Semantics of Quantum Loops and Recursion

Louis LEMONNIER

University of Edinburgh

Phiqus & co., LIX, École polytechnique. 31th October 2024

```
def fact (n):
         if n = 0:
                  return (1)
         else :
                  return (n * fact (n-1))
```

```
let rec fact (n:int) =
       if n=0 then 1
        else n * fact (n-1)
```
Programming languages

fact:

movq $$0, %$ rax je . case_zero movq %rdi , %rax pushq %rax subq $$1, \%$ rdi $cal 1$ fact popq %rbx multa $\%$ rbx, $\%$ rax jmp . else . case_zero : movq $$1, \%$ rax . $else:$ r e t

λm.λg.(*λx.g*(*xx*))(*λx.g*(*xx*))(*λp.λa.λb.pab*) (*λn.n*(*λx.*(*λa.λb.b*))(*λa.λb.a*))(*λf.λx.fx*) $(m(\lambda n.\lambda f.\lambda x.n(\lambda g.\lambda h.h(gf))(\lambda u.x)(\lambda x.x)))$

Comes from Ancient Greek, *to provide a meaning*.

Comes from Ancient Greek, *to provide a meaning*.

Operational semantics: formal program execution $t \to t'$.

Comes from Ancient Greek, *to provide a meaning*.

Operational semantics: formal program execution $t \to t'$.

For example, $(\lambda x.x + 2)3 \rightarrow$

Comes from Ancient Greek, *to provide a meaning*.

Operational semantics: formal program execution $t \to t'$.

For example, $(\lambda x.x + 2)3 \rightarrow 3 + 2 \rightarrow$

Comes from Ancient Greek, *to provide a meaning*.

Operational semantics: formal program execution $t \to t'$.

For example, $(\lambda x.x + 2)3 \rightarrow 3 + 2 \rightarrow 5$.

Comes from Ancient Greek, *to provide a meaning*.

Operational semantics: formal program execution $t \to t'$.

```
For example, (\lambda x \cdot x + 2)3 \rightarrow 3 + 2 \rightarrow 5.
```
Denotational semantics: function [t], usual in mathematical terms.

Comes from Ancient Greek, *to provide a meaning*.

Operational semantics: formal program execution $t \to t'$.

For example, $(\lambda x \cdot x + 2)3 \rightarrow 3 + 2 \rightarrow 5$.

Denotational semantics: function $\llbracket t \rrbracket$, usual in mathematical terms.

Preserves composition: $\mathbb{I}[t; t'] = \mathbb{I}[t'] \circ \mathbb{I}[t]$

Comes from Ancient Greek, *to provide a meaning*.

Operational semantics: formal program execution $t \to t'$.

For example, $(\lambda x.x + 2)3 \rightarrow 3 + 2 \rightarrow 5$.

Denotational semantics: function $\llbracket t \rrbracket$, usual in mathematical terms.

Preserves composition: $\mathbb{I}[t; t'] = \mathbb{I}[t'] \circ \mathbb{I}[t]$

Strong enough model if relation between operational and denotational:

 $t \simeq t'$ iff $[[t]] = [[t']]$.

Comes from Ancient Greek, *to provide a meaning*.

Operational semantics: formal program execution $t \to t'$.

For example, $(\lambda x \cdot x + 2) \cdot 3 \rightarrow 3 + 2 \rightarrow 5$.

Denotational semantics: function $\llbracket t \rrbracket$, usual in mathematical terms.

Preserves composition: $\mathbb{I}[t; t'] = \mathbb{I}[t'] \circ \mathbb{I}[t]$

Strong enough model if relation between operational and denotational:

 $t \simeq t'$ iff $[[t]] = [[t']]$.

- **prove properties without running the code,**
- compile the language and perform optimisations safely,
- (sometimes) help on which features can be added to the language.

There needs to be a corresponding semantics to all programs.

```
def f(n):return (n+1)
```
There needs to be a corresponding semantics to all programs.

```
def f(n):return (n+1)
```

$$
\llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n+1 \end{array} \right.
$$

There needs to be a corresponding semantics to all programs.

 $def f(n):$ r eturn $(n+1)$ def $f(n)$: $return(g(n)+1)$

$$
\llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n+1 \end{array} \right.
$$

There needs to be a corresponding semantics to all programs.

 $def f(n):$ r eturn $(n+1)$ def $f(n)$: $return(g(n)+1)$

$$
\llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n+1 \end{array} \right. \qquad \llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & \llbracket g \rrbracket (n) + 1 \end{array} \right.
$$

 $def f(n):$ $return(n+1)$ def $f(n)$: $return (g(n)+1)$ $def f(n)$: while True : pass $return(n+1)$

$$
\llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n+1 \end{array} \right. \qquad \llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & \llbracket g \rrbracket (n) + 1 \end{array} \right.
$$

$$
\begin{array}{cccc}\n\text{def } f(n): & \text{def } f(n): & \text{def } f(n): & \text{while True:} \\
\text{return } (n+1) & \text{return } (g(n)+1) & \text{pass } \\
\text{return } (n+1) & \text{return } (n+1) & \text{matrix } (n+1) \\
\text{if } f \equiv \int \mathbb{N} \rightarrow \mathbb{N} & \text{if } f \equiv \int \mathbb{N} \rightarrow \mathbb{N}\n\end{array}
$$

$$
\llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{array} \right. \qquad \llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{array} \right. \qquad \llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{array} \right.
$$

$$
\text{def } f(n): \text{det } f(n):
$$

We need to account for non termination!

$$
\text{def } f(n): \text{det } f(n):
$$

We need to account for non termination!

⊥ means undefined.

$$
\begin{array}{cccc}\n\text{def } f(n): & \text{def } f(n): & \text{def } f(n): & \text{while True:} \\
\text{return } (n+1) & \text{if } (n+1) & \text{if } (n+1) \\
\text
$$

$$
\llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n+1 \end{array} \right. \qquad \llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & \llbracket g \rrbracket (n) + 1 \end{array} \right. \qquad \llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & ? ? ? \end{array} \right.
$$

We need to account for non termination!

⊥ means undefined.

$$
\llbracket f \rrbracket = \left\{ \begin{array}{ccc} \mathbb{N} \cup \{\bot\} & \to & \mathbb{N} \cup \{\bot\} \\ n & \mapsto & \bot \end{array} \right.
$$

The order generalises to functions: $f \leq g$ if for all *x*, we have $f(x) \leq g(x)$.

The order generalises to functions: $f \leq g$ if for all *x*, we have $f(x) \leq g(x)$.

The set [N*[⊥] →* N*⊥*] of monotone functions also has nice properties.

The order generalises to functions: $f \leq g$ if for all *x*, we have $f(x) \leq g(x)$.

The set [N*[⊥] →* N*⊥*] of monotone functions also has nice properties. How do we use it?

Define
$$
F: [[\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}] \to [\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}]]
$$
 as:
\n
$$
F(g)(n) = \begin{cases} 1 & \text{if } n = 0, \\ n \times g(n-1) & \text{else.} \end{cases}
$$

Write *⊥*: N*[⊥] →* N*[⊥]* the constant function with output *⊥*. *⊥*: N*[⊥] →* N*[⊥]* is: *⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·*

Define $F: [[\mathbb{N}_\perp \to \mathbb{N}_\perp] \to [\mathbb{N}_\perp \to \mathbb{N}_\perp]]$ as: $F(g)(n) = \begin{cases} 1 & \text{if } n = 0, \\ 1 & \text{if } n = 1. \end{cases}$ $n \times g(n-1)$ else. Write *⊥*: N*[⊥] →* N*[⊥]* the constant function with output *⊥*. *⊥*: N*[⊥] →* N*[⊥]* is: *⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · · F*(*⊥*): N*[⊥] →* N*[⊥]* is:

1 *⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·*

Define $F: [[\mathbb{N}_\perp \to \mathbb{N}_\perp] \to [\mathbb{N}_\perp \to \mathbb{N}_\perp]]$ as: $F(g)(n) = \begin{cases} 1 & \text{if } n = 0, \\ 1 & \text{if } n = 1. \end{cases}$ $n \times g(n-1)$ else. Write *⊥*: N*[⊥] →* N*[⊥]* the constant function with output *⊥*. $F(\perp)$: $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ is: 1 *⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·* $F(F(\perp))$: $\mathbb{N}_+ \rightarrow \mathbb{N}_+$ is:

1 1 *⊥ ⊥ ⊥ ⊥ ⊥ · · ·*

Define $F: [[\mathbb{N}_\perp \to \mathbb{N}_\perp] \to [\mathbb{N}_\perp \to \mathbb{N}_\perp]]$ as: $F(g)(n) = \begin{cases} 1 & \text{if } n = 0, \\ 1 & \text{if } n = 1. \end{cases}$ $n \times g(n-1)$ else. Write *⊥*: N*[⊥] →* N*[⊥]* the constant function with output *⊥*. $F(F(\perp))$: $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ is: 1 1 *⊥ ⊥ ⊥ ⊥ ⊥ · · ·* $F(F(F(\perp)))$: $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ is: 1 1 2 *⊥ ⊥ ⊥ ⊥ · · ·*

Define $F: [[\mathbb{N}_\perp \to \mathbb{N}_\perp] \to [\mathbb{N}_\perp \to \mathbb{N}_\perp]]$ as: $F(g)(n) = \begin{cases} 1 & \text{if } n = 0, \\ 1 & \text{if } n = 1. \end{cases}$ $n \times g(n-1)$ else. Write *⊥*: N*[⊥] →* N*[⊥]* the constant function with output *⊥*.

 $F(F(F(\perp)))$: $\mathbb{N}_+ \to \mathbb{N}_+$ is: 1 1 2 *⊥ ⊥ ⊥ ⊥ · · ·* $F(F(F(\bot)))): \mathbb{N}_+ \to \mathbb{N}_+$ is:

1 1 2 6 *⊥ ⊥ ⊥ · · ·*

Define
$$
F: [[\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}] \to [\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}]]
$$
 as:
\n
$$
F(g)(n) = \begin{cases} 1 & \text{if } n = 0, \\ n \times g(n-1) & \text{else.} \end{cases}
$$

Write *⊥*: N*[⊥] →* N*[⊥]* the constant function with output *⊥*. $F(F(F(F(\bot)))): \mathbb{N}_{\bot} \to \mathbb{N}_{\bot}$ is:

1 1 2 6 *⊥ ⊥ ⊥ · · ·*

 $F(F(F(F(\bot))))): \mathbb{N}_{\bot} \to \mathbb{N}_{\bot}$ is:

1 1 2 6 24 *⊥ ⊥ · · ·*

Define
$$
F: [[\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}] \to [\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}]]
$$
 as:
\n
$$
F(g)(n) = \begin{cases} 1 & \text{if } n = 0, \\ n \times g(n-1) & \text{else.} \end{cases}
$$

Write *⊥*: N*[⊥] →* N*[⊥]* the constant function with output *⊥*. $F(F(F(F(\bot))))): \mathbb{N}_{\bot} \to \mathbb{N}_{\bot}$ is:

1 1 2 6 24 *⊥ ⊥ · · ·*

 $F(F(F(F(F(\bot)))))): \mathbb{N}_{\bot} \to \mathbb{N}_{\bot}$ is:

1 1 2 6 24 120 *⊥ · · ·*

Define
$$
F: [[\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}] \to [\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}]]
$$
 as:
\n
$$
F(g)(n) = \begin{cases} 1 & \text{if } n = 0, \\ n \times g(n-1) & \text{else.} \end{cases}
$$

Write *⊥*: N*[⊥] →* N*[⊥]* the constant function with output *⊥*. $F(F(F(F(\bot))))): \mathbb{N}_{\bot} \to \mathbb{N}_{\bot}$ is:

1 1 2 6 24 *⊥ ⊥ · · ·*

 $F(F(F(F(F(\bot)))))): \mathbb{N}_{\bot} \to \mathbb{N}_{\bot}$ is:

1 1 2 6 24 120 *⊥ · · ·*

The interpretation of the factorial is then the limit of $(F^{n}(\perp))_n$.
Interpretation of recursion

Define
$$
F: [[\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}] \to [\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}]]
$$
 as:
\n
$$
F(g)(n) = \begin{cases} 1 & \text{if } n = 0, \\ n \times g(n-1) & \text{else.} \end{cases}
$$
\n
$$
M_{\text{triv}} \cup \mathbb{N}_{\perp} \text{ the constant function with output } \perp
$$

Write *⊥*: N*[⊥] →* N*[⊥]* the constant function with output *⊥*. $F(F(F(F(\bot))))): \mathbb{N}_{\bot} \to \mathbb{N}_{\bot}$ is:

1 1 2 6 24 *⊥ ⊥ · · ·*

 $F(F(F(F(F(\bot)))))): \mathbb{N}_{\bot} \to \mathbb{N}_{\bot}$ is:

1 1 2 6 24 120 *⊥ · · ·*

The interpretation of the factorial is then the limit of $(F^{n}(\perp))_n$.

A notion of limit linked to the order is necessary.

Löwner order: $f \leq g$ iff $g - f$ is positive.

Löwner order: $f \leq g$ iff $g - f$ is positive.

Admits a nice structure in the (so called) Heisenberg picture.

Löwner order: $f \leq g$ iff $g - f$ is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a *⊥*).

Löwner order: $f \leq g$ iff $g - f$ is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a *⊥*).

Löwner order: $f \leq g$ iff $g - f$ is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a *⊥*).

⋆ (almost) everything done similar to classical computing.

Löwner order: $f < g$ iff $g - f$ is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a *⊥*).

- *⋆* (almost) everything done similar to classical computing.
- *⋆* with probabilities (because of measurement).

Löwner order: *f ≤ g* iff *g − f* is positive.

Admits a nice structure in the (so called) Heisenberg picture.

The undefined function is interpreted as the constant map 0 (no need to add a *⊥*).

- *⋆* (almost) everything done similar to classical computing.
- *⋆* with probabilities (because of measurement).
- *⋆* and a non duplication of terms because of no-cloning.

Now, let's compute reversibly!

The language is very expressive and has a programming flavour.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

The language is very expressive and has a programming flavour.

Its classical counterpart is interpreted with partial injective functions.

⋆ a full partial injection is a bijection.

Its quantum counterpart is interpreted as contractive linear maps.

⋆ a full contractive map is a unitary.

Is it possible to interpret loop or recursion in this setting?

- Only reversible functions,
- **·** Inductive types,
- A fixpoint operator,
- A CbV operational semantics.

- Only reversible functions,
- **·** Inductive types,
- A fixpoint operator,
- A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

- Only reversible functions,
- **·** Inductive types,
- A fixpoint operator,
- A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets *A* and *B*, the partial injections $[A \rightarrow B]$ have nice properties for fixpoints.

- Only reversible functions,
- **•** Inductive types,
- A fixpoint operator,
- A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets *A* and *B*, the partial injections $[A \rightarrow B]$ have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

- Only reversible functions,
- **•** Inductive types,
- A fixpoint operator,
- A CbV operational semantics.

It is Turing-complete! [ChardonnetLemonnierValiron2024]

Given two sets *A* and *B*, the partial injections $[A \rightarrow B]$ have nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

What about its quantum counterpart?

The Quantum Case

Reversible quantum operations are subunitaries (partial isometries) such as:

$$
|0\rangle\langle 0| + |1\rangle\langle 1| = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad |0\rangle\langle 0| = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad |1\rangle\langle 1| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
|+\rangle\langle 0| + |-\rangle\langle 1| = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \qquad |+\rangle\langle 0| = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad |-\rangle\langle 1| = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}
$$

$$
|1\rangle\langle 0| + |0\rangle\langle 1| = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad |1\rangle\langle 0| = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \qquad |0\rangle\langle 1| = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
$$

The Quantum Case

Reversible quantum operations are subunitaries (partial isometries) such as:

$$
|0\rangle\langle 0| + |1\rangle\langle 1| = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad |0\rangle\langle 0| = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad |1\rangle\langle 1| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
|+\rangle\langle 0| + |-\rangle\langle 1| = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \qquad |+\rangle\langle 0| = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad |-\rangle\langle 1| = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}
$$

$$
|1\rangle\langle 0| + |0\rangle\langle 1| = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad |1\rangle\langle 0| = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \qquad |0\rangle\langle 1| = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
$$

Arguably, undefined (*⊥*) in a (2-dim.) Hilbert space is the zero vector [0 0

] .

The Quantum Case

Reversible quantum operations are subunitaries (partial isometries) such as:

$$
|0\rangle\langle 0| + |1\rangle\langle 1| = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad |0\rangle\langle 0| = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad |1\rangle\langle 1| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
|+\rangle\langle 0| + |-\rangle\langle 1| = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \qquad |+\rangle\langle 0| = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad |-\rangle\langle 1| = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}
$$

$$
|1\rangle\langle 0| + |0\rangle\langle 1| = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad |1\rangle\langle 0| = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \qquad |0\rangle\langle 1| = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
$$

Arguably, undefined (*⊥*) in a (2-dim.) Hilbert space is the zero vector [0 0] . $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is less defined than $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = |0\rangle\langle 0|$ which is less defined than $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. However, this order does not interact well with composition:

$$
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \leq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},
$$
\n
$$
\text{thus} \qquad \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \circ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \circ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \leq \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \circ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix},
$$
\n
$$
\text{i.e.} \qquad \qquad 1/2 \leq 0.
$$

However, this order does not interact well with composition:

$$
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \leq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},
$$
\n
$$
\text{thus} \qquad \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \circ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \circ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \leq \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \circ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix},
$$
\n
$$
\text{i.e.} \qquad \qquad 1/2 \leq 0.
$$

Theorem (No go theorem)

There is no such order on subunitary maps between Hilbert spaces.

The trace is:
$$
\operatorname{Tr}_{U}^{A,B}(f) = \underbrace{\begin{array}{c} A & B \\ \hline U & U \end{array}}
$$

The trace is:
$$
\operatorname{Tr}_{U}^{A,B}(f) = \underbrace{\begin{array}{c|c} A & B \\ \hline U & U \end{array}}
$$

And $\mathrm{Tr}_{\mathbb{N}\oplus\mathbb{N}}^{\mathbb{N},\mathbb{N}}(g)(n)=n!$.

$$
\mathrm{Tr}(f) = f_{AB} + \sum_{n} f_{UB} f_{UU}^{n} f_{AU}
$$

$$
\mathrm{Tr}(f) = f_{AB} + \sum_{n} f_{UB} f_{UU}^{n} f_{AU}
$$

This is a trace for unitaries between finite dimension Hilbert space.

However:

$$
\mathrm{Tr}(f) = f_{AB} + \sum_{n} f_{UB} f_{UU}^{n} f_{AU}
$$

This is a trace for unitaries between finite dimension Hilbert space.

However:

Lemma (Towards no go)

The canonical trace on infinite dimension Hilbert spaces is not a trace.

$$
\mathrm{Tr}(f) = f_{AB} + \sum_{n} f_{UB} f_{UU}^{n} f_{AU}
$$

This is a trace for unitaries between finite dimension Hilbert space.

However:

Lemma (Towards no go)

The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:

Conjecture: No go

There is no suitable trace for (sub)unitaries between infinite dimension Hilbert spaces.

Is quantum recursion not possible?

If you ask people in the community:
If you ask people in the community:

• Classical recursion allows non termination.

If you ask people in the community:

- Classical recursion allows non termination.
- *"Non-terminating quantum-controlled program do not make sense."*

If you ask people in the community:

- Classical recursion allows non termination.
- *"Non-terminating quantum-controlled program do not make sense."*
- But no mathematical account of this point yet.

If you ask people in the community:

- Classical recursion allows non termination.
- *"Non-terminating quantum-controlled program do not make sense."*
- But no mathematical account of this point yet.

Terminaison needs to be ensured!

If you ask people in the community:

- Classical recursion allows non termination.
- *"Non-terminating quantum-controlled program do not make sense."*
- But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion.

Decompose *H* as the following sequence:

$$
H_0 \leftarrow H_1 \leftarrow H_2 \leftarrow H_3 \leftarrow \cdots
$$

where *Hⁿ* is the lists of qubits up to size *n*.

Decompose *H* as the following sequence:

$$
H_0 \leftarrow H_1 \leftarrow H_2 \leftarrow H_3 \leftarrow \cdots
$$

where *Hⁿ* is the lists of qubits up to size *n*.

Then, a function is described as a family of functions $\{f_i\colon H_i\to H_i\}.$

Decompose *H* as the following sequence:

$$
H_0 \leftarrow H_1 \leftarrow H_2 \leftarrow H_3 \leftarrow \cdots
$$

where *Hⁿ* is the lists of qubits up to size *n*.

Then, a function is described as a family of functions $\{f_i\colon H_i\to H_i\}.$

→ sufficiently nice: natural transformation.

Decompose *H* as the following sequence:

$$
H_0 \leftarrow H_1 \leftarrow H_2 \leftarrow H_3 \leftarrow \cdots
$$

where *Hⁿ* is the lists of qubits up to size *n*.

Then, a function is described as a family of functions $\{f_i\colon H_i\to H_i\}.$

→ sufficiently nice: natural transformation.

In this setting, admissible fixed points [Lemonnier2024].

Decompose *H* as the following sequence:

$$
H_0 \leftarrow H_1 \leftarrow H_2 \leftarrow H_3 \leftarrow \cdots
$$

where *Hⁿ* is the lists of qubits up to size *n*.

Then, a function is described as a family of functions $\{f_i\colon H_i\to H_i\}.$

→ sufficiently nice: natural transformation.

In this setting, admissible fixed points [Lemonnier2024].

However, the expressivity is limited.

Conclusion

♦ Reversibility does not prevent expressivity.

- ♦ Reversibility does not prevent expressivity.
- ♦ Does not naturally generalise to the reversible quantum case.
- ♦ Reversibility does not prevent expressivity.
- ♦ Does not naturally generalise to the reversible quantum case.
- ♦ Do you think quantum recursion makes sense?
- ♦ Reversibility does not prevent expressivity.
- ♦ Does not naturally generalise to the reversible quantum case.
- ♦ Do you think quantum recursion makes sense?

Thank you!