
The Syntax and Semantics of Simply-typed
Quantum Control

Louis Lemonnier
Acknowledgements to: Kostia Chardonnet, Robin Kaarsgaard, Benoît Valiron, Vladimir Zamdzhiev

Équipe MOCQUA. 30th May 2024

What is Quantum Control?

• Flow of the program controlled by pure quantum data.
• No use of measurement to control the flow.

input : | xy>

i f x :
| xy>

e l s e :
| x(1−y)>

input : | xy>

i f meas (x) :
| y>

e l s e :
|(1 −y)>

(My) Quantum Control: work with reversible quantum operations.

They are more known as unitaries.

Is this approach new?

1

What is Quantum Control?

• Flow of the program controlled by pure quantum data.
• No use of measurement to control the flow.

input : | xy>

i f x :
| xy>

e l s e :
| x (Uy)>

input : | xy>

i f meas (x) :
| y>

e l s e :
| Uy>

(My) Quantum Control: work with reversible quantum operations.

They are more known as unitaries.

Is this approach new?

1

What is Quantum Control?

• Flow of the program controlled by pure quantum data.
• No use of measurement to control the flow.

input : | xy>

i f x :
| xy>

e l s e :
| x (Uy)>

input : | xy>

i f meas (x) :
| y>

e l s e :
| Uy>

(My) Quantum Control: work with reversible quantum operations.

They are more known as unitaries.

Is this approach new?

1

The syntax

Types:
I A ⊕ B A ⊗ B Nat

µX.A

Terms and semantics as isometries:

2

The syntax

Types:
I A ⊕ B A ⊗ B Nat

µX.A

Terms and semantics as isometries:
Syntax Cn

∗ : I
(

1
)

1

left ∗ : I ⊕ I

(
1
0

)
|0〉

right ∗ : I ⊕ I

(
0
1

)
|1〉

(α · left ∗) + (β · right ∗) : I ⊕ I

(
α

β

)
α |0〉+ β |1〉

2

The syntax

Types:
I A ⊕ B A ⊗ B Nat

µX.A

Terms and semantics as isometries:
Syntax Cn

ti : I ⊕ I

(
αi
βi

)
|ϕi〉

t1 ⊗ t2 : (I ⊕ I)⊗ (I ⊕ I)

α1α2
β1α2
α1β2
β1β2

 |ϕ1〉 ⊗ |ϕ2〉

2

The syntax

Types:
I A ⊕ B A ⊗ B Nat

µX.A

Terms and semantics as isometries:
Syntax ℓ2(N)

zero : Nat e0 |0〉

t : Nat en |n〉

S t : Nat en+1 |n + 1〉

2

The syntax

Types:
I A ⊕ B A ⊗ B Nat µX.A

Terms and semantics as isometries:

Syntax
⊕∞

n=0 H⊗n

t : A[µX.A/X] ⋆

fold t : µX.A ⋆

2

Unitaries

Can be seen as λ-abstractions with pattern-matching.

λ-abstraction:

λx.t ∼= x 7→ t

and

(λx.t)t′ → t[t′/x]

{
x 7→ x

} {
x ⊗ y 7→ y ⊗ x

}
{

left ∗ 7→ right ∗
right ∗ 7→ left ∗

}
{

left ∗ 7→ 1√
2 left ∗+ 1√

2 right ∗
right ∗ 7→ 1√

2 left ∗ − 1√
2 right ∗

}

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

3

Unitaries

Can be seen as λ-abstractions with pattern-matching.

λ-abstraction: λx.t ∼= x 7→ t and

(λx.t)t′ → t[t′/x]

{
x 7→ x

} {
x ⊗ y 7→ y ⊗ x

}
{

left ∗ 7→ right ∗
right ∗ 7→ left ∗

}
{

left ∗ 7→ 1√
2 left ∗+ 1√

2 right ∗
right ∗ 7→ 1√

2 left ∗ − 1√
2 right ∗

}

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

3

Unitaries

Can be seen as λ-abstractions with pattern-matching.

λ-abstraction: λx.t ∼= x 7→ t and (λx.t)t′ → t[t′/x]

{
x 7→ x

} {
x ⊗ y 7→ y ⊗ x

}
{

left ∗ 7→ right ∗
right ∗ 7→ left ∗

}
{

left ∗ 7→ 1√
2 left ∗+ 1√

2 right ∗
right ∗ 7→ 1√

2 left ∗ − 1√
2 right ∗

}

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

3

Unitaries

Can be seen as λ-abstractions with pattern-matching.

λ-abstraction: λx.t ∼= x 7→ t and (λx.t)t′ → t[t′/x]

{
x 7→ x

} {
x ⊗ y 7→ y ⊗ x

}

{
left ∗ 7→ right ∗
right ∗ 7→ left ∗

}
{

left ∗ 7→ 1√
2 left ∗+ 1√

2 right ∗
right ∗ 7→ 1√

2 left ∗ − 1√
2 right ∗

}

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

3

Unitaries

Can be seen as λ-abstractions with pattern-matching.

λ-abstraction: λx.t ∼= x 7→ t and (λx.t)t′ → t[t′/x]

{
x 7→ x

} {
x ⊗ y 7→ y ⊗ x

}
{

left ∗ 7→ right ∗
right ∗ 7→ left ∗

}

{
left ∗ 7→ 1√

2 left ∗+ 1√
2 right ∗

right ∗ 7→ 1√
2 left ∗ − 1√

2 right ∗

}

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

3

Unitaries

Can be seen as λ-abstractions with pattern-matching.

λ-abstraction: λx.t ∼= x 7→ t and (λx.t)t′ → t[t′/x]

{
x 7→ x

} {
x ⊗ y 7→ y ⊗ x

}
{

left ∗ 7→ right ∗
right ∗ 7→ left ∗

}
{

left ∗ 7→ 1√
2 left ∗+ 1√

2 right ∗
right ∗ 7→ 1√

2 left ∗ − 1√
2 right ∗

}

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

3

Unitaries

Can be seen as λ-abstractions with pattern-matching.

λ-abstraction: λx.t ∼= x 7→ t and (λx.t)t′ → t[t′/x]

{
x 7→ x

} {
x ⊗ y 7→ y ⊗ x

}
{

left ∗ 7→ right ∗
right ∗ 7→ left ∗

}
{

left ∗ 7→ 1√
2 left ∗+ 1√

2 right ∗
right ∗ 7→ 1√

2 left ∗ − 1√
2 right ∗

}

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

3

Semantics of unitaries

Operationally: CNOT =

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

CNOT((1√
2 left ∗+ 1√

2 right ∗)⊗ (left ∗))

→ CNOT(1√
2 (left ∗)⊗ (left ∗) + 1√

2 (right ∗)⊗ (left ∗))
→ 1√

2 CNOT((left ∗)⊗ (left ∗)) + 1√
2 CNOT((right ∗)⊗ (left ∗)))

→ 1√
2 (left ∗)⊗ (left ∗) + 1√

2 (right ∗)⊗ (right ∗)

Mathematically:uwv`

t1 7→ t′1

...
tm 7→ t′m

 : A ↔ B

}�~ =
m∑

i=1
J∆ ` t′i : BK ◦ J∆ ` ti : AK†

4

Semantics of unitaries

Operationally: CNOT =

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

CNOT((1√
2 left ∗+ 1√

2 right ∗)⊗ (left ∗))
→ CNOT(1√

2 (left ∗)⊗ (left ∗) + 1√
2 (right ∗)⊗ (left ∗))

→ 1√
2 CNOT((left ∗)⊗ (left ∗)) + 1√

2 CNOT((right ∗)⊗ (left ∗)))
→ 1√

2 (left ∗)⊗ (left ∗) + 1√
2 (right ∗)⊗ (right ∗)

Mathematically:uwv`

t1 7→ t′1

...
tm 7→ t′m

 : A ↔ B

}�~ =
m∑

i=1
J∆ ` t′i : BK ◦ J∆ ` ti : AK†

4

Semantics of unitaries

Operationally: CNOT =

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

CNOT((1√
2 left ∗+ 1√

2 right ∗)⊗ (left ∗))
→ CNOT(1√

2 (left ∗)⊗ (left ∗) + 1√
2 (right ∗)⊗ (left ∗))

→ 1√
2 CNOT((left ∗)⊗ (left ∗)) + 1√

2 CNOT((right ∗)⊗ (left ∗)))

→ 1√
2 (left ∗)⊗ (left ∗) + 1√

2 (right ∗)⊗ (right ∗)

Mathematically:uwv`

t1 7→ t′1

...
tm 7→ t′m

 : A ↔ B

}�~ =
m∑

i=1
J∆ ` t′i : BK ◦ J∆ ` ti : AK†

4

Semantics of unitaries

Operationally: CNOT =

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

CNOT((1√
2 left ∗+ 1√

2 right ∗)⊗ (left ∗))
→ CNOT(1√

2 (left ∗)⊗ (left ∗) + 1√
2 (right ∗)⊗ (left ∗))

→ 1√
2 CNOT((left ∗)⊗ (left ∗)) + 1√

2 CNOT((right ∗)⊗ (left ∗)))
→ 1√

2 (left ∗)⊗ (left ∗) +

1√
2 (right ∗)⊗ (right ∗)

Mathematically:uwv`

t1 7→ t′1

...
tm 7→ t′m

 : A ↔ B

}�~ =
m∑

i=1
J∆ ` t′i : BK ◦ J∆ ` ti : AK†

4

Semantics of unitaries

Operationally: CNOT =

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

CNOT((1√
2 left ∗+ 1√

2 right ∗)⊗ (left ∗))
→ CNOT(1√

2 (left ∗)⊗ (left ∗) + 1√
2 (right ∗)⊗ (left ∗))

→ 1√
2 CNOT((left ∗)⊗ (left ∗)) + 1√

2 CNOT((right ∗)⊗ (left ∗)))
→ 1√

2 (left ∗)⊗ (left ∗) + 1√
2 (right ∗)⊗ (right ∗)

Mathematically:uwv`

t1 7→ t′1

...
tm 7→ t′m

 : A ↔ B

}�~ =
m∑

i=1
J∆ ` t′i : BK ◦ J∆ ` ti : AK†

4

Semantics of unitaries

Operationally: CNOT =

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ (left ∗) 7→ (right ∗)⊗ (right ∗)
(right ∗)⊗ (right ∗) 7→ (right ∗)⊗ (left ∗)

CNOT((1√
2 left ∗+ 1√

2 right ∗)⊗ (left ∗))
→ CNOT(1√

2 (left ∗)⊗ (left ∗) + 1√
2 (right ∗)⊗ (left ∗))

→ 1√
2 CNOT((left ∗)⊗ (left ∗)) + 1√

2 CNOT((right ∗)⊗ (left ∗)))
→ 1√

2 (left ∗)⊗ (left ∗) + 1√
2 (right ∗)⊗ (right ∗)

Mathematically:uwv`

t1 7→ t′1

...
tm 7→ t′m

 : A ↔ B

}�~ =
m∑

i=1
J∆ ` t′i : BK ◦ J∆ ` ti : AK†

4

How do we ensure unitarity?

A syntactic notion of orthonormal basis (ONB).

In linear algebra, a unitary transforms an ONB into an ONB.

t1 7→ t′1

...
tm 7→ t′m

This is a unitary if both {t1}i and {t′j}j are ONBs.

5

How do we ensure unitarity?

A syntactic notion of orthonormal basis (ONB).

In linear algebra, a unitary transforms an ONB into an ONB.

t1 7→ t′1

...
tm 7→ t′m

This is a unitary if both {t1}i and {t′j}j are ONBs.

ONBA{x} ONBA⊗B{x ⊗ y}

ONBI⊕I{left ∗, right ∗}

ONBI⊕I{ 1√
2 left x + 1√

2 right x, 1√
2 left x − 1√

2 right x}

5

How do we ensure unitarity?

A syntactic notion of orthonormal basis (ONB).

In linear algebra, a unitary transforms an ONB into an ONB.

t1 7→ t′1

...
tm 7→ t′m

This is a unitary if both {t1}i and {t′j}j are ONBs.

ONBA{x} ONBA⊗B{x ⊗ y}

ONBNat{zero, S zero, S S x}

ONBI⊕I{ 1√
2 zero + 1√

2 S zero, 1√
2 zero − 1√

2 S zero, S S x}

5

Properties

With a suitable equational theory (cf. my thesis).

Theorem
If ∆ ` t : A is well-typed and ONBA({ti}) then ∆ ` t =

∑
i αiti : A.

It implies that there is a unique normal form. And thus:

Theorem (Completeness)

· ` t1 = t2 : A iff J· ` t1 : AK = J· ` t2 : AK.
With a denotational semantics in Hilbert spaces and isometries.

Other cool result: our syntactic ONBs are realisations of the identity.

If ONBA(S), then
∑

t∈S JtK ◦ JtK† = id.

6

Properties

With a suitable equational theory (cf. my thesis).

Theorem
If ∆ ` t : A is well-typed and ONBA({ti}) then ∆ ` t =

∑
i αiti : A.

It implies that there is a unique normal form. And thus:

Theorem (Completeness)

· ` t1 = t2 : A iff J· ` t1 : AK = J· ` t2 : AK.
With a denotational semantics in Hilbert spaces and isometries.

Other cool result: our syntactic ONBs are realisations of the identity.

If ONBA(S), then
∑

t∈S JtK ◦ JtK† = id.

6

Properties

With a suitable equational theory (cf. my thesis).

Theorem
If ∆ ` t : A is well-typed and ONBA({ti}) then ∆ ` t =

∑
i αiti : A.

It implies that there is a unique normal form. And thus:

Theorem (Completeness)

· ` t1 = t2 : A iff J· ` t1 : AK = J· ` t2 : AK.
With a denotational semantics in Hilbert spaces and isometries.

Other cool result: our syntactic ONBs are realisations of the identity.

If ONBA(S), then
∑

t∈S JtK ◦ JtK† = id.

6

What about Higher-order?

Comparison with the λ-calculus is limited.

In a unitary {ti 7→ t′i}, the components ti and t′i are ground terms.

Cannot take a unitary as an input and cannot output a unitary.

Need to add a new form of (higher-order) functions.

{
x 7→ let y = ω x in y

}
λϕ.

{
x 7→ let y = ϕ x in y

}

We have a λ-calculus at the level of unitaries.

7

What about Higher-order?

Comparison with the λ-calculus is limited.

In a unitary {ti 7→ t′i}, the components ti and t′i are ground terms.

Cannot take a unitary as an input and cannot output a unitary.

Need to add a new form of (higher-order) functions.

{
x 7→ let y = ω x in y

}

λϕ.
{

x 7→ let y = ϕ x in y
}

We have a λ-calculus at the level of unitaries.

7

What about Higher-order?

Comparison with the λ-calculus is limited.

In a unitary {ti 7→ t′i}, the components ti and t′i are ground terms.

Cannot take a unitary as an input and cannot output a unitary.

Need to add a new form of (higher-order) functions.

{
x 7→ let y = ω x in y

}
λϕ.

{
x 7→ let y = ϕ x in y

}

We have a λ-calculus at the level of unitaries.

7

What about Higher-order?

Comparison with the λ-calculus is limited.

In a unitary {ti 7→ t′i}, the components ti and t′i are ground terms.

Cannot take a unitary as an input and cannot output a unitary.

Need to add a new form of (higher-order) functions.

{
x 7→ let y = ω x in y

}
λϕ.

{
x 7→ let y = ϕ x in y

}

We have a λ-calculus at the level of unitaries.

7

What does Higher-order achieve?

A general control operation.

λϕ.

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ x 7→ let y = ϕ x in

(right ∗)⊗ y

The quantum switch.

λϕ.λψ.

(left ∗)⊗ x 7→ let y = ϕ x in
let z = ψ y in
(left ∗)⊗ z

(right ∗)⊗ x 7→ let y = ψ x in
let z = ϕ y in
(right ∗)⊗ z

Conjecture
Completeness still holds with higher-order.

8

What does Higher-order achieve?

A general control operation.

λϕ.

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ x 7→ let y = ϕ x in

(right ∗)⊗ y

The quantum switch.

λϕ.λψ.

(left ∗)⊗ x 7→ let y = ϕ x in
let z = ψ y in
(left ∗)⊗ z

(right ∗)⊗ x 7→ let y = ψ x in
let z = ϕ y in
(right ∗)⊗ z

Conjecture
Completeness still holds with higher-order.

8

What does Higher-order achieve?

A general control operation.

λϕ.

(left ∗)⊗ x 7→ (left ∗)⊗ x
(right ∗)⊗ x 7→ let y = ϕ x in

(right ∗)⊗ y

The quantum switch.

λϕ.λψ.

(left ∗)⊗ x 7→ let y = ϕ x in
let z = ψ y in
(left ∗)⊗ z

(right ∗)⊗ x 7→ let y = ψ x in
let z = ϕ y in
(right ∗)⊗ z

Conjecture
Completeness still holds with higher-order.

8

What is next?

We have:

• A programming language,
• with inductive types,
• with higher-order.

What is next?

Recursion!

With a fixed point combinator.

fix ϕ. {. . . }

9

What is next?

We have:

• A programming language,
• with inductive types,
• with higher-order.

What is next?

Recursion!

With a fixed point combinator.

fix ϕ. {. . . }

9

What is next?

We have:

• A programming language,
• with inductive types,
• with higher-order.

What is next?

Recursion!

With a fixed point combinator.

fix ϕ. {. . . }

9

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! (proven by Kostia Chardonnet)

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

10

https://arxiv.org/pdf/2309.12151.pdf

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! (proven by Kostia Chardonnet)

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

10

https://arxiv.org/pdf/2309.12151.pdf

Until we meet again

Reasons to believe that general quantum recursion does not hold.

In Hilbert spaces: no enrichment (some details?), no trace (conjecture).

Many questions remain. Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Hilbert spaces might not be the right model.

Thank you!
Come to my defence on 19th June, 2pm.

11

Until we meet again

Reasons to believe that general quantum recursion does not hold.

In Hilbert spaces: no enrichment (some details?), no trace (conjecture).

Many questions remain. Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Hilbert spaces might not be the right model.

Thank you!
Come to my defence on 19th June, 2pm.

11

Until we meet again

Reasons to believe that general quantum recursion does not hold.

In Hilbert spaces: no enrichment (some details?), no trace (conjecture).

Many questions remain. Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Hilbert spaces might not be the right model.

Thank you!
Come to my defence on 19th June, 2pm.

11

Until we meet again

Reasons to believe that general quantum recursion does not hold.

In Hilbert spaces: no enrichment (some details?), no trace (conjecture).

Many questions remain. Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Hilbert spaces might not be the right model.

Thank you!
Come to my defence on 19th June, 2pm.

11

Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?

12

Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?

12

Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?

12

Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?

12

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
⊥ : N⊥ → N⊥ is:

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

13

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
⊥ : N⊥ → N⊥ is:

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(⊥) : N⊥ → N⊥ is:

1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

13

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(⊥) : N⊥ → N⊥ is:

1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(F(⊥)) : N⊥ → N⊥ is:

1 1 ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

13

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(⊥)) : N⊥ → N⊥ is:

1 1 ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(F(F(⊥))) : N⊥ → N⊥ is:

1 1 2 ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

13

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(⊥))) : N⊥ → N⊥ is:

1 1 2 ⊥ ⊥ ⊥ ⊥ · · ·

F(F(F(F(⊥)))) : N⊥ → N⊥ is:

1 1 2 6 ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

13

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(F(⊥)))) : N⊥ → N⊥ is:

1 1 2 6 ⊥ ⊥ ⊥ · · ·

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

13

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

13

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

13

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

13

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! (proven by Kostia Chardonnet)

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

14

https://arxiv.org/pdf/2309.12151.pdf

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! (proven by Kostia Chardonnet)

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

14

https://arxiv.org/pdf/2309.12151.pdf

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! (proven by Kostia Chardonnet)

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

14

https://arxiv.org/pdf/2309.12151.pdf

The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.

Dimension 2 for simple examples.

Reversible quantum operations are subunitaries such as:(
1 0
0 1

) (
1 0
0 0

) (
0 0
0 1

)
(

1√
2

1√
2

1√
2 − 1√

2

) (
1√
2 0

1√
2 0

) (
0 1√

2
0 − 1√

2

)
(

0 1
1 0

) (
0 0
1 0

) (
0 1
0 0

)

Arguably, undefined (⊥) in a Hilbert space is the zero vector
(

0
0

)
.

(
0 0
0 0

)
is less defined than

(
1 0
0 0

)
which is less defined than

(
1 0
0 1

)
.

15

The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.

Dimension 2 for simple examples.

Reversible quantum operations are subunitaries such as:(
1 0
0 1

) (
1 0
0 0

) (
0 0
0 1

)
(

1√
2

1√
2

1√
2 − 1√

2

) (
1√
2 0

1√
2 0

) (
0 1√

2
0 − 1√

2

)
(

0 1
1 0

) (
0 0
1 0

) (
0 1
0 0

)

Arguably, undefined (⊥) in a Hilbert space is the zero vector
(

0
0

)
.

(
0 0
0 0

)
is less defined than

(
1 0
0 0

)
which is less defined than

(
1 0
0 1

)
.

15

The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.

Dimension 2 for simple examples.

Reversible quantum operations are subunitaries such as:(
1 0
0 1

) (
1 0
0 0

) (
0 0
0 1

)
(

1√
2

1√
2

1√
2 − 1√

2

) (
1√
2 0

1√
2 0

) (
0 1√

2
0 − 1√

2

)
(

0 1
1 0

) (
0 0
1 0

) (
0 1
0 0

)

Arguably, undefined (⊥) in a Hilbert space is the zero vector
(

0
0

)
.

(
0 0
0 0

)
is less defined than

(
1 0
0 0

)
which is less defined than

(
1 0
0 1

)
.

15

A disappointment

However, this order does not interact well with composition:(
1 0
0 0

)
≤

(
1 0
0 1

)
,

thus
(

1√
2

1√
2

)
◦

(
1 0
0 0

)
◦

(
1√
2

− 1√
2

)
≤

(
1√
2

1√
2

)
◦

(
1√
2

− 1√
2

)
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on subunitary maps between Hilbert spaces.

16

A disappointment

However, this order does not interact well with composition:(
1 0
0 0

)
≤

(
1 0
0 1

)
,

thus
(

1√
2

1√
2

)
◦

(
1 0
0 0

)
◦

(
1√
2

− 1√
2

)
≤

(
1√
2

1√
2

)
◦

(
1√
2

− 1√
2

)
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on subunitary maps between Hilbert spaces.

16

