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Programming languages

de f f a c t (n ) :
i f n == 0 :

re turn (1 )
e l s e :

r e turn (n∗ f a c t (n−1))
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Programming languages

l e t r e c f a c t (n : i n t ) =
i f n=0 then 1
e l s e n ∗ f a c t (n−1)
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Programming languages

f a c t :
movq $0 , %rax
j e . case_zero
movq %rdi , %rax
pushq %rax
subq $1 , %r d i
c a l l f a c t
popq %rbx
multq %rbx , %rax
jmp . e l s e

. case_zero :
movq $1 , %rax

. e l s e :
r e t
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Programming languages

λm.λg.(λx.g(xx))(λx.g(xx))(λp.λa.λb.pab)
(λn.n(λx.(λa.λb.b))(λa.λb.a))(λf.λx.fx)
(m(λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λx.x)))
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Semantics

Syntax: term.

Interpreted as a mathematical object: JtermK.
Full abstraction:

term ' term′ iff JtermK = Jterm′K .
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What is recursion? What is quantum control?

A recurring example:

f (n) =
{

1 if n = 0,
n × f (n − 1) else.

In general, when the definition of a function f involves itself.

Quantum control:

• Not only superposition of states,
• Superposition of processes.
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Domain theoretic point of view

A small shift of point of view.

N⊥ is a partial-ordered set with nice properties. ⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?
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Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.
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Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:
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The Quantum Case

Unitaries are written as sum and composition of contractive linear maps:

id = |0〉 〈0|+ |1〉 〈1|
H = |0〉 〈+|+ |1〉 〈−|
X = |0〉 〈1|+ |1〉 〈0|

Arguably, undefined (⊥) in a Hilbert space is the zero vector.

0 is less defined than |0〉 〈0| which is less defined than id.

However, this order does not interact well with composition:

|+〉 〈+| ≤ id,
thus 〈0| ◦ |+〉 〈+| ◦ |1〉 ≤ 〈0|1〉,
i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on contractive maps between Hilbert spaces.
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Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :


N ] N× N → N ] N× N
left 0 7→ left 1
right (n + 1,m) 7→ right (n, n × m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

7



Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :


N ] N× N → N ] N× N
left 0 7→ left 1
right (n + 1,m) 7→ right (n, n × m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

7



Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :


N ] N× N → N ] N× N
left 0 7→ left 1
right (n + 1,m) 7→ right (n, n × m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

7



Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :


N ] N× N → N ] N× N
left 0 7→ left 1
right (n + 1,m) 7→ right (n, n × m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

7



The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f ) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The hypotheses to have a canonical trace for unitaries between infinite
dimension Hilbert spaces is not verified.

My take:
Conjecture: No go
There is no trace for unitaries between infinite dimension Hilbert spaces.
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Until we meet again

Is quantum recursion not possible?

Philosophically, it makes sense:

• Classical recursion allows non terminaison.
• A non terminating function cannot be a unitary.

Terminaison needs to be ensured!

A technique called guarded recursion. To be continued...

Thank you!
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