Semantics of Recursion in Quantum Control

Louis Lemonnier
Titouan Carette, Kostia Chardonnet, Robin Kaarsgaard, JS Lemay, Benoît Valiron, Vladimir Zamdzhiev

GT IQ. September, 21th 2023

Programming languages

$$
\begin{aligned}
\text { def fact }(\mathrm{n}): & \\
\text { if } n= & 0: \\
& \text { return }(1) \\
\text { else : } & \\
& \text { return }(n * \text { fact }(n-1))
\end{aligned}
$$

Programming languages

$$
\begin{aligned}
\text { let rec } & \text { fact }(\mathrm{n}: \text { int })= \\
& \text { if } \mathrm{n}=0 \text { then } 1 \\
& \text { else } \mathrm{n} * \text { fact }(\mathrm{n}-1)
\end{aligned}
$$

Programming languages

fact:
movq $\$ 0, \% r a x$
je .case_zero
movq \%rdi, \%rax
pushq \%rax
subq \$1, \%rdi
call fact
popq \%rbx
multq \%rbx, \%rax
jmp .else
.case_zero:
movq $\$ 1, \% r a x$
.else:
ret

Programming languages

$$
\begin{aligned}
& \lambda m \cdot \lambda g \cdot(\lambda x \cdot g(x x))(\lambda x . g(x x))(\lambda p . \lambda a \cdot \lambda b . p a b) \\
& (\lambda n \cdot n(\lambda x \cdot(\lambda a \cdot \lambda b . b))(\lambda a \cdot \lambda b . a))(\lambda f . \lambda x . f x) \\
& (m(\lambda n \cdot \lambda f \cdot \lambda x \cdot n(\lambda g \cdot \lambda h . h(g f))(\lambda u \cdot x)(\lambda x \cdot x)))
\end{aligned}
$$

Semantics

Syntax: term.
Interpreted as a mathematical object: 【term】.

Full abstraction:

$$
\text { term } \simeq \text { term }^{\prime} \text { iff } \llbracket \text { term } \rrbracket=\llbracket \text { term }^{\prime} \rrbracket .
$$

What is recursion? What is quantum control?

A recurring example:

$$
f(n)= \begin{cases}1 & \text { if } n=0 \\ n \times f(n-1) & \text { else }\end{cases}
$$

In general, when the definition of a function f involves itself.

Quantum control:

What is recursion? What is quantum control?

A recurring example:

$$
f(n)= \begin{cases}1 & \text { if } n=0 \\ n \times f(n-1) & \text { else }\end{cases}
$$

In general, when the definition of a function f involves itself.

Quantum control:

- Not only superposition of states,
- Superposition of processes.

Domain theoretic point of view

A small shift of point of view.

Domain theoretic point of view

A small shift of point of view.
\mathbb{N}_{\perp} is a partial-ordered set with nice properties. \perp means undefined.

Domain theoretic point of view

A small shift of point of view.
\mathbb{N}_{\perp} is a partial-ordered set with nice properties. \perp means undefined.

The set $\left[D \rightarrow D^{\prime}\right]$ of monotone functions also has nice properties.

Domain theoretic point of view

A small shift of point of view.
\mathbb{N}_{\perp} is a partial-ordered set with nice properties. \perp means undefined.

The set $\left[D \rightarrow D^{\prime}\right]$ of monotone functions also has nice properties.
How do we use it?

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.

$$
\perp \perp \perp \perp \perp \perp \perp
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.

$$
\perp \perp \perp \perp \perp \perp \perp
$$

$F(\perp)$ is:

$$
1 \perp \perp \perp \perp \perp \perp \perp
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.

$$
\perp \perp \perp \perp \perp \perp \perp
$$

$F(F(\perp))$ is:

$$
\begin{array}{lllllll}
1 & 1 & \perp & \perp & \perp
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.

$$
\perp \perp \perp \perp \perp \perp \perp
$$

$F(F(F(\perp)))$ is:

$$
\begin{array}{lllllllll}
1 & 1 & 2 & \perp & \perp & \perp & \cdots
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.

$$
\perp \perp \perp \perp \perp \perp \perp
$$

$$
F(F(F(F(\perp)))) \text { is: }
$$

$$
\begin{array}{llllllll}
1 & 1 & 2 & 6 & \perp & \perp & \perp & \cdots
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0, \\ n \times g(n-1) & \text { else } .\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.

$$
\perp \perp \perp \perp \perp \perp \perp
$$

$F(F(F(F(F(\perp)))))$ is:

$$
\begin{array}{lllllllll}
1 & 1 & 2 & 6 & 24 & \perp & \perp & \cdots
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0, \\ n \times g(n-1) & \text { else. }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.

$$
\perp \perp \perp \perp \perp \perp \perp
$$

$$
F(F(F(F(F(F(\perp)))))) \text { is: }
$$

$$
\begin{array}{llllllll}
1 & 1 & 2 & 6 & 24 & 120 & \perp & \cdots
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.

$$
\begin{array}{rllllllll}
& \perp & \cdots \\
F(F(F(F(F(F(\perp)))))) \text { is: } & & & & & \\
1 & 1 & 2 & 6 & 24 & 120 & \perp & \cdots
\end{array}
$$

The interpretation of the factorial is then the limit of $\left(F^{n}(\perp)\right)_{n}$.

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.

$$
\left.\begin{array}{rlllllllll}
& \perp & \cdots
\end{array}\right)
$$

The interpretation of the factorial is then the limit of $\left(F^{n}(\perp)\right)_{n}$.
A notion of limit linked to the order is necessary.

The Quantum Case

Unitaries are written as sum and composition of contractive linear maps:

$$
\begin{aligned}
\text { id } & =|0\rangle\langle 0|+|1\rangle\langle 1| \\
H & =|0\rangle\langle+|+|1\rangle\langle-| \\
X & =|0\rangle\langle 1|+|1\rangle\langle 0|
\end{aligned}
$$

Arguably, undefined (\perp) in a Hilbert space is the zero vector.
0 is less defined than $|0\rangle\langle 0|$ which is less defined than id.

The Quantum Case

Unitaries are written as sum and composition of contractive linear maps:

$$
\begin{aligned}
\mathrm{id} & =|0\rangle\langle 0|+|1\rangle\langle 1| \\
H & =|0\rangle\langle+|+|1\rangle\langle-| \\
X & =|0\rangle\langle 1|+|1\rangle\langle 0|
\end{aligned}
$$

Arguably, undefined (\perp) in a Hilbert space is the zero vector.
0 is less defined than $|0\rangle\langle 0|$ which is less defined than id.
However, this order does not interact well with composition:

The Quantum Case

Unitaries are written as sum and composition of contractive linear maps:

$$
\begin{aligned}
\mathrm{id} & =|0\rangle\langle 0|+|1\rangle\langle 1| \\
H & =|0\rangle\langle+|+|1\rangle\langle-| \\
X & =|0\rangle\langle 1|+|1\rangle\langle 0|
\end{aligned}
$$

Arguably, undefined (\perp) in a Hilbert space is the zero vector.
0 is less defined than $|0\rangle\langle 0|$ which is less defined than id.
However, this order does not interact well with composition:

Theorem (No go theorem)
There is no such order on contractive maps between Hilbert spaces.

Recursion through a Trace

Recursion through a Trace

The recurring example: $g: \begin{cases}\mathbb{N} \uplus \mathbb{N} \times \mathbb{N} & \rightarrow \mathbb{N} \uplus \mathbb{N} \times \mathbb{N} \\ \operatorname{left} 0 & \mapsto \text { left } 1 \\ \operatorname{right}(n+1, m) & \mapsto \text { right }(n, n \times m) \\ \text { right }(0, m) & \mapsto \text { left } m\end{cases}$

Recursion through a Trace

The recurring example: $g: \begin{cases}\mathbb{N} \uplus \mathbb{N} \times \mathbb{N} & \rightarrow \mathbb{N} \uplus \mathbb{N} \times \mathbb{N} \\ \text { left } 0 & \mapsto \text { left } 1 \\ \text { right }(n+1, m) & \mapsto \text { right }(n, n \times m) \\ \text { right }(0, m) & \mapsto \text { left } m\end{cases}$

The trace is: $\quad \operatorname{Tr}_{U}^{A, B}(f)=$

Recursion through a Trace

The recurring example: $g: \begin{cases}\mathbb{N} \uplus \mathbb{N} \times \mathbb{N} & \rightarrow \mathbb{N} \uplus \mathbb{N} \times \mathbb{N} \\ \text { left } 0 & \mapsto \text { left } 1 \\ \text { right }(n+1, m) & \mapsto \text { right }(n, n \times m) \\ \text { right }(0, m) & \mapsto \text { left } m\end{cases}$

The trace is: $\quad \operatorname{Tr}_{U}^{A, B}(f)=$

And $\operatorname{Tr}_{\mathbb{N}+\mathbb{N}}^{\mathbb{N}, \mathbb{N}}(g)(n)=n!$.

The Quantum Case

The canonical trace formula is:

$$
\operatorname{Tr}(f)=f_{A B}+\sum_{n} f_{U B} f_{U U}^{n} f_{A U}
$$

The Quantum Case

The canonical trace formula is:

$$
\operatorname{Tr}(f)=f_{A B}+\sum_{n} f_{U B} f_{U U}^{n} f_{A U}
$$

This is a trace for unitaries between finite dimension Hilbert space. However:

The Quantum Case

The canonical trace formula is:

$$
\operatorname{Tr}(f)=f_{A B}+\sum_{n} f_{U B} f_{U U}^{n} f_{A U}
$$

This is a trace for unitaries between finite dimension Hilbert space. However:

Lemma (Towards no go)

The hypotheses to have a canonical trace for unitaries between infinite dimension Hilbert spaces is not verified.

The Quantum Case

The canonical trace formula is:

$$
\operatorname{Tr}(f)=f_{A B}+\sum_{n} f_{U B} f_{U U}^{n} f_{A U}
$$

This is a trace for unitaries between finite dimension Hilbert space. However:

Lemma (Towards no go)

The hypotheses to have a canonical trace for unitaries between infinite dimension Hilbert spaces is not verified.

My take:
Conjecture: No go
There is no trace for unitaries between infinite dimension Hilbert spaces.

Until we meet again

Is quantum recursion not possible?

Until we meet again

Is quantum recursion not possible?
Philosophically, it makes sense:

- Classical recursion allows non terminaison.
- A non terminating function cannot be a unitary.

Until we meet again

Is quantum recursion not possible?
Philosophically, it makes sense:

- Classical recursion allows non terminaison.
- A non terminating function cannot be a unitary.

Terminaison needs to be ensured!
A technique called guarded recursion. To be continued...

Until we meet again

Is quantum recursion not possible?
Philosophically, it makes sense:

- Classical recursion allows non terminaison.
- A non terminating function cannot be a unitary.

Terminaison needs to be ensured!
A technique called guarded recursion. To be continued...

Thank you!

