Semantics of Recursion in Quantum Control

Louis Lemonnier
Titouan Carette, Kostia Chardonnet, Robin Kaarsgaard, JS Lemay, Benoît Valiron, Vladimir Zamdzhiev

GT Scalp. 29th November 2023

Programming languages

$$
\begin{aligned}
\text { def fact }(\mathrm{n}): & \\
\text { if } n= & 0: \\
& \text { return }(1) \\
\text { else : } & \\
& \text { return }(n * \text { fact }(n-1))
\end{aligned}
$$

Programming languages

$$
\begin{aligned}
\text { let rec } & \text { fact }(\mathrm{n}: \text { int })= \\
& \text { if } \mathrm{n}=0 \text { then } 1 \\
& \text { else } \mathrm{n} * \text { fact }(\mathrm{n}-1)
\end{aligned}
$$

Programming languages

fact:
movq $\$ 0, \% r a x$
je .case_zero
movq \%rdi, \%rax
pushq \%rax
subq \$1, \%rdi
call fact
popq \%rbx
multq \%rbx, \%rax
jmp .else
.case_zero:
movq $\$ 1, \% r a x$
.else:
ret

Programming languages

$$
\begin{aligned}
& \lambda m \cdot \lambda g \cdot(\lambda x \cdot g(x x))(\lambda x . g(x x))(\lambda p . \lambda a \cdot \lambda b . p a b) \\
& (\lambda n \cdot n(\lambda x \cdot(\lambda a \cdot \lambda b . b))(\lambda a \cdot \lambda b . a))(\lambda f . \lambda x . f x) \\
& (m(\lambda n \cdot \lambda f \cdot \lambda x \cdot n(\lambda g \cdot \lambda h . h(g f))(\lambda u \cdot x)(\lambda x \cdot x)))
\end{aligned}
$$

Semantics

Syntax: terms t.
Operational semantics: $t \rightarrow t^{\prime}$.
Interpreted as a mathematical object: $\llbracket t \rrbracket$.

Wish: Relation between an operational view and a denotational view:

$$
t \simeq t^{\prime} \text { iff } \llbracket t \rrbracket=\llbracket t^{\prime} \rrbracket .
$$

Domain theory (for babies)

Domain theory (for babies)

$\mathbb{N}_{\perp} \stackrel{\text { def }}{=} \mathbb{N} \cup\{\perp\}$ is a partial-ordered set with nice properties.
\perp means undefined.

Domain theory (for babies)

$\mathbb{N}_{\perp} \stackrel{\text { def }}{=} \mathbb{N} \cup\{\perp\}$ is a partial-ordered set with nice properties.
\perp means undefined.

The set $\left[D \rightarrow D^{\prime}\right]$ of monotone functions also has nice properties.

Domain theory (for babies)

$\mathbb{N}_{\perp} \stackrel{\text { def }}{=} \mathbb{N} \cup\{\perp\}$ is a partial-ordered set with nice properties.
\perp means undefined.

The set $\left[D \rightarrow D^{\prime}\right]$ of monotone functions also has nice properties.
How do we use it?

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp. $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\perp \perp \perp \perp \perp \perp
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp.
$\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\perp \perp \perp \perp \perp \perp \perp
$$

$F(\perp): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
1 \perp \perp \perp \perp \perp \perp \perp
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp. $F(\perp): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
1 \perp \perp \perp \perp \perp \perp \perp
$$

$$
F(F(\perp)): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp} \text { is: }
$$

$$
\begin{array}{lllllll}
1 & 1 & \perp & \perp & \perp
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp. $F(F(\perp)): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{llllllll}
1 & 1 & \perp & \perp & \perp & \cdots
\end{array}
$$

$F(F(F(\perp))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{lllllllll}
1 & 1 & 2 & \perp & \perp & \perp & \cdots
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp. $F(F(F(\perp))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{lllllllll}
1 & 1 & 2 & \perp & \perp & \perp & \cdots
\end{array}
$$

$F(F(F(F(\perp)))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{llllllll}
1 & 1 & 2 & 6 & \perp & \perp & \cdots
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp. $F(F(F(F(\perp)))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{lllllllll}
1 & 1 & 2 & 6 & \perp & \perp & \perp & \cdots
\end{array}
$$

$F(F(F(F(F(\perp))))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{lllllllll}
1 & 1 & 2 & 6 & 24 & \perp & \perp & \cdots
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp. $F(F(F(F(F(\perp))))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{lllllllll}
1 & 1 & 2 & 6 & 24 & \perp & \perp & \cdots
\end{array}
$$

$F(F(F(F(F(F(\perp)))))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{llllllll}
1 & 1 & 2 & 6 & 24 & 120 & \perp & \cdots
\end{array}
$$

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp. $F(F(F(F(F(\perp))))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{lllllllll}
1 & 1 & 2 & 6 & 24 & \perp & \perp & \cdots
\end{array}
$$

$F(F(F(F(F(F(\perp)))))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{llllllll}
1 & 1 & 2 & 6 & 24 & 120 & \perp & \cdots
\end{array}
$$

The interpretation of the factorial is then the limit of $\left(F^{n}(\perp)\right)_{n}$.

Interpretation of recursion

Define $F:\left[\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right]\right]$ as:

$$
F(g)(n)= \begin{cases}1 & \text { if } n=0 \\ n \times g(n-1) & \text { else }\end{cases}
$$

Write $\perp: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ the constant function with output \perp. $F(F(F(F(F(\perp))))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{lllllllll}
1 & 1 & 2 & 6 & 24 & \perp & \perp & \cdots
\end{array}
$$

$F(F(F(F(F(F(\perp)))))): \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$ is:

$$
\begin{array}{llllllll}
1 & 1 & 2 & 6 & 24 & 120 & \perp & \cdots
\end{array}
$$

The interpretation of the factorial is then the limit of $\left(F^{n}(\perp)\right)_{n}$.
A notion of limit linked to the order is necessary.

What is quantum control?

Quantum computation seen as an effect:

- Non-deterministic: True + False.
- Probabilistic: $\frac{1}{2}$ True $+\frac{1}{2} \mathrm{False}$.
- Quantum: $\frac{1}{\sqrt{2}}$ True $+\left(-\frac{1}{\sqrt{2}}\right)$ False.

What is quantum control?

Quantum computation seen as an effect:

- Non-deterministic: True + False.
- Probabilistic: $\frac{1}{2}$ True $+\frac{1}{2} \mathrm{False}$.
- Quantum: $\frac{1}{\sqrt{2}}$ True $+\left(-\frac{1}{\sqrt{2}}\right)$ False. (not a monad! [Heunen16])

What is quantum control?

Quantum computation seen as an effect:

- Non-deterministic: True + False.
- Probabilistic: $\frac{1}{2}$ True $+\frac{1}{2} \mathrm{False}$.
- Quantum: $\frac{1}{\sqrt{2}}$ True $+\left(-\frac{1}{\sqrt{2}}\right)$ False. (not a monad! [Heunen16])

Physics says that apart from measurement, operations must be reversible.

What is quantum control?

Quantum computation seen as an effect:

- Non-deterministic: True + False.
- Probabilistic: $\frac{1}{2}$ True $+\frac{1}{2} \mathrm{False}$.
- Quantum: $\frac{1}{\sqrt{2}}$ True $+\left(-\frac{1}{\sqrt{2}}\right)$ False. (not a monad! [Heunen16])

Physics says that apart from measurement, operations must be reversible.

Quantum control:

- Not only superposition of states,
- Superposition of processes.
E.g. if x then P_{1} else P_{2}, where x is in superposition.

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

- Only reversible functions,
- Inductive types,
- A fixpoint operator,
- A CbV operational semantics.

It is Turing-comlete!
Sound and adequate denotational semantics in partial injective functions.
Given two sets A and B, the set $[A \rightharpoonup B]$ has nice properties for fixpoints.

Read about it: [CLV23].

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

- Only reversible functions,
- Inductive types,
- A fixpoint operator,
- A CbV operational semantics.

It is Turing-comlete!
Sound and adequate denotational semantics in partial injective functions.
Given two sets A and B, the set $[A \rightharpoonup B]$ has nice properties for fixpoints.
(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.
Dimension 2 for simple examples.
Reversible quantum operations are subunitaries such as:

$$
\begin{array}{rll}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) & \left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 0
\end{array}\right) & \left(\begin{array}{cc}
0 & \frac{1}{\sqrt{2}} \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
\end{array}
$$

The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.
Dimension 2 for simple examples.
Reversible quantum operations are subunitaries such as:

$$
\begin{array}{rll}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) & \left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 0
\end{array}\right) & \left(\begin{array}{cc}
0 & \frac{1}{\sqrt{2}} \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
\end{array}
$$

Arguably, undefined (\perp) in a Hilbert space is the zero vector $\binom{0}{0}$.

The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.
Dimension 2 for simple examples.
Reversible quantum operations are subunitaries such as:

$$
\begin{array}{rll}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) & \left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 0
\end{array}\right) & \left(\begin{array}{cc}
0 & \frac{1}{\sqrt{2}} \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
\end{array}
$$

Arguably, undefined (\perp) in a Hilbert space is the zero vector $\binom{0}{0}$. $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is less defined than $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ which is less defined than $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

A disappointment

However, this order does not interact well with composition:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \leq\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
& \text { thus } \quad\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \circ\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \circ\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} \leq\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \circ\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} \text {, } \\
& \text { i.e. } \\
& 1 / 2 \leq 0 \text {. }
\end{aligned}
$$

A disappointment

However, this order does not interact well with composition:

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned} \leq\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), ~ \begin{aligned}
\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \circ\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \circ\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} & \leq\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \circ\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}, \\
\text { thus } \quad 1 / 2 & \leq 0 .
\end{aligned}
$$

Theorem (No go theorem)

There is no such order on contractive maps between Hilbert spaces.

Recursion through a Trace

Recursion through a Trace

The recurring example: $g: \begin{cases}\mathbb{N} \uplus(\mathbb{N} \times \mathbb{N}) & \rightarrow \mathbb{N} \uplus(\mathbb{N} \times \mathbb{N}) \\ \text { left } n & \mapsto \operatorname{right}(n, 1) \\ \text { right }(n+1, m) & \mapsto \operatorname{right}(n, n \times m) \\ \text { right }(0, m) & \mapsto \text { left } m\end{cases}$

Recursion through a Trace

The recurring example: $g: \begin{cases}\mathbb{N} \uplus(\mathbb{N} \times \mathbb{N}) & \rightarrow \mathbb{N} \uplus(\mathbb{N} \times \mathbb{N}) \\ \operatorname{left} n & \mapsto \text { right }(n, 1) \\ \operatorname{right}(n+1, m) & \mapsto \text { right }(n, n \times m) \\ \operatorname{right}(0, m) & \mapsto \text { left } m\end{cases}$

The trace is: $\quad \operatorname{Tr}_{U}^{A, B}(f)=$

Recursion through a Trace

The recurring example: $g: \begin{cases}\mathbb{N} \uplus(\mathbb{N} \times \mathbb{N}) & \rightarrow \mathbb{N} \uplus(\mathbb{N} \times \mathbb{N}) \\ \operatorname{left} n & \mapsto \text { right }(n, 1) \\ \operatorname{right}(n+1, m) & \mapsto \text { right }(n, n \times m) \\ \operatorname{right}(0, m) & \mapsto \text { left } m\end{cases}$

The trace is: $\quad \operatorname{Tr}_{U}^{A, B}(f)=$

And $\operatorname{Tr}_{\mathbb{N} \uplus \mathbb{N}}^{\mathbb{N}, \mathbb{N}}(g)(n)=n!$.

The Quantum Case

The canonical trace formula is:

$$
\operatorname{Tr}(f)=f_{A B}+\sum_{n} f_{U B} f_{U U}^{n} f_{A U}
$$

The Quantum Case

The canonical trace formula is:

$$
\operatorname{Tr}(f)=f_{A B}+\sum_{n} f_{U B} f_{U U}^{n} f_{A U}
$$

This is a trace for unitaries between finite dimension Hilbert space. However:

The Quantum Case

The canonical trace formula is:

$$
\operatorname{Tr}(f)=f_{A B}+\sum_{n} f_{U B} f_{U U}^{n} f_{A U}
$$

This is a trace for unitaries between finite dimension Hilbert space. However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

The Quantum Case

The canonical trace formula is:

$$
\operatorname{Tr}(f)=f_{A B}+\sum_{n} f_{U B} f_{U U}^{n} f_{A U}
$$

This is a trace for unitaries between finite dimension Hilbert space.
However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.
My take:
Conjecture: No go
There is no trace for (sub)unitaries between infinite dimension Hilbert spaces.

Until we meet again

Is quantum recursion not possible?

Until we meet again

Is quantum recursion not possible?
If you ask people in the community:

- Classical recursion allows non termination.
- "Non-terminating quantum-controlled program do not make sense."
- But no mathematical account of this point yet.

Until we meet again

Is quantum recursion not possible?
If you ask people in the community:

- Classical recursion allows non termination.
- "Non-terminating quantum-controlled program do not make sense."
- But no mathematical account of this point yet.

Terminaison needs to be ensured!
A technique called guarded recursion. To be continued...

Until we meet again

Is quantum recursion not possible?
If you ask people in the community:

- Classical recursion allows non termination.
- "Non-terminating quantum-controlled program do not make sense."
- But no mathematical account of this point yet.

Terminaison needs to be ensured!
A technique called guarded recursion. To be continued...

Thank you!

