
Semantics of Quantum Loops and Recursion

Louis LEMONNIER
University of Edinburgh

QSL seminar. 17th October 2024

Programming languages

de f f a c t (n) :
i f n == 0 :

re turn (1)
e l s e :

r e turn (n∗ f a c t (n−1))

1

Programming languages

l e t r e c f a c t (n : i n t) =
i f n=0 then 1
e l s e n ∗ f a c t (n−1)

1

Programming languages

f a c t :
movq $0 , %rax
j e . case_zero
movq %rdi , %rax
pushq %rax
subq $1 , %r d i
c a l l f a c t
popq %rbx
multq %rbx , %rax
jmp . e l s e

. case_zero :
movq $1 , %rax

. e l s e :
r e t

1

Programming languages

λm.λg.(λx.g(xx))(λx.g(xx))(λp.λa.λb.pab)
(λn.n(λx.(λa.λb.b))(λa.λb.a))(λf.λx.fx)
(m(λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λx.x)))

1

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→

3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→

5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK

Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .

• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

2

The point of semantics

It is hard to prove properties through the syntax.

With semantics, one can prove properties without running the code.

In some cases, semantics can also help add features to the language.

This is what happens in the recent papers of Chris and Robin (and co-authors).

But we are not telling this story.

3

The point of semantics

It is hard to prove properties through the syntax.

With semantics, one can prove properties without running the code.

In some cases, semantics can also help add features to the language.

This is what happens in the recent papers of Chris and Robin (and co-authors).

But we are not telling this story.

3

The point of semantics

It is hard to prove properties through the syntax.

With semantics, one can prove properties without running the code.

In some cases, semantics can also help add features to the language.

This is what happens in the recent papers of Chris and Robin (and co-authors).

But we are not telling this story.

3

The point of semantics

It is hard to prove properties through the syntax.

With semantics, one can prove properties without running the code.

In some cases, semantics can also help add features to the language.

This is what happens in the recent papers of Chris and Robin (and co-authors).

But we are not telling this story.

3

The point of semantics

It is hard to prove properties through the syntax.

With semantics, one can prove properties without running the code.

In some cases, semantics can also help add features to the language.

This is what happens in the recent papers of Chris and Robin (and co-authors).

But we are not telling this story.

3

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

4

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

4

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

4

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

4

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

4

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

4

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

4

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

4

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

4

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

5

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

5

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

5

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

5

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

5

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

⊥ : N⊥ → N⊥ is:
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

6

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

⊥ : N⊥ → N⊥ is:
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(⊥) : N⊥ → N⊥ is:
1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

6

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(⊥) : N⊥ → N⊥ is:
1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(F(⊥)) : N⊥ → N⊥ is:
1 1 ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

6

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(⊥)) : N⊥ → N⊥ is:
1 1 ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(F(F(⊥))) : N⊥ → N⊥ is:
1 1 2 ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

6

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(⊥))) : N⊥ → N⊥ is:
1 1 2 ⊥ ⊥ ⊥ ⊥ · · ·

F(F(F(F(⊥)))) : N⊥ → N⊥ is:

1 1 2 6 ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

6

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(F(⊥)))) : N⊥ → N⊥ is:

1 1 2 6 ⊥ ⊥ ⊥ · · ·

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

6

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

6

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

6

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

6

What about Quantum Programming?

Quantum channels: e.g. CPTP maps L(HA)→ L(HB).

Löwner order: f ≤ g if g− f is positive.

Admits a very nice structure in the Heisenberg picture.

⋆ (almost) everything done similar to classical computing.
⋆ with probabilies (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

7

What about Quantum Programming?

Quantum channels: e.g. CPTP maps L(HA)→ L(HB).

Löwner order: f ≤ g if g− f is positive.

Admits a very nice structure in the Heisenberg picture.

⋆ (almost) everything done similar to classical computing.
⋆ with probabilies (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

7

What about Quantum Programming?

Quantum channels: e.g. CPTP maps L(HA)→ L(HB).

Löwner order: f ≤ g if g− f is positive.

Admits a very nice structure in the Heisenberg picture.

⋆ (almost) everything done similar to classical computing.
⋆ with probabilies (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

7

What about Quantum Programming?

Quantum channels: e.g. CPTP maps L(HA)→ L(HB).

Löwner order: f ≤ g if g− f is positive.

Admits a very nice structure in the Heisenberg picture.

⋆ (almost) everything done similar to classical computing.
⋆ with probabilies (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

7

What about Quantum Programming?

Quantum channels: e.g. CPTP maps L(HA)→ L(HB).

Löwner order: f ≤ g if g− f is positive.

Admits a very nice structure in the Heisenberg picture.

⋆ (almost) everything done similar to classical computing.

⋆ with probabilies (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

7

What about Quantum Programming?

Quantum channels: e.g. CPTP maps L(HA)→ L(HB).

Löwner order: f ≤ g if g− f is positive.

Admits a very nice structure in the Heisenberg picture.

⋆ (almost) everything done similar to classical computing.
⋆ with probabilies (because of measurement).

⋆ and a non duplication of terms because of no-cloning.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

7

What about Quantum Programming?

Quantum channels: e.g. CPTP maps L(HA)→ L(HB).

Löwner order: f ≤ g if g− f is positive.

Admits a very nice structure in the Heisenberg picture.

⋆ (almost) everything done similar to classical computing.
⋆ with probabilies (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

7

What about Quantum Programming?

Quantum channels: e.g. CPTP maps L(HA)→ L(HB).

Löwner order: f ≤ g if g− f is positive.

Admits a very nice structure in the Heisenberg picture.

⋆ (almost) everything done similar to classical computing.
⋆ with probabilies (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

7

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

8

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

8

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

8

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

8

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

8

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

8

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

8

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

9

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

9

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

9

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

9

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

9

The Quantum Case

Reversible quantum operations are subunitaries (partial isometries) such as:

|0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
|0〉〈0| =

[
1 0
0 0

]
|1〉〈1| =

[
0 0
0 1

]

|+〉〈0|+ |−〉〈1| =
[

1√
2

1√
2

1√
2 − 1√

2

]
|+〉〈0| =

[
1√
2 0

1√
2 0

]
|−〉〈1| =

[
0 1√

2
0 − 1√

2

]

|1〉〈0|+ |0〉〈1| =
[

0 1
1 0

]
|1〉〈0| =

[
0 0
1 0

]
|0〉〈1| =

[
0 1
0 0

]

Arguably, undefined (⊥) in a (2-dim.) Hilbert space is the zero vector
[

0
0

]
.

[
0 0
0 0

]
is less defined than

[
1 0
0 0

]
= |0〉〈0| which is less defined than

[
1 0
0 1

]
.

10

The Quantum Case

Reversible quantum operations are subunitaries (partial isometries) such as:

|0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
|0〉〈0| =

[
1 0
0 0

]
|1〉〈1| =

[
0 0
0 1

]

|+〉〈0|+ |−〉〈1| =
[

1√
2

1√
2

1√
2 − 1√

2

]
|+〉〈0| =

[
1√
2 0

1√
2 0

]
|−〉〈1| =

[
0 1√

2
0 − 1√

2

]

|1〉〈0|+ |0〉〈1| =
[

0 1
1 0

]
|1〉〈0| =

[
0 0
1 0

]
|0〉〈1| =

[
0 1
0 0

]

Arguably, undefined (⊥) in a (2-dim.) Hilbert space is the zero vector
[

0
0

]
.

[
0 0
0 0

]
is less defined than

[
1 0
0 0

]
= |0〉〈0| which is less defined than

[
1 0
0 1

]
.

10

The Quantum Case

Reversible quantum operations are subunitaries (partial isometries) such as:

|0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
|0〉〈0| =

[
1 0
0 0

]
|1〉〈1| =

[
0 0
0 1

]

|+〉〈0|+ |−〉〈1| =
[

1√
2

1√
2

1√
2 − 1√

2

]
|+〉〈0| =

[
1√
2 0

1√
2 0

]
|−〉〈1| =

[
0 1√

2
0 − 1√

2

]

|1〉〈0|+ |0〉〈1| =
[

0 1
1 0

]
|1〉〈0| =

[
0 0
1 0

]
|0〉〈1| =

[
0 1
0 0

]

Arguably, undefined (⊥) in a (2-dim.) Hilbert space is the zero vector
[

0
0

]
.

[
0 0
0 0

]
is less defined than

[
1 0
0 0

]
= |0〉〈0| which is less defined than

[
1 0
0 1

]
.

10

A disappointment

However, this order does not interact well with composition:[
1 0
0 0

]
≤

[
1 0
0 1

]
,

thus
[

1√
2

1√
2

]
◦

[
1 0
0 0

]
◦

[
1√
2

− 1√
2

]
≤

[
1√
2

1√
2

]
◦

[
1√
2

− 1√
2

]
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on subunitary maps between Hilbert spaces.

11

A disappointment

However, this order does not interact well with composition:[
1 0
0 0

]
≤

[
1 0
0 1

]
,

thus
[

1√
2

1√
2

]
◦

[
1 0
0 0

]
◦

[
1√
2

− 1√
2

]
≤

[
1√
2

1√
2

]
◦

[
1√
2

− 1√
2

]
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on subunitary maps between Hilbert spaces.

11

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n×m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

12

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n×m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

12

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n×m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

12

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n×m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

12

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no suitable trace for (sub)unitaries between infinite dimension Hilbert spaces.

13

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:

Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no suitable trace for (sub)unitaries between infinite dimension Hilbert spaces.

13

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no suitable trace for (sub)unitaries between infinite dimension Hilbert spaces.

13

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no suitable trace for (sub)unitaries between infinite dimension Hilbert spaces.

13

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

14

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.

• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

14

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”

• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

14

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

14

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

14

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

14

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

15

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

15

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

15

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

15

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

15

Conclusion

♦ Reversibility does not prevent expressivity.
♦ Does not naturally generalise to the reversible quantum case.
♦ Do you think quantum recursion makes sense?

Thank you!

16

Conclusion

♦ Reversibility does not prevent expressivity.

♦ Does not naturally generalise to the reversible quantum case.
♦ Do you think quantum recursion makes sense?

Thank you!

16

Conclusion

♦ Reversibility does not prevent expressivity.
♦ Does not naturally generalise to the reversible quantum case.

♦ Do you think quantum recursion makes sense?

Thank you!

16

Conclusion

♦ Reversibility does not prevent expressivity.
♦ Does not naturally generalise to the reversible quantum case.
♦ Do you think quantum recursion makes sense?

Thank you!

16

Conclusion

♦ Reversibility does not prevent expressivity.
♦ Does not naturally generalise to the reversible quantum case.
♦ Do you think quantum recursion makes sense?

Thank you!

16

