
Non-Cartesian Guarded Recursion with Daggers

Louis LEMONNIER
Oilthigh Dhùn Èideann

GT LHC, École Polytechnique. 4th June 2025

Is guarded recursion artificial recursion?

Background

• [Nakano00] defines a modality ▶, representing the delay between recursive calls.
• Helps for a better formalisation of streams, with notions of productivity.
• [Birkedal&al12] model of guarded recursion in the topos of trees.

What we do and how

• Obtain (artificial) recursion from any setting.
• by mimicking the structure of guarded recursion.

• Apply this structure to pure quantum programming (hence the dagger).

1

Motivation: The quantum troubles with recursion

ReversibleClassical Probabilistic

PureQuantum MixedQuantum

Models of reversible, probabilistic and mixed quantum programming have recursion

(thanks to enrichment in DCPO).

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way.

Composition does not preserve any reasonable poset structure.

We propose a solution with techniques adapted from guarded recursion.

2

Motivation: The quantum troubles with recursion

ReversibleClassical Probabilistic

PureQuantum MixedQuantum

Models of reversible, probabilistic and mixed quantum programming have recursion

(thanks to enrichment in DCPO).

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way.

Composition does not preserve any reasonable poset structure.

We propose a solution with techniques adapted from guarded recursion.

2

Motivation: The quantum troubles with recursion

ReversibleClassical Probabilistic

PureQuantum MixedQuantum

Models of reversible, probabilistic and mixed quantum programming have recursion

(thanks to enrichment in DCPO).

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way.

Composition does not preserve any reasonable poset structure.

We propose a solution with techniques adapted from guarded recursion.

2

Motivation: The quantum troubles with recursion

ReversibleClassical Probabilistic

PureQuantum MixedQuantum

Models of reversible, probabilistic and mixed quantum programming have recursion

(thanks to enrichment in DCPO).

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way.

Composition does not preserve any reasonable poset structure.

We propose a solution with techniques adapted from guarded recursion.

2

Computation in the topos of trees

Objects in the topos of trees S = SetN
op

are cochains in Set:

X(0) X(1) X(2) · · ·r0 r1

There is a functor L : S → S, such that LX is:

1 X(0) X(1) X(2) · · ·
! r0 r1

and a natural transformation ν : id ⇒ L, such that νX is:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

and a family of morphisms fixX : [LX → X] → X.
3

A guarded category

CNop is enriched in the topos of trees S, with hom-objects CNop
(X,Y):

• CNop
(X,Y)(n) is the set of truncated natural transformations (α0, . . . , αn);

• arrows CNop
(X,Y)(n+1) → CNop

(X,Y)(n) forget the last component.

If C has a terminal object 1,

there is a functor LC : CNop → CNop , such that LX is:

1 X(0) X(1) X(2) · · ·
! r0 r1

and a natural transformation νC : id ⇒ L, such that νX is:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

4

A guarded category

CNop is enriched in the topos of trees S, with hom-objects CNop
(X,Y):

• CNop
(X,Y)(n) is the set of truncated natural transformations (α0, . . . , αn);

• arrows CNop
(X,Y)(n+1) → CNop

(X,Y)(n) forget the last component.

If C has a terminal object 1, there is a functor LC : CNop → CNop , such that LX is:

1 X(0) X(1) X(2) · · ·
! r0 r1

and a natural transformation νC : id ⇒ L, such that νX is:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

4

Some results

A locally contractive functor is a functor that involves LC.

Theorem
If an endofunctor T : CNop → CNop is locally contractive, then it has a fixed point α : TX → X.

In fact, we have all parameterised fixed points for functors (CNop
)k → CNop .

We also have:
LSetCNop

(X,Y) ∼= CNop
(LCX, LCY)

νSet
CNop (X,Y)

∼= LC
X,Y

5

Some results

A locally contractive functor is a functor that involves LC.

Theorem
If an endofunctor T : CNop → CNop is locally contractive, then it has a fixed point α : TX → X.

In fact, we have all parameterised fixed points for functors (CNop
)k → CNop .

We also have:
LSetCNop

(X,Y) ∼= CNop
(LCX, LCY)

νSet
CNop (X,Y)

∼= LC
X,Y

5

Some results

A locally contractive functor is a functor that involves LC.

Theorem
If an endofunctor T : CNop → CNop is locally contractive, then it has a fixed point α : TX → X.

In fact, we have all parameterised fixed points for functors (CNop
)k → CNop .

We also have:
LSetCNop

(X,Y) ∼= CNop
(LCX, LCY)

νSet
CNop (X,Y)

∼= LC
X,Y

5

Some results

A locally contractive functor is a functor that involves LC.

Theorem
If an endofunctor T : CNop → CNop is locally contractive, then it has a fixed point α : TX → X.

In fact, we have all parameterised fixed points for functors (CNop
)k → CNop .

We also have:
LSetCNop

(X,Y) ∼= CNop
(LCX, LCY)

νSet
CNop (X,Y)

∼= LC
X,Y

5

What about programs?

Consider C is a model of a typed language:

• types A interpreted as objects JAK;
• programs Γ ` M : A interpreted as morphisms JΓK → JAK.

Our CNop is a model of a similar language with guarded recursion!

• modality ▶A interpreted as LC JAK;
• constructor next interpreted as νC;
• (co)inductive data types;
• a guarded fixed-point operator.

Similar because monoidal structures and exponentials are preserved. What else?

We could stop there, but

6

What about programs?

Consider C is a model of a typed language:

• types A interpreted as objects JAK;
• programs Γ ` M : A interpreted as morphisms JΓK → JAK.

Our CNop is a model of a similar language with guarded recursion!

• modality ▶A interpreted as LC JAK;
• constructor next interpreted as νC;
• (co)inductive data types;
• a guarded fixed-point operator.

Similar because monoidal structures and exponentials are preserved. What else?

We could stop there, but

6

What about programs?

Consider C is a model of a typed language:

• types A interpreted as objects JAK;
• programs Γ ` M : A interpreted as morphisms JΓK → JAK.

Our CNop is a model of a similar language with guarded recursion!

• modality ▶A interpreted as LC JAK;
• constructor next interpreted as νC;
• (co)inductive data types;
• a guarded fixed-point operator.

Similar because monoidal structures and exponentials are preserved. What else?

We could stop there, but

6

What about programs?

Consider C is a model of a typed language:

• types A interpreted as objects JAK;
• programs Γ ` M : A interpreted as morphisms JΓK → JAK.

Our CNop is a model of a similar language with guarded recursion!

• modality ▶A interpreted as LC JAK;
• constructor next interpreted as νC;
• (co)inductive data types;
• a guarded fixed-point operator.

Similar because monoidal structures and exponentials are preserved. What else?

We could stop there, but

6

Reversibility

6

Dagger categories

Origin: functional analysis where 〈fx | y〉 = 〈x | f†y〉.

Category C equipped with a functor (−)† : Cop → C, such that:

• On objects, A† = A.
• On morphisms: f†† = f.

Example with partial injective functions between sets, here {0, 1}.

not : 0 0
1 1

g : 0 0
1 1

g† : 0 0
1 1

If g† = g−1, we say that g is unitary.

7

Dagger categories

Origin: functional analysis where 〈fx | y〉 = 〈x | f†y〉.

Category C equipped with a functor (−)† : Cop → C, such that:

• On objects, A† = A.
• On morphisms: f†† = f.

Example with partial injective functions between sets, here {0, 1}.

not : 0 0
1 1

g : 0 0
1 1

g† : 0 0
1 1

If g† = g−1, we say that g is unitary.

7

Examples of relevant dagger categories

Sets and bijections. 0 0
1 1

Sets and partial injections. g : 0 0
1 1

g is undefined on 1.

Hilbert spaces and unitary maps. |0〉 |+〉

|1〉 |−〉
where

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
|+〉 =

[
1√
2

1√
2

]
|−〉 =

[
1√
2

− 1√
2

]

Hilbert spaces and contractions. h : |0〉 |+〉

|1〉 |−〉
h |1〉 = 0.

8

Examples of relevant dagger categories

Sets and bijections. 0 0
1 1

Sets and partial injections. g : 0 0
1 1

g is undefined on 1.

Hilbert spaces and unitary maps. |0〉 |+〉

|1〉 |−〉
where

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
|+〉 =

[
1√
2

1√
2

]
|−〉 =

[
1√
2

− 1√
2

]

Hilbert spaces and contractions. h : |0〉 |+〉

|1〉 |−〉
h |1〉 = 0.

8

Examples of relevant dagger categories

Sets and bijections. 0 0
1 1

Sets and partial injections. g : 0 0
1 1

g is undefined on 1.

Hilbert spaces and unitary maps. |0〉 |+〉

|1〉 |−〉
where

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
|+〉 =

[
1√
2

1√
2

]
|−〉 =

[
1√
2

− 1√
2

]

Hilbert spaces and contractions. h : |0〉 |+〉

|1〉 |−〉
h |1〉 = 0.

8

Examples of relevant dagger categories

Sets and bijections. 0 0
1 1

Sets and partial injections. g : 0 0
1 1

g is undefined on 1.

Hilbert spaces and unitary maps. |0〉 |+〉

|1〉 |−〉
where

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
|+〉 =

[
1√
2

1√
2

]
|−〉 =

[
1√
2

− 1√
2

]

Hilbert spaces and contractions. h : |0〉 |+〉

|1〉 |−〉
h |1〉 = 0.

8

The guarded/dagger clash

If C is a dagger category, CNop is not necessarily.

E.g. the components of νC:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

does not yield a dagger:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

Can we form (interesting) subcategories of CNop that admit a dagger?

9

The guarded/dagger clash

If C is a dagger category, CNop is not necessarily.

E.g. the components of νC:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

does not yield a dagger:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

Can we form (interesting) subcategories of CNop that admit a dagger?

9

The guarded/dagger clash

If C is a dagger category, CNop is not necessarily.

E.g. the components of νC:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

does not yield a dagger:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

Can we form (interesting) subcategories of CNop that admit a dagger?

9

The guarded/dagger clash

If C is a dagger category, CNop is not necessarily.

E.g. the components of νC:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

does not yield a dagger:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

Can we form (interesting) subcategories of CNop that admit a dagger?
9

Daggerable maps

Definition
f : X → Y admits a dagger or is daggerable if the family {f†n}n∈N verifies:

Y(0) Y(1) Y(2) Y(3) · · ·

X(0) X(1) X(2) X(3) · · ·

rY
0 rY

1 rY
2

rX
0 rX

1 rX
2

f†0 f†1 f†2 f†3

Are daggerable:

morphisms !X : X → O, monoidal products of daggerable morphisms,
morphisms with only unitary components, and

νC
Y ◦ f ◦

(
νC

X
)†

when f daggerable.

10

Daggerable maps

Definition
f : X → Y admits a dagger or is daggerable if the family {f†n}n∈N verifies:

Y(0) Y(1) Y(2) Y(3) · · ·

X(0) X(1) X(2) X(3) · · ·

rY
0 rY

1 rY
2

rX
0 rX

1 rX
2

f†0 f†1 f†2 f†3

Are daggerable: morphisms !X : X → O,

monoidal products of daggerable morphisms,
morphisms with only unitary components, and

νC
Y ◦ f ◦

(
νC

X
)†

when f daggerable.

10

Daggerable maps

Definition
f : X → Y admits a dagger or is daggerable if the family {f†n}n∈N verifies:

Y(0) Y(1) Y(2) Y(3) · · ·

X(0) X(1) X(2) X(3) · · ·

rY
0 rY

1 rY
2

rX
0 rX

1 rX
2

f†0 f†1 f†2 f†3

Are daggerable: morphisms !X : X → O, monoidal products of daggerable morphisms,

morphisms with only unitary components, and

νC
Y ◦ f ◦

(
νC

X
)†

when f daggerable.

10

Daggerable maps

Definition
f : X → Y admits a dagger or is daggerable if the family {f†n}n∈N verifies:

Y(0) Y(1) Y(2) Y(3) · · ·

X(0) X(1) X(2) X(3) · · ·

rY
0 rY

1 rY
2

rX
0 rX

1 rX
2

f†0 f†1 f†2 f†3

Are daggerable: morphisms !X : X → O, monoidal products of daggerable morphisms,
morphisms with only unitary components, and

νC
Y ◦ f ◦

(
νC

X
)†

when f daggerable.

10

Daggerable maps

Definition
f : X → Y admits a dagger or is daggerable if the family {f†n}n∈N verifies:

Y(0) Y(1) Y(2) Y(3) · · ·

X(0) X(1) X(2) X(3) · · ·

rY
0 rY

1 rY
2

rX
0 rX

1 rX
2

f†0 f†1 f†2 f†3

Are daggerable: morphisms !X : X → O, monoidal products of daggerable morphisms,
morphisms with only unitary components, and

νC
Y ◦ f ◦

(
νC

X
)†

when f daggerable.
10

Let’s work out some syntax

10

Reversible syntax: examples and semantics

We mix functions and pattern-matching in a single entity.
• x : A ` t : C
• y : B ` t′ : C
• t ⊥ t′

{
injl x 7→ t
injr y 7→ t′

}
: A ⊕ B ↔ C

You can also form:
{

t 7→ injl x
t′ 7→ injr y

}
: C ↔ A ⊕ B

Functions are as general as possible: {t1 7→ t′1 | · · · | tm 7→ t′m}.

J{t1 7→ t′1 | · · · | tm 7→ t′m}K = ∑
i

Jt′iK JtiK†
JAK J∆iK JBKJtiK† Jt′i K

11

Reversible syntax: examples and semantics

We mix functions and pattern-matching in a single entity.
• x : A ` t : C
• y : B ` t′ : C
• t ⊥ t′

{
injl x 7→ t
injr y 7→ t′

}
: A ⊕ B ↔ C

You can also form:
{

t 7→ injl x
t′ 7→ injr y

}
: C ↔ A ⊕ B

Functions are as general as possible: {t1 7→ t′1 | · · · | tm 7→ t′m}.

J{t1 7→ t′1 | · · · | tm 7→ t′m}K = ∑
i

Jt′iK JtiK†
JAK J∆iK JBKJtiK† Jt′i K

11

Reversible syntax: examples and semantics

We mix functions and pattern-matching in a single entity.
• x : A ` t : C
• y : B ` t′ : C
• t ⊥ t′

{
injl x 7→ t
injr y 7→ t′

}
: A ⊕ B ↔ C

You can also form:
{

t 7→ injl x
t′ 7→ injr y

}
: C ↔ A ⊕ B

Functions are as general as possible: {t1 7→ t′1 | · · · | tm 7→ t′m}.

J{t1 7→ t′1 | · · · | tm 7→ t′m}K = ∑
i

Jt′iK JtiK†
JAK J∆iK JBKJtiK† Jt′i K

11

Reversible syntax: examples and semantics

We mix functions and pattern-matching in a single entity.
• x : A ` t : C
• y : B ` t′ : C
• t ⊥ t′

{
injl x 7→ t
injr y 7→ t′

}
: A ⊕ B ↔ C

You can also form:
{

t 7→ injl x
t′ 7→ injr y

}
: C ↔ A ⊕ B

Functions are as general as possible: {t1 7→ t′1 | · · · | tm 7→ t′m}.

J{t1 7→ t′1 | · · · | tm 7→ t′m}K = ∑
i

Jt′iK JtiK†
JAK J∆iK JBKJtiK† Jt′i K

11

Classical symmetric pattern-matching

(Ground types) A,B ::= I | A ⊕ B | A ⊗ B |

X | µX.A

(Function types) T1,T2 ::= A ↔ B |

T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t

(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}

(Fixed points) | f | fix f.ω
(Higher functions) | λf.ω | ω2ω1

λ-calculus with fixed points thanks to DCPO-enrichment of PInj.

12

Classical symmetric pattern-matching

(Ground types) A,B ::= I | A ⊕ B | A ⊗ B | X | µX.A
(Function types) T1,T2 ::= A ↔ B |

T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t
(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}
(Fixed points) | f | fix f.ω

(Higher functions) | λf.ω | ω2ω1

λ-calculus with fixed points thanks to DCPO-enrichment of PInj.

12

Classical symmetric pattern-matching

(Ground types) A,B ::= I | A ⊕ B | A ⊗ B | X | µX.A
(Function types) T1,T2 ::= A ↔ B | T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t
(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}
(Fixed points) | f | fix f.ω
(Higher functions) | λf.ω | ω2ω1

λ-calculus with fixed points thanks to DCPO-enrichment of PInj.
12

And now, guarded

12

Reversible Guarded Recursion

(Ground types) A,B ::= I | A ⊕ B | A ⊗ B | ▶A |

X | µX.A

(Function types) T1,T2 ::= A ↔ B | ▶T | T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t
(Later modality) | next t
(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}

but!

(Higher modality) | next ω

(Fixed points) | f | fix f.ω
(Higher functions) | λf.ω | ω2ω1

13

Reversible Guarded Recursion

(Ground types) A,B ::= I | A ⊕ B | A ⊗ B | ▶A | X | µX.A
(Function types) T1,T2 ::= A ↔ B | ▶T | T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t
(Later modality) | next t
(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m} but!
(Higher modality) | next ω

(Fixed points) | f | fix f.ω
(Higher functions) | λf.ω | ω2ω1

13

Daggerability in the syntax

The function:
{x 7→ next x} : A → ▶A

would not have a daggerable semantics.

Both terms on left and right need to have the same depth, to fit the condition: νC
Y ◦ f ◦

(
νC

X
)†

Example
Lists of type A obtained as [A] = µX.1 ⊕ (A ⊗▶X).

The depth condition still allows for the map function.

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

But no infinite loops allowed.

14

Daggerability in the syntax

The function:
{x 7→ next x} : A → ▶A

would not have a daggerable semantics.

Both terms on left and right need to have the same depth, to fit the condition: νC
Y ◦ f ◦

(
νC

X
)†

Example
Lists of type A obtained as [A] = µX.1 ⊕ (A ⊗▶X).

The depth condition still allows for the map function.

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

But no infinite loops allowed.

14

Daggerability in the syntax

The function:
{x 7→ next x} : A → ▶A

would not have a daggerable semantics.

Both terms on left and right need to have the same depth, to fit the condition: νC
Y ◦ f ◦

(
νC

X
)†

Example
Lists of type A obtained as [A] = µX.1 ⊕ (A ⊗▶X).

The depth condition still allows for the map function.

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

But no infinite loops allowed.

14

Daggerability in the syntax

The function:
{x 7→ next x} : A → ▶A

would not have a daggerable semantics.

Both terms on left and right need to have the same depth, to fit the condition: νC
Y ◦ f ◦

(
νC

X
)†

Example
Lists of type A obtained as [A] = µX.1 ⊕ (A ⊗▶X).

The depth condition still allows for the map function.

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

But no infinite loops allowed.

14

Daggerability in the syntax

The function:
{x 7→ next x} : A → ▶A

would not have a daggerable semantics.

Both terms on left and right need to have the same depth, to fit the condition: νC
Y ◦ f ◦

(
νC

X
)†

Example
Lists of type A obtained as [A] = µX.1 ⊕ (A ⊗▶X).

The depth condition still allows for the map function.

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

But no infinite loops allowed.

14

Conclusion

We can create some artificial recursion out of thin air.

The situation is trickier for (pure) quantum computation;

with limited expressivity.

Thank you!

15

Conclusion

We can create some artificial recursion out of thin air.

The situation is trickier for (pure) quantum computation;

with limited expressivity.

Thank you!

15

Conclusion

We can create some artificial recursion out of thin air.

The situation is trickier for (pure) quantum computation;

with limited expressivity.

Thank you!

15

Conclusion

We can create some artificial recursion out of thin air.

The situation is trickier for (pure) quantum computation;

with limited expressivity.

Thank you!

15

