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What is Quantum Control?

• Flow of the program controlled by pure quantum data.
• No use of measurement to control the flow.

input : | xy>

i f x :
| xy>

e l s e :
| x(1−y)>

input : | xy>

i f meas ( x ) :
| y>

e l s e :
|(1 −y)>

(My) Quantum Control: work with reversible quantum operations.

They are more known as unitaries.

Is this approach new?
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The syntax

Types:
I A ⊕ B A ⊗ B Nat

µX.A

Terms and semantics as isometries:
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The syntax

Types:
I A ⊕ B A ⊗ B Nat

µX.A

Terms and semantics as isometries:
Syntax Cn

∗ : I
(

1
)

1

left ∗ : I ⊕ I

(
1
0

)
|0〉

right ∗ : I ⊕ I

(
0
1

)
|1〉

(α · left ∗) + (β · right ∗) : I ⊕ I

(
α

β

)
α |0〉+ β |1〉
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The syntax

Types:
I A ⊕ B A ⊗ B Nat

µX.A

Terms and semantics as isometries:
Syntax Cn

ti : I ⊕ I

(
αi
βi

)
|ϕi〉

t1 ⊗ t2 : (I ⊕ I)⊗ (I ⊕ I)


α1α2
β1α2
α1β2
β1β2

 |ϕ1〉 ⊗ |ϕ2〉
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The syntax

Types:
I A ⊕ B A ⊗ B Nat

µX.A

Terms and semantics as isometries:
Syntax ℓ2(N)

zero : Nat e0 |0〉

t : Nat en |n〉

S t : Nat en+1 |n + 1〉
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The syntax

Types:
I A ⊕ B A ⊗ B Nat µX.A

Terms and semantics as isometries:

Syntax
⊕∞

n=0 H⊗n

t : A[µX.A/X] ⋆

fold t : µX.A ⋆
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Unitaries

Can be seen as λ-abstractions with pattern-matching.

λ-abstraction:

λx.t ∼= x 7→ t

and

(λx.t)t′ → t[t′/x]

{
x 7→ x

} {
x ⊗ y 7→ y ⊗ x

}
{

left ∗ 7→ right ∗
right ∗ 7→ left ∗

}
{

left ∗ 7→ 1√
2 left ∗+ 1√

2 right ∗
right ∗ 7→ 1√

2 left ∗ − 1√
2 right ∗

}


(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)
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Semantics of unitaries

Operationally: CNOT =


(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)



CNOT(( 1√
2 left ∗+ 1√

2 right ∗)⊗ (left ∗))

→ CNOT( 1√
2 (left ∗)⊗ (left ∗) + 1√

2 (right ∗)⊗ (left ∗))
→ 1√

2 CNOT((left ∗)⊗ (left ∗)) + 1√
2 CNOT((right ∗)⊗ (left ∗)))

→ 1√
2 (left ∗)⊗ (left ∗) + 1√

2 (right ∗)⊗ (right ∗)

Mathematically:uwv`


t1 7→ t′1

...
tm 7→ t′m

 : A ↔ B

}�~ =
m∑

i=1
J∆ ` t′i : BK ◦ J∆ ` ti : AK†
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How do we ensure unitarity?

A syntactic notion of orthonormal basis (ONB).

In linear algebra, a unitary transforms an ONB into an ONB.


t1 7→ t′1

...
tm 7→ t′m


This is a unitary if both {t1}i and {t′j}j are ONBs.
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How do we ensure unitarity?

A syntactic notion of orthonormal basis (ONB).

In linear algebra, a unitary transforms an ONB into an ONB.


t1 7→ t′1

...
tm 7→ t′m


This is a unitary if both {t1}i and {t′j}j are ONBs.

ONBA{x} ONBA⊗B{x ⊗ y}

ONBNat{zero, S zero, S S x}

ONBI⊕I{ 1√
2 zero + 1√

2 S zero, 1√
2 zero − 1√

2 S zero, S S x}
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Properties

With a suitable equational theory (cf. my thesis).

Theorem
If ∆ ` t : A is well-typed and ONBA({ti}) then ∆ ` t =

∑
i αiti : A.

It implies that there is a unique normal form. And thus:

Theorem (Completeness)

· ` t1 = t2 : A iff J· ` t1 : AK = J· ` t2 : AK.
With a denotational semantics in Hilbert spaces and isometries.

Other cool result: our syntactic ONBs are realisations of the identity.

If ONBA(S), then
∑

t∈S JtK ◦ JtK† = id.
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What about Higher-order?

Comparison with the λ-calculus is limited.

In a unitary {ti 7→ t′i}, the components ti and t′i are ground terms.

Cannot take a unitary as an input and cannot output a unitary.

Need to add a new form of (higher-order) functions.

{
x 7→ let y = ω x in y

}
λϕ.

{
x 7→ let y = ϕ x in y

}

We have a λ-calculus at the level of unitaries.
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What does Higher-order achieve?

A general control operation.

λϕ.


(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ x 7→ let y = ϕ x in

(right ∗)⊗ y



The quantum switch.

λϕ.λψ.



(left ∗)⊗ x 7→ let y = ϕ x in
let z = ψ y in
(left ∗)⊗ z

(right ∗)⊗ x 7→ let y = ψ x in
let z = ϕ y in
(right ∗)⊗ z


Conjecture
Completeness still holds with higher-order.
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What is next?

We have:

• A programming language,
• with inductive types,
• with higher-order.

What is next?

Recursion!

With a fixed point combinator.

fix ϕ. {. . . }
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Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! (proven by Kostia Chardonnet)

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

10

https://arxiv.org/pdf/2309.12151.pdf
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Until we meet again

Reasons to believe that general quantum recursion does not hold.

In Hilbert spaces: no enrichment (some details?), no trace (conjecture).

Many questions remain. Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Hilbert spaces might not be the right model.

Thank you!
Come to my defence on 19th June, 2pm.
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Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?
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Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
⊥ : N⊥ → N⊥ is:

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.
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Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! (proven by Kostia Chardonnet)

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

14

https://arxiv.org/pdf/2309.12151.pdf
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The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.

Dimension 2 for simple examples.

Reversible quantum operations are subunitaries such as:(
1 0
0 1

) (
1 0
0 0

) (
0 0
0 1

)
(

1√
2

1√
2

1√
2 − 1√

2

) (
1√
2 0

1√
2 0

) (
0 1√

2
0 − 1√

2

)
(

0 1
1 0

) (
0 0
1 0

) (
0 1
0 0

)

Arguably, undefined (⊥) in a Hilbert space is the zero vector
(

0
0

)
.

(
0 0
0 0

)
is less defined than

(
1 0
0 0

)
which is less defined than

(
1 0
0 1

)
.
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A disappointment

However, this order does not interact well with composition:(
1 0
0 0

)
≤

(
1 0
0 1

)
,

thus
(

1√
2

1√
2

)
◦

(
1 0
0 0

)
◦

(
1√
2

− 1√
2

)
≤

(
1√
2

1√
2

)
◦

(
1√
2

− 1√
2

)
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on subunitary maps between Hilbert spaces.
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