A Recipe for the Semantics of Reversible Programming

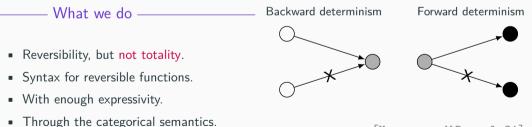
Louis LEMONNIER

University of Edinburgh

LoVe seminar, LIPN. 7th November 2024

Originally –

- Landauer and Bennett, 1961: Reversible Computation and Energy Dissipation.
- Reversible programs: for a program t, there is t⁻¹ such that t; t⁻¹ = skip.
- Applications to quantum computing.



[Kaarsgaard&Rennela21]

A general framework: dagger categories

Origine: functional analysis where $\langle fx \mid y \rangle = \langle x \mid f^{\dagger}y \rangle$.

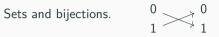
Category ${\bm C}$ equipped with a functor $(-)^{\dagger}\colon {\bm C}^{\rm op}\to {\bm C},$ such that:

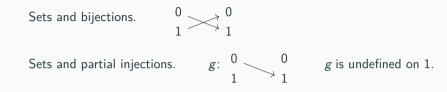
- On objects, $A^{\dagger} = A$.
- On morphisms:
 - $(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$,
 - $f^{\dagger \dagger} = f$.

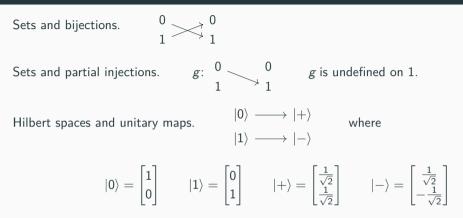
Example with partial injective functions between sets, here $\{0, 1\}$.

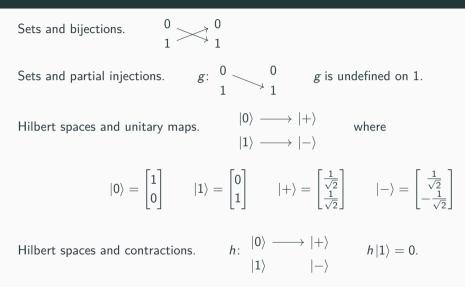
not:
$$\begin{array}{c} 0 \\ 1 \end{array} \xrightarrow{} \begin{array}{c} 0 \\ 1 \end{array} \xrightarrow{} \begin{array}{c} g : \\ 1 \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \begin{array}{c} 0 \\ 1 \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \begin{array}{c} 0 \end{array} \xrightarrow{} \end{array} \xrightarrow{}$$

A very important class of morphisms: partial \dagger -isomorphism. $ff^{\dagger}f = f$.









• Cartesian product ×.

- Cartesian product ×.
 - Type $A \times B$.

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.
 - Constructor $\lambda x.t.$

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.
 - Constructor $\lambda x.t.$

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.
 - Constructor $\lambda x.t.$

• Not cartesian, but often monoidal.

- Cartesian closed category — — — Dagger category —

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.
 - Constructor $\lambda x.t.$

- Not cartesian, but often monoidal.
 - Type $A \otimes B$.

Cartesian closed category — Dagger category —

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.
 - Constructor $\lambda x.t.$

- Not cartesian, but often monoidal.
 - Type $A \otimes B$.
 - ♦ Linear type system.

Cartesian closed category — Dagger category —

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.
 - Constructor $\lambda x.t.$

- Not cartesian, but often monoidal.
 - Type $A \otimes B$.
 - ♦ Linear type system.
- Not monoidal closed.

Cartesian closed category — Dagger category –

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.
 - Constructor $\lambda x.t.$

- Not cartesian, but often monoidal.
 - Type $A \otimes B$.
 - ♦ Linear type system.
- Not monoidal closed.
 - No ground function type.

Cartesian closed category — Dagger category –

- Cartesian product ×.
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.
 - Constructor $\lambda x.t.$

- Not cartesian, but often monoidal.
 - Type $A \otimes B$.
 - ♦ Linear type system.
- Not monoidal closed.
 - No ground function type.
 - ♦ Is there a way to form functions?

Cartesian closed category — Dagger category –

- Cartesian product \times .
 - Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - Type $A \rightarrow B$.
 - Constructor $\lambda x.t.$

Hopefully, there is another way.

- Not cartesian, but often monoidal.
 - Type $A \otimes B$.
 - ♦ Linear type system.
- Not monoidal closed.
 - No ground function type.
 - Is there a way to form functions?

We can cheat with our partial inverse!

We can cheat with our partial inverse!

$$\begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix} \quad : \quad \begin{bmatrix} \Delta \end{bmatrix} \to \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \\ \begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix}^{\dagger} \quad : \quad \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \to \begin{bmatrix} \Delta \end{bmatrix}$$

We can cheat with our partial inverse!

$$\begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix} \quad : \quad \llbracket \Delta \rrbracket \to \llbracket \boldsymbol{A} \\ \llbracket \Delta \vdash t \colon \boldsymbol{A} \rrbracket^{\dagger} \quad : \quad \llbracket \boldsymbol{A} \rrbracket \to \llbracket \Delta \end{bmatrix}$$

What do we do with this?

We can cheat with our partial inverse!

$$\begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix} \quad : \quad \begin{bmatrix} \Delta \end{bmatrix} \to \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \\ \begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix}^{\dagger} \quad : \quad \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \to \begin{bmatrix} \Delta \end{bmatrix}$$

What do we do with this?

Given $\Delta \vdash t: A \quad \Delta \vdash t': B$

We form a function $t \mapsto t' \colon A \leftrightarrow B$, Whose semantics is

We can cheat with our partial inverse!

$$\begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix} \quad : \quad \begin{bmatrix} \Delta \end{bmatrix} \to \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \\ \begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix}^{\dagger} \quad : \quad \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \to \begin{bmatrix} \Delta \end{bmatrix}$$

What do we do with this?

Given $\Delta \vdash t: A \quad \Delta \vdash t': B$

We form a function $t \mapsto t' \colon A \leftrightarrow B$, Whose semantics is

$$\llbracket A \rrbracket \stackrel{\llbracket \Delta \vdash t \ : \ A \rrbracket^{\dagger}}{\longrightarrow} \llbracket \Delta \rrbracket \stackrel{\llbracket \Delta \vdash t' \ : \ B \rrbracket}{\longrightarrow} \llbracket B \rrbracket$$

We can cheat with our partial inverse!

$$\begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix} \quad : \quad \begin{bmatrix} \Delta \end{bmatrix} \to \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \\ \begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix}^{\dagger} \quad : \quad \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \to \begin{bmatrix} \Delta \end{bmatrix}$$

What do we do with this?

Given $\Delta \vdash t: A \quad \Delta \vdash t': B$

We form a function $t \mapsto t' \colon A \leftrightarrow B$, Whose semantics is

$$\llbracket A \rrbracket \stackrel{\llbracket \Delta \vdash t \ : \ A \rrbracket^{\dagger}}{\longrightarrow} \llbracket \Delta \rrbracket \stackrel{\llbracket \Delta \vdash t' \ : \ B \rrbracket}{\longrightarrow} \llbracket B \rrbracket$$

This is a reversible function! We have $(t \mapsto t')^{-1} = t' \mapsto t$, whose semantics is:

We can cheat with our partial inverse!

$$\begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix} \quad : \quad \begin{bmatrix} \Delta \end{bmatrix} \to \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \\ \begin{bmatrix} \Delta \vdash t \colon \boldsymbol{A} \end{bmatrix}^{\dagger} \quad : \quad \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \to \begin{bmatrix} \Delta \end{bmatrix}$$

What do we do with this?

Given $\Delta \vdash t: A \quad \Delta \vdash t': B$

We form a function $t \mapsto t' \colon A \leftrightarrow B$, Whose semantics is

$$\llbracket A \rrbracket \stackrel{\llbracket \Delta \vdash t \ : \ A \rrbracket^{\dagger}}{\longrightarrow} \llbracket \Delta \rrbracket \stackrel{\llbracket \Delta \vdash t' \ : \ B \rrbracket}{\longrightarrow} \llbracket B \rrbracket$$

This is a reversible function! We have $(t \mapsto t')^{-1} = t' \mapsto t$, whose semantics is:

$$\llbracket B \rrbracket \stackrel{\llbracket \Delta \vdash t' : B \rrbracket^{\dagger}}{\longrightarrow} \llbracket \Delta \rrbracket \stackrel{\llbracket \Delta \vdash t : A \rrbracket}{\longrightarrow} \llbracket A \rrbracket$$

With a sum type \oplus :

$$\frac{\Delta \vdash t: A}{\Delta \vdash \operatorname{inj}_{l} t: A \oplus B} \qquad \frac{\Delta \vdash t: B}{\Delta \vdash \operatorname{inj}_{r} t: A \oplus B}$$

With a sum type \oplus :

$$\frac{\Delta \vdash t: A}{\Delta \vdash \operatorname{inj}_{l} t: A \oplus B} \qquad \frac{\Delta \vdash t: B}{\Delta \vdash \operatorname{inj}_{r} t: A \oplus B}$$

We introduce orthogonality (to ensure reversibility):

With a sum type \oplus :

$$\frac{\Delta \vdash t: A}{\Delta \vdash \operatorname{inj}_{l} t: A \oplus B} \qquad \frac{\Delta \vdash t: B}{\Delta \vdash \operatorname{inj}_{r} t: A \oplus B}$$

We introduce orthogonality (to ensure reversibility):

$$\frac{t_1 \perp t_2}{\operatorname{inj}_{l} t_1 \perp \operatorname{inj}_{r} t_2} \qquad \frac{t_1 \perp t_2}{C[t_1] \perp C[t_2]} \qquad \text{with } \begin{cases} [[t_1]]^{\dagger} \circ [[t_1]] = \operatorname{id} \\ [[t_1]]^{\dagger} \circ [[t_2]] = 0 & \text{when } t_1 \perp t_2 \end{cases}$$

With a sum type \oplus :

$$\frac{\Delta \vdash t: A}{\Delta \vdash \operatorname{inj}_{i} t: A \oplus B} \qquad \frac{\Delta \vdash t: B}{\Delta \vdash \operatorname{inj}_{r} t: A \oplus B}$$

We introduce orthogonality (to ensure reversibility):

$$\frac{t_1 \perp t_2}{\operatorname{inj}_r t_1 \perp \operatorname{inj}_r t_2} \qquad \frac{t_1 \perp t_2}{C[t_1] \perp C[t_2]} \qquad \text{with } \begin{cases} [[t_1]]^{\dagger} \circ [[t_1]] = \operatorname{id} \\ [[t_1]]^{\dagger} \circ [[t_2]] = 0 & \text{when } t_1 \perp t_2 \end{cases}$$

Our functions are then:

$$\left\{\begin{array}{cccc}t_1&\mapsto&t_1'\\t_2&\mapsto&t_2'\\\vdots\\t_m&\mapsto&t_m'\end{array}\right\}:A\leftrightarrow B$$

whenever $\Delta_i \vdash t_i$: A and $t_j \perp t_k$, $\Delta_i \vdash t'_i$: B and $t'_j \perp t'_k$.

Example and semantics

$$\left\{\begin{array}{rrr} \mathtt{inj}_I x & \mapsto & \mathtt{inj}_F x \\ \mathtt{inj}_F y & \mapsto & \mathtt{inj}_I y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

Denotational semantics:

Example and semantics

$$\left\{\begin{array}{rrr} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{l} y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

Denotational semantics:

$$\left[\left\{\begin{array}{ccc} \operatorname{inj}_{I} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{I} y\end{array}\right\} : A \oplus B \leftrightarrow B \oplus A\right] = \left(\begin{array}{ccc} \left[A\right] & & \left[B\right] \\ \left[B\right] & & \left[A\right]\end{array}\right) + \left(\begin{array}{ccc} \left[A\right] & & \left[B\right] \\ \left[B\right] & & \left[A\right]\end{array}\right)$$

Operational semantics:

Example and semantics

$$\left\{\begin{array}{rrr} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{l} y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

Denotational semantics:

$$\left[\left\{\begin{array}{ccc} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{l} y\end{array}\right\} : A \oplus B \leftrightarrow B \oplus A\right] = \left(\begin{array}{ccc} \left[A\right] & & \left[B\right] \\ \left[B\right] & & \left[A\right]\end{array}\right) + \left(\begin{array}{ccc} \left[A\right] & & \left[B\right] \\ \left[B\right] & & \left[A\right]\end{array}\right)$$

Operational semantics:

$$\left\{\begin{array}{ll} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} x & \mapsto & \operatorname{inj}_{l} x \end{array}\right\} \operatorname{inj}_{r} v \rightarrow$$

7

Example and semantics

$$\left\{\begin{array}{rrr} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{l} y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

Denotational semantics:

$$\left[\left\{\begin{array}{ccc} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{l} y\end{array}\right\} : A \oplus B \leftrightarrow B \oplus A\right] = \left(\begin{array}{ccc} \left[A\right] & & \left[B\right] \\ \left[B\right] & & \left[A\right]\end{array}\right) + \left(\begin{array}{ccc} \left[A\right] & & \left[B\right] \\ \left[B\right] & & \left[A\right]\end{array}\right)$$

Operational semantics:

$$\left\{\begin{array}{ccc} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} x & \mapsto & \operatorname{inj}_{l} x \end{array}\right\} \operatorname{inj}_{r} v \to (\operatorname{inj}_{l} x)[v/x] \to$$

7

Example and semantics

$$\left\{\begin{array}{rrr} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{l} y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

Denotational semantics:

$$\left[\left\{\begin{array}{ccc} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{l} y\end{array}\right\} : A \oplus B \leftrightarrow B \oplus A\right] = \left(\begin{array}{ccc} \left[A\right] & & \left[B\right] \\ \left[B\right] & & \left[A\right]\end{array}\right) + \left(\begin{array}{ccc} \left[A\right] & & \left[B\right] \\ \left[B\right] & & \left[A\right]\end{array}\right)$$

Operational semantics:

$$\left\{\begin{array}{ll} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} x & \mapsto & \operatorname{inj}_{l} x \end{array}\right\} \operatorname{inj}_{r} v \to (\operatorname{inj}_{l} x)[v/x] \to \operatorname{inj}_{l} v$$

The mathematical recipe / 'lɛs.i.pi/

The mathematical recipe /'iɛs.i.pi/

- Inverse category.
 - Partial inverse $(-)^{\dagger}$.

The mathematical recipe /`ies.i.pi/

- Inverse category.
 - Partial inverse $(-)^{\dagger}$.
 - ♦ Takes care of pattern-matching.

The mathematical recipe /'ıɛs.ı.pi/

Our category \boldsymbol{C} such that:

- Inverse category.
 - Partial inverse $(-)^{\dagger}$.
 - ♦ Takes care of pattern-matching.
- Rig structure.
 - Usual monoidal product \otimes .

The mathematical recipe /'ıɛs.ı.pi/

Our category \boldsymbol{C} such that:

- Inverse category.
 - Partial inverse $(-)^{\dagger}$.
 - ♦ Takes care of pattern-matching.
- Rig structure.
 - Usual monoidal product \otimes .
 - **Disjointness** tensor \oplus with jointly epic injections.

The mathematical recipe /'ies.i.pi/

- Inverse category.
 - Partial inverse $(-)^{\dagger}$.
 - ♦ Takes care of pattern-matching.
- Rig structure.
 - Usual monoidal product \otimes .
 - **Disjointness** tensor \oplus with jointly epic injections.
- Join structure.
 - Compatible morphisms on their domain and codomain admit a join.

The mathematical recipe /'ies.i.pi/

Our category $\boldsymbol{\mathsf{C}}$ such that:

- Inverse category.
 - Partial inverse $(-)^{\dagger}$.
 - ♦ Takes care of pattern-matching.
- Rig structure.
 - Usual monoidal product \otimes .
 - Disjointness tensor \oplus with jointly epic injections.
- Join structure.
 - Compatible morphisms on their domain and codomain admit a join.
 - Sometimes, provides a nice structure on morphisms.

Examples:

- Sets and partial injective functions Plnj.
- Hilbert spaces and contractions Contr (sometimes written $Hilb_{\leq 1}$).

The case of inverse categories (such as Plnj)

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow \mathsf{A}$ suitable inverse category C

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \rightarrow A suitable inverse category **C** is parameterised **DCPO**-algebraically ω -compact.

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \rightarrow A suitable inverse category **C** can model infinite data types $\mu X.A$.

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \rightarrow A suitable inverse category **C** can model infinite data types $\mu X.A$.

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X$$

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \longrightarrow A suitable inverse category **C** can model infinite data types $\mu X.A$.

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X$$
 $[A] = \mu X.1 \oplus (A \otimes X)$

And we want to parse those infinite types:

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations. \rightarrow A suitable inverse category **C** can model infinite data types $\mu X.A$.

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X$$
 $[A] = \mu X.1 \oplus (A \otimes X)$

And we want to parse those infinite types:

$$map(\omega) = fix f. \left\{ \begin{array}{c} [] \mapsto [] \\ h :: t \mapsto (\omega \ h) :: (f \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations. \rightarrow A suitable inverse category **C** can model infinite data types $\mu X.A$.

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X$$
 $[A] = \mu X.1 \oplus (A \otimes X)$

And we want to parse those infinite types:

$$\operatorname{map}(\omega) = \operatorname{fix} \mathsf{f}. \left\{ \begin{array}{c} [] \mapsto [] \\ h :: t \mapsto (\omega \ h) :: (\mathsf{f} \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Works in inverse categories thanks to **DCPO**-enrichment: $g \leq f$ defined as $fg^{\dagger}g = g$.

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations. \rightarrow A suitable inverse category **C** can model infinite data types $\mu X.A$.

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X$$
 $[A] = \mu X.1 \oplus (A \otimes X)$

And we want to parse those infinite types:

$$\operatorname{map}(\omega) = \operatorname{fix} \mathsf{f}. \left\{ \begin{array}{c} [] \mapsto [] \\ h :: t \mapsto (\omega \ h) :: (\mathsf{f} \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Works in inverse categories thanks to **DCPO**-enrichment: $g \leq f$ defined as $fg^{\dagger}g = g$.

$$\mathsf{fix}(F) = \sup_n \{F^n(\bot)\}$$

Summary of the language (mandatory slide)

(Ground types)	A, B	::=	$I \mid A \oplus B \mid A \otimes B \mid$
(Function types)	T_1, T_2	::=	$A\leftrightarrow B\mid$
(Unit term)	t, t_1, t_2	::=	*
(Pairing)			$t_1 \otimes t_2$
(Injections)			$ \operatorname{inj}_{l} t \operatorname{inj}_{r} t$
(Function application)			ωt

(Abstraction) $\omega ::= \{t_1 \mapsto t'_1 \mid \cdots \mid t_m \mapsto t'_m\}$

Summary of the language (mandatory slide)

Summary of the language (mandatory slide)

(Ground types) $A, B ::= I | A \oplus B | A \otimes B | X | \mu X.A$ (Function types) $T_1, T_2 ::= A \leftrightarrow B \mid T_1 \rightarrow T_2$ (Unit term) $t, t_1, t_2 ::= *$ (Pairing) $|t_1 \otimes t_2|$ (Injections) | inj, t | inj, t (Function application) ωt (Inductive terms) fold t $\omega \qquad ::= \quad \{t_1 \mapsto t'_1 \mid \cdots \mid t_m \mapsto t'_m\}$ (Abstraction) (Fixed points) |f| fix f. ω (Higher abstractions) $|\lambda f.\omega| \omega_2 \omega_1$

 λ -calculus thanks to **DCPO**-enrichment.

The language is **Turing complete**! (even if it is reversible)

The language is **Turing complete**! (even if it is reversible)

 \leftarrow ask this guy (Kostia Chardonnet, currently works in Nancy)

The language is Turing complete! (even if it is reversible)

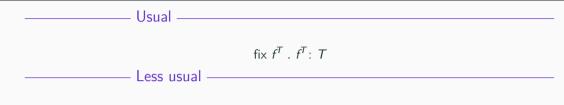
 \leftarrow ask this guy (Kostia Chardonnet, currently works in Nancy)

——— Roughly -

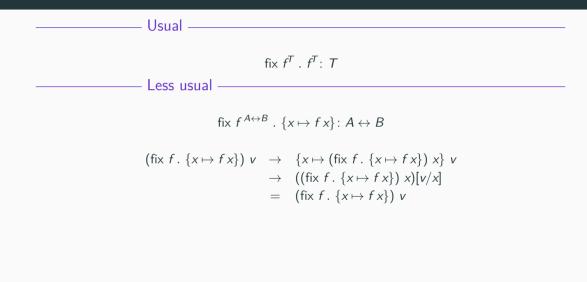
- Reversible Turing Machines [Axelsen&Glück11].
 - Simulate your favourite Turing machines.
- Encode RTMs in our language:
 - Alphabet & states mapped to $I \oplus \cdots \oplus I$.
 - ♦ Tape as lists.
 - Functions simulating one-step transition of δ .
 - Iterate until final state.

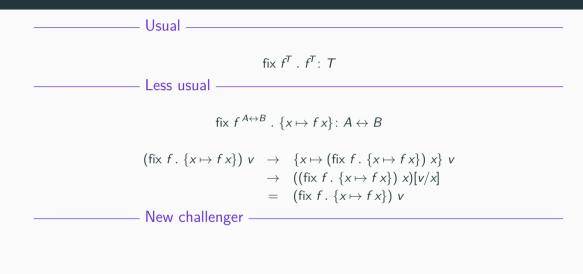
_____ Usual _____

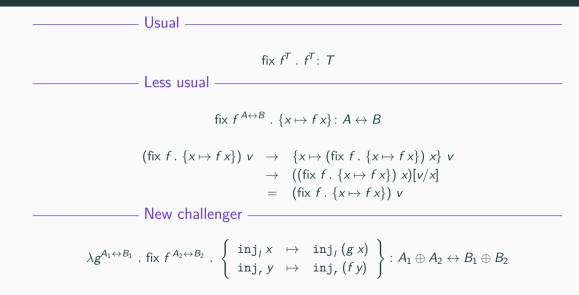
fix f^T . f^T : T



fix $f^{A\leftrightarrow B}$. $\{x\mapsto fx\}: A\leftrightarrow B$







The (pure) quantum case

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way. Is there a better category?

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way. Is there a better category? I don't know.

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way. Is there a better category? I don't know.

Can we find a way to mimic the story we have for classical reversibility?

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way. Is there a better category? I don't know.

Can we find a way to mimic the story we have for classical reversibility? A kind of solution with techniques adapted from guarded recursion.

Computation in the topos of trees

Objects in the topos of trees are cochains in Set:

$$X(0) \leftarrow_{r_0} X(1) \leftarrow_{r_1} X(2) \leftarrow \cdots$$

There is a functor $L\colon {\operatorname{\mathbf{Set}}}^{{\mathbb{N}}^{\operatorname{op}}} \to {\operatorname{\mathbf{Set}}}^{{\mathbb{N}}^{\operatorname{op}}}$, such that LX is:

$$1 \xleftarrow[]{} X(0) \xleftarrow[]{} X(1) \xleftarrow[]{} x(2) \xleftarrow[]{} \cdots$$

and a natural transformation ν : id \Rightarrow L, such that ν_X is:

and a family of morphisms $\operatorname{fix}_X \colon [LX \to X] \to X.$

Start with a dagger category \mathbf{C} .

Consider the category whose objects are cochains in C:

$$X(0) \longleftarrow X(1) \longleftarrow X(2) \longleftarrow \cdots$$

And morphisms are natural transformations in C:

This category is enriched in the topos of trees $\mathbf{Set}^{\mathbb{N}^{\mathrm{op}}}$ (with its fixed point operator).

It also enforces to *advance* in the depth of the terms.

It also enforces to *advance* in the depth of the terms.

The size of the output cannot be smaller than the size of the input (and vice versa).

It also enforces to *advance* in the depth of the terms.

The size of the output cannot be smaller than the size of the input (and vice versa).

It still allows for the map function.

$$map(\omega) = fix f. \left\{ \begin{array}{c} [] \mapsto [] \\ h :: t \mapsto (\omega \ h) :: (f \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Once we have this diagram in **Contr**:

Once we have this diagram in **Contr**:

We can take the limit of both cochains.

Once we have this diagram in **Contr**:

We can take the limit of both cochains.

But we lose the enrichment (and therefore the nice calculus that we could have on top).

Take home message: no cartesian closure needed to have

Take home message: no cartesian closure needed to have functions,

Take home message: no cartesian closure needed to have functions, inductive types,

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Take home message: no cartesian closure needed to have functions, inductive types, recursion. The situation is trickier for (pure) quantum computation.

Take home message: no cartesian closure needed to have functions, inductive types, recursion. The situation is trickier for (pure) quantum computation.

Thank you!