateurs actuels: les composants sont
contraints de vivre dans un régime vrai/faux. Ainsi, les
modèles de calcul, comme les machines de Turing,
sont discrets: ils fonctionnent sur des mots d’un alpha-
bet fini, avec des pas, c’est-à-dire un temps discret.
Nous avons aussi des modèles mathématiques pour
les machines analogiques, et les ordinateurs analo-
giques, comme le “General Purpose Analog Com-
puter” proposé par Claude Shannon, qui peuvent
être vus comme le pendant des machines de Tu-
ring pour le monde analogique. Nos travaux porte
sur la puissance de calcul de tels modèles : com-
prendre si nous pourrions calculer plus et plus vite
avec eux. Pour comparer les approches, nous avons
besoin d’un moyen de mesurer le coût des calculs
dans des contextes continus. Nous prouvons des
caractérisations de classes de complexité pour les
calculs utilisant des nombres réels et des modèles
analogiques. En particulier, nous étendons les ca-
ractérisations de temps aux systèmes à temps dis-

crets avec des EDO discrètes pour couvrir la calcula-
bilité et la complexité des fonctions sur les réels, alors
que cela n’avait été fait que pour les problèmes de
décision. Nous prouvons qu’il existe une mesure ro-
buste pour les systèmes à temps continus qui corres-
pond à l’espace pour les modèles digitaux: l’espace,
soit la mémoire utilisée par un modèle comme la ma-
chine de Turing, correspond à la précision pour les
systèmes à temps continu.
Un autre axe de recherche porte sur la robus-
tesse des systèmes dynamiques. Nous prouvons que
l’indécidabilité n’arrive pas pour des systèmes ro-
bustes et relions directement le niveau de robus-
tesse à leur complexité. Dans le contexte des théories
logiques sur les réels, des procédures de décision
existent en se concentrant sur des propriétés in-
sensibles à des perturbations arbitrairement petites.
Nous proposons une théorie unifiée expliquant dans
un cadre uniforme ces énoncés, établis dans des
contextes différents. Nous appliquons ce principe aux
systèmes dynamiques généraux, incluant un point de
vue topologique, ainsi qu’aux pavages.

Title : Discrete-Time and Continuous-Time Systems over the Reals: Relating Complexity with Robustness,
Length and Precision

Keywords : Complexity, Computable Analysis, Dynamical Systems

Abstract : The physical world around us is conti-
nuous and described by ordinary differential equa-
tions (ODEs). But this is not the model used in cur-
rent computers: the components are forced to live in
a true/false regime. Thus, the models of computation,
such as Turing machines, are discrete: they operate
on words of a finite alphabet, with steps, so in discrete
time. However, we also have mathematical models for
analogue machines, and analogue computers, such
as the “General Purpose Analog Computer” proposed
by Claude Shannon, which can be seen as the coun-
terpart of Turing machines for the analogue world. Our
work focuses on the computing power of such models:
understanding whether we could compute more and
faster with them. To compare approaches, we need
a way to measure the cost of computations in conti-
nuous contexts. We prove complexity class characte-
risations for computations over real numbers and ana-
logue models. In particular, we extend the time cha-

racterisations to discrete-time systems with discrete
ODEs to cover computability and complexity of func-
tions on the reals, whereas this had only been done
for decision problems. We prove there exists a robust
measure for continuous-time systems corresponding
to space for digital models: space, that is, the memory
used by a model like the Turing machine, corresponds
to precision for continuous-time systems.
Another line of research concerns the robustness of
dynamical systems. We show that undecidability does
not occur for robust systems and directly relate the le-
vel of robustness to their complexity. In the context of
logical theories of real numbers, decision procedures
exist by focusing on properties insensitive to arbitra-
rily small perturbations. We propose a unified theory
explaining these statements, from different contexts,
in a uniform framework. We apply this principle to ge-
neral dynamical systems, including a topological point
of view, as well as to tilings.

Institut Polytechnique de Paris
91120 Palaiseau, France

