Semantics of Recursion in Quantum Control

Louis Lemonnier

Titouan Carette, Kostia Chardonnet, Robin Kaarsgaard, JS Lemay, Benoit Valiron, Vladimir Zamdzhiev

(_‘b? ;g:zr:toire s

e odes V4
<\"‘uaCS Formelles h%
école
normale ——— .°
supérieure ———— universite

paris—saclay

PARIS-SACLAY

GT IQ. September, 21th 2023



Programming languages

def fact(n):
if n = 0:
return (1)
else:
return (nxfact (n—1))



Programming languages

let rec fact (n:int) =
if n=0 then 1
else n % fact (n—1)



Programming languages

fact :

movq $0, %rax
je .case__zero
movq %rdi, %rax
pushq %rax

subq $1, %rdi

call fact

popq %rbx

multq %rbx, %rax
jmp .else

.case_ 7ero:

.else:

movq $1, %rax

ret



Programming languages

AmAg. (Ax.g(xx))(Ax.g(xx))(Ap.Aa.Ab.pab)
(An.n(Ax.(Aa.Ab.b))(Aa.Ab.a))(AfAx.fx)
(m(AnAEAx.n(Ag.Ah.h(gf))(Au.x)(Ax.x)))



Semantics

Syntax: term.

Interpreted as a mathematical object: [term].

Full abstraction:

term ~ term’ iff [term] = [term'].



What is recursion? What is quantum control?

A recurring example:

f(n)_{1 if n=0,

nxf(n—1) else.

In general, when the definition of a function finvolves itself.

Quantum control:



What is recursion? What is quantum control?

A recurring example:

f(n)_{1 if n=0,

nxf(n—1) else.

In general, when the definition of a function finvolves itself.

Quantum control:

= Not only superposition of states,

= Superposition of processes.
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How do we use it?



Interpretation of recursion
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Interpretation of recursion

Define F:[[NL%NL]%[NL—)NL” as:

1 if n=0,
nxg(n—1) else.

F(g)(n) = {
Write 1.: N; — N, the constant function with output L.
1 1 1 L 1 1
F(F(F(F(A(F(L)))))) is:
1 1 2 6 24 120 L

The interpretation of the factorial is then the limit of (F"(L)),.

A notion of /imit linked to the order is necessary.



The Quantum Case

Unitaries are written as sum and composition of contractive linear maps:

id = [0)(0]+1)
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X = [0){1[+ 1) (0|

Arguably, undefined (L) in a Hilbert space is the zero vector.

0 is less defined than |0) (0| which is less defined than id.
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The Quantum Case

Unitaries are written as sum and composition of contractive linear maps:

id = [0)(0]+1)
H o= [0)(+]+[1) (-]
X = [0){1[+ 1) (0|

Arguably, undefined (L) in a Hilbert space is the zero vector.
0 is less defined than |0) (0| which is less defined than id.

However, this order does not interact well with composition:

I+) (+] < id,
thus (0o |[+) (+o[1) < (0]1),
ie. 1/2 < o.

Theorem (No go theorem)
There is no such order on contractive maps between Hilbert spaces.
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Recursion through a Trace

A
We start from: | f

U

NwWwN x N

. left O
The recurring example: g: ]
right (n+1,m)
right (0, m)

URNN AN

The trace is: TrB(f) =
y 'y (f) jj Li

And TrgﬁN(g)(n) =nl.

NwN x N
left 1

right (n,n x m)
left m
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The Quantum Case
A B
Given
U U

The canonical trace formula is:
Tr(f) = fag + Z fUBfUnUfAU

This is a trace for unitaries between finite dimension Hilbert space.
However:
Lemma (Towards no go)

The hypotheses to have a canonical trace for unitaries between infinite
dimension Hilbert spaces is not verified.

My take:
Conjecture: No go

There is no trace for unitaries between infinite dimension Hilbert spaces.
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Until we meet again

Is quantum recursion not possible?

Philosophically, it makes sense:

= (lassical recursion allows non terminaison.

= A non terminating function cannot be a unitary.

Terminaison needs to be ensured!

A technique called guarded recursion. To be continued...

Thank you!



