
Semantics of Quantum Loops and Recursion

Louis LEMONNIER
University of Edinburgh

Phiqus & co., LIX, École polytechnique. 31th October 2024

Programming languages

de f f a c t (n) :
i f n == 0 :

re turn (1)
e l s e :

r e turn (n∗ f a c t (n−1))

1

Programming languages

l e t r e c f a c t (n : i n t) =
i f n=0 then 1
e l s e n ∗ f a c t (n−1)

1

Programming languages

f a c t :
movq $0 , %rax
j e . case_zero
movq %rdi , %rax
pushq %rax
subq $1 , %r d i
c a l l f a c t
popq %rbx
multq %rbx , %rax
jmp . e l s e

. case_zero :
movq $1 , %rax

. e l s e :
r e t

1

Programming languages

λm.λg.(λx.g(xx))(λx.g(xx))(λp.λa.λb.pab)
(λn.n(λx.(λa.λb.b))(λa.λb.a))(λf.λx.fx)
(m(λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λx.x)))

1

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• prove properties without running the code,
• compile the language and perform optimisations safely,
• (sometimes) help on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• prove properties without running the code,
• compile the language and perform optimisations safely,
• (sometimes) help on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→

3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• prove properties without running the code,
• compile the language and perform optimisations safely,
• (sometimes) help on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→

5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• prove properties without running the code,
• compile the language and perform optimisations safely,
• (sometimes) help on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• prove properties without running the code,
• compile the language and perform optimisations safely,
• (sometimes) help on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• prove properties without running the code,
• compile the language and perform optimisations safely,
• (sometimes) help on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK

Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• prove properties without running the code,
• compile the language and perform optimisations safely,
• (sometimes) help on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .

• prove properties without running the code,
• compile the language and perform optimisations safely,
• (sometimes) help on which features can be added to the language.

2

Semantics

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: function JtK, usual in mathematical terms.

Preserves composition: Jt; t′K = Jt′K ◦ JtK
Strong enough model if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• prove properties without running the code,
• compile the language and perform optimisations safely,
• (sometimes) help on which features can be added to the language.

2

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

3

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

3

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

3

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

3

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

3

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

3

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

3

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

3

A gentle walk through classical programming

There needs to be a corresponding semantics to all programs.

de f f (n) :
r e turn (n+1)

Jf K = {
N → N
n 7→ n + 1

de f f (n) :
r e turn (g (n)+1)

Jf K = {
N → N
n 7→ JgK (n) + 1

de f f (n) :
whi l e True :

pass
re turn (n+1)

Jf K = {
N → N
n 7→ ???

We need to account for non termination!

⊥ means undefined.

Jf K = {
N ∪ {⊥} → N ∪ {⊥}
n 7→ ⊥

3

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

4

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

4

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

4

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

4

Domain theory (example)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

0 1 2 3 4 · · ·

⊥

The order generalises to functions: f ≤ g if for all x, we have f(x) ≤ g(x).

The set [N⊥ → N⊥] of monotone functions also has nice properties.

How do we use it?

4

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

⊥ : N⊥ → N⊥ is:
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

5

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

⊥ : N⊥ → N⊥ is:
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(⊥) : N⊥ → N⊥ is:
1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

5

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(⊥) : N⊥ → N⊥ is:
1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(F(⊥)) : N⊥ → N⊥ is:
1 1 ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

5

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(⊥)) : N⊥ → N⊥ is:
1 1 ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(F(F(⊥))) : N⊥ → N⊥ is:
1 1 2 ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

5

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(⊥))) : N⊥ → N⊥ is:
1 1 2 ⊥ ⊥ ⊥ ⊥ · · ·

F(F(F(F(⊥)))) : N⊥ → N⊥ is:

1 1 2 6 ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

5

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(F(⊥)))) : N⊥ → N⊥ is:

1 1 2 6 ⊥ ⊥ ⊥ · · ·

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

5

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

5

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

5

Interpretation of recursion

Define F : [[N⊥ → N⊥]→ [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n× g(n− 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

5

What about Quantum Programming?

Quantum channels: e.g. CPTN maps L(HA)→ L(HB).

Löwner order: f ≤ g iff g− f is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

⋆ (almost) everything done similar to classical computing.
⋆ with probabilities (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

6

What about Quantum Programming?

Quantum channels: e.g. CPTN maps L(HA)→ L(HB).

Löwner order: f ≤ g iff g− f is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

⋆ (almost) everything done similar to classical computing.
⋆ with probabilities (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

6

What about Quantum Programming?

Quantum channels: e.g. CPTN maps L(HA)→ L(HB).

Löwner order: f ≤ g iff g− f is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

⋆ (almost) everything done similar to classical computing.
⋆ with probabilities (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

6

What about Quantum Programming?

Quantum channels: e.g. CPTN maps L(HA)→ L(HB).

Löwner order: f ≤ g iff g− f is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

⋆ (almost) everything done similar to classical computing.
⋆ with probabilities (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

6

What about Quantum Programming?

Quantum channels: e.g. CPTN maps L(HA)→ L(HB).

Löwner order: f ≤ g iff g− f is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

⋆ (almost) everything done similar to classical computing.
⋆ with probabilities (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

6

What about Quantum Programming?

Quantum channels: e.g. CPTN maps L(HA)→ L(HB).

Löwner order: f ≤ g iff g− f is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

⋆ (almost) everything done similar to classical computing.

⋆ with probabilities (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

6

What about Quantum Programming?

Quantum channels: e.g. CPTN maps L(HA)→ L(HB).

Löwner order: f ≤ g iff g− f is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

⋆ (almost) everything done similar to classical computing.
⋆ with probabilities (because of measurement).

⋆ and a non duplication of terms because of no-cloning.

6

What about Quantum Programming?

Quantum channels: e.g. CPTN maps L(HA)→ L(HB).

Löwner order: f ≤ g iff g− f is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a ⊥).

⋆ (almost) everything done similar to classical computing.
⋆ with probabilities (because of measurement).
⋆ and a non duplication of terms because of no-cloning.

6

Now, let’s compute reversibly!

6

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

7

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

7

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

7

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

7

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

7

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

7

The Reversible Case

[SabryValironVizzotto2018] Language for expressing (quantum) reversible programs.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

7

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

8

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

8

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

8

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

8

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets A and B, the partial injections [A ⇀ B] have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

8

The Quantum Case

Reversible quantum operations are subunitaries (partial isometries) such as:

|0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
|0〉〈0| =

[
1 0
0 0

]
|1〉〈1| =

[
0 0
0 1

]

|+〉〈0|+ |−〉〈1| =
[

1√
2

1√
2

1√
2 − 1√

2

]
|+〉〈0| =

[
1√
2 0

1√
2 0

]
|−〉〈1| =

[
0 1√

2
0 − 1√

2

]

|1〉〈0|+ |0〉〈1| =
[

0 1
1 0

]
|1〉〈0| =

[
0 0
1 0

]
|0〉〈1| =

[
0 1
0 0

]

Arguably, undefined (⊥) in a (2-dim.) Hilbert space is the zero vector
[

0
0

]
.

[
0 0
0 0

]
is less defined than

[
1 0
0 0

]
= |0〉〈0| which is less defined than

[
1 0
0 1

]
.

9

The Quantum Case

Reversible quantum operations are subunitaries (partial isometries) such as:

|0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
|0〉〈0| =

[
1 0
0 0

]
|1〉〈1| =

[
0 0
0 1

]

|+〉〈0|+ |−〉〈1| =
[

1√
2

1√
2

1√
2 − 1√

2

]
|+〉〈0| =

[
1√
2 0

1√
2 0

]
|−〉〈1| =

[
0 1√

2
0 − 1√

2

]

|1〉〈0|+ |0〉〈1| =
[

0 1
1 0

]
|1〉〈0| =

[
0 0
1 0

]
|0〉〈1| =

[
0 1
0 0

]

Arguably, undefined (⊥) in a (2-dim.) Hilbert space is the zero vector
[

0
0

]
.

[
0 0
0 0

]
is less defined than

[
1 0
0 0

]
= |0〉〈0| which is less defined than

[
1 0
0 1

]
.

9

The Quantum Case

Reversible quantum operations are subunitaries (partial isometries) such as:

|0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
|0〉〈0| =

[
1 0
0 0

]
|1〉〈1| =

[
0 0
0 1

]

|+〉〈0|+ |−〉〈1| =
[

1√
2

1√
2

1√
2 − 1√

2

]
|+〉〈0| =

[
1√
2 0

1√
2 0

]
|−〉〈1| =

[
0 1√

2
0 − 1√

2

]

|1〉〈0|+ |0〉〈1| =
[

0 1
1 0

]
|1〉〈0| =

[
0 0
1 0

]
|0〉〈1| =

[
0 1
0 0

]

Arguably, undefined (⊥) in a (2-dim.) Hilbert space is the zero vector
[

0
0

]
.

[
0 0
0 0

]
is less defined than

[
1 0
0 0

]
= |0〉〈0| which is less defined than

[
1 0
0 1

]
.

9

A disappointment

However, this order does not interact well with composition:[
1 0
0 0

]
≤

[
1 0
0 1

]
,

thus
[

1√
2

1√
2

]
◦

[
1 0
0 0

]
◦

[
1√
2

− 1√
2

]
≤

[
1√
2

1√
2

]
◦

[
1√
2

− 1√
2

]
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on subunitary maps between Hilbert spaces.

10

A disappointment

However, this order does not interact well with composition:[
1 0
0 0

]
≤

[
1 0
0 1

]
,

thus
[

1√
2

1√
2

]
◦

[
1 0
0 0

]
◦

[
1√
2

− 1√
2

]
≤

[
1√
2

1√
2

]
◦

[
1√
2

− 1√
2

]
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on subunitary maps between Hilbert spaces.

10

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n×m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

11

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n×m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

11

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n×m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

11

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n×m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

11

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no suitable trace for (sub)unitaries between infinite dimension Hilbert spaces.

12

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:

Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no suitable trace for (sub)unitaries between infinite dimension Hilbert spaces.

12

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no suitable trace for (sub)unitaries between infinite dimension Hilbert spaces.

12

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no suitable trace for (sub)unitaries between infinite dimension Hilbert spaces.

12

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

13

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.

• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

13

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”

• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

13

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

13

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

13

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

13

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

→ sufficiently nice: natural transformation.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

14

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

→ sufficiently nice: natural transformation.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

14

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

→ sufficiently nice: natural transformation.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

14

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

→ sufficiently nice: natural transformation.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

14

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

→ sufficiently nice: natural transformation.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

14

Guarded Quantum Recursion

Let H be the Hilbert space for lists of qubits.

Decompose H as the following sequence:

H0 ←− H1 ←− H2 ←− H3 ←− · · ·

where Hn is the lists of qubits up to size n.

Then, a function is described as a family of functions {fi : Hi → Hi}.

→ sufficiently nice: natural transformation.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

14

Conclusion

♦ Reversibility does not prevent expressivity.
♦ Does not naturally generalise to the reversible quantum case.
♦ Do you think quantum recursion makes sense?

Thank you!

15

Conclusion

♦ Reversibility does not prevent expressivity.

♦ Does not naturally generalise to the reversible quantum case.
♦ Do you think quantum recursion makes sense?

Thank you!

15

Conclusion

♦ Reversibility does not prevent expressivity.
♦ Does not naturally generalise to the reversible quantum case.

♦ Do you think quantum recursion makes sense?

Thank you!

15

Conclusion

♦ Reversibility does not prevent expressivity.
♦ Does not naturally generalise to the reversible quantum case.
♦ Do you think quantum recursion makes sense?

Thank you!

15

Conclusion

♦ Reversibility does not prevent expressivity.
♦ Does not naturally generalise to the reversible quantum case.
♦ Do you think quantum recursion makes sense?

Thank you!

15

