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Programming languages

def fact(n):
if n = 0:
return (1)
else:
return (nxfact (n—1))



Programming languages

let rec fact (n:int) =
if n=0 then 1
else n % fact (n—1)



Programming languages

fact :

movq $0, %rax
je .case__zero
movq %rdi, %rax
pushq %rax

subq $1, %rdi

call fact

popq %rbx

multq %rbx, %rax
jmp .else

.case_ 7ero:

.else:

movq $1, %rax

ret



Programming languages

AmAg. (Ax.g(xx))(Ax.g(xx))(Ap.Aa.Ab.pab)
(An.n(Ax.(Aa.Ab.b))(Aa.Ab.a))(AfAx.fx)
(m(AnAEAx.n(Ag.Ah.h(gf))(Au.x)(Ax.x)))



Semantics

Syntax: terms t.
Operational semantics: t — t.

Interpreted as a mathematical object: [t].

Wish: Relation between an operational view and a denotational view:

t~ ¢ iff [f] = [¢].
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How do we use it?



Interpretation of recursion

Define F: [[N) = N,] = [N = N, ]] as:

1 if n=0,
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Interpretation of recursion

Define F: [[N) = N,] = [N = N, ]] as:

1 if n=0,
nx g(n—1) else.

Fg)(n) = {

Write L : N, — N, the constant function with output L.
FIF(F(F(F(L))))): N — N is:

1 1 2 6 24 1 L
FOFCFFCFCFCL))))): No = N s
1 1 2 6 24 120 L

The interpretation of the factorial is then the limit of (F"(.L)),.

A notion of limit linked to the order is necessary.



What is quantum control?

Quantum computation seen as an effect:

= Non-deterministic: True + False.
= Probabilistic: %True + %False.

= Quantum: %True + (f%)False.
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What is quantum control?

Quantum computation seen as an effect:

= Non-deterministic: True + False.
= Probabilistic: %True + %False.

= Quantum: %True + (f%)False. (not a monad! [Heunen16])

Physics says that apart from measurement, operations must be reversible.

Quantum control:

= Not only superposition of states,

= Superposition of processes.

E.g. if x then P; else P,, where x is in superposition.


https://arxiv.org/pdf/1012.4526v5.pdf

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

= Only reversible functions,
= |nductive types,
= A fixpoint operator,
= A CbV operational semantics.
It is Turing-comlete!
Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A — B] has nice properties for fixpoints.

Read about it: [CLV23].


https://arxiv.org/pdf/2309.12151.pdf

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

= Only reversible functions,

= |nductive types,

= A fixpoint operator,

= A CbV operational semantics.
It is Turing-comlete!
Sound and adequate denotational semantics in partial injective functions.
Given two sets A and B, the set [A — B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].


https://arxiv.org/pdf/2309.12151.pdf
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The Quantum Case

A unitary operator fis such that the inverse of fis its adjoint.
Dimension 2 for simple examples.

Reversible quantum operations are subunitaries such as:

10 10 0 0
01 0 0 0 1

1 1 1 1

1 1 1 9 0 —-L1

2 V2 V2 V2
01 0 0 0 1
10 10 0 0

: . . . 0

Arguably, undefined (L) in a Hilbert space is the zero vector <0>

gLy is less defined than e which is less defined than Y .
0 0 0 0 0 1 -
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i.e. 1/2 < 0.

Theorem (No go theorem)

There is no such order on contractive maps between Hilbert spaces.
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Recursion through a Trace

A
We start from: | f
U
Nuw (N x N)
. left n
The recurring example: g: ]
right (n+1,m)
right (0, m)
A

URNN AN

The trace is: TrB(f) =
y 'y (f) CU jU

And TrgﬁN(g)(n) =nl.

Nuw (N x N)
right (n,1)
right (n,n x m)
left m
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The Quantum Case
A B
Given
U U

The canonical trace formula is:
Tr(f) = fag + Z fUBfUnUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)

The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go

There is no trace for (sub)unitaries between infinite dimension Hilbert
spaces.
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Is quantum recursion not possible?

If you ask people in the community:

= Classical recursion allows non termination.
= “Non-terminating quantum-controlled program do not make sense.”

= But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion. To be continued...

Thank you!
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