
Semantics of Recursion in Quantum Control

Louis Lemonnier
Titouan Carette, Kostia Chardonnet, Robin Kaarsgaard, JS Lemay, Benoît Valiron, Vladimir Zamdzhiev

GT Scalp. 29th November 2023

Programming languages

de f f a c t (n) :
i f n == 0 :

re turn (1)
e l s e :

r e turn (n∗ f a c t (n−1))

1

Programming languages

l e t r e c f a c t (n : i n t) =
i f n=0 then 1
e l s e n ∗ f a c t (n−1)

1

Programming languages

f a c t :
movq $0 , %rax
j e . case_zero
movq %rdi , %rax
pushq %rax
subq $1 , %r d i
c a l l f a c t
popq %rbx
multq %rbx , %rax
jmp . e l s e

. case_zero :
movq $1 , %rax

. e l s e :
r e t

1

Programming languages

λm.λg.(λx.g(xx))(λx.g(xx))(λp.λa.λb.pab)
(λn.n(λx.(λa.λb.b))(λa.λb.a))(λf.λx.fx)
(m(λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λx.x)))

1

Semantics

Syntax: terms t.

Operational semantics: t → t′.

Interpreted as a mathematical object: JtK.
Wish: Relation between an operational view and a denotational view:

t ' t′ iff JtK = Jt′K .

2

Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?

3

Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?

3

Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?

3

Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?

3

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
⊥ : N⊥ → N⊥ is:

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

4

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
⊥ : N⊥ → N⊥ is:

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(⊥) : N⊥ → N⊥ is:

1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

4

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(⊥) : N⊥ → N⊥ is:

1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(F(⊥)) : N⊥ → N⊥ is:

1 1 ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

4

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(⊥)) : N⊥ → N⊥ is:

1 1 ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

F(F(F(⊥))) : N⊥ → N⊥ is:

1 1 2 ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

4

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(⊥))) : N⊥ → N⊥ is:

1 1 2 ⊥ ⊥ ⊥ ⊥ · · ·

F(F(F(F(⊥)))) : N⊥ → N⊥ is:

1 1 2 6 ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

4

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(F(⊥)))) : N⊥ → N⊥ is:

1 1 2 6 ⊥ ⊥ ⊥ · · ·

F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

4

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

4

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

4

Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
F(F(F(F(F(⊥))))) : N⊥ → N⊥ is:

1 1 2 6 24 ⊥ ⊥ · · ·

F(F(F(F(F(F(⊥)))))) : N⊥ → N⊥ is:

1 1 2 6 24 120 ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.

4

What is quantum control?

Quantum computation seen as an effect:

• Non-deterministic: True + False.
• Probabilistic: 1

2 True + 1
2 False.

• Quantum: 1√
2 True + (− 1√

2)False.

(not a monad! [Heunen16])

Physics says that apart from measurement, operations must be reversible.

Quantum control:

• Not only superposition of states,
• Superposition of processes.

E.g. if x then P1 else P2, where x is in superposition.

5

https://arxiv.org/pdf/1012.4526v5.pdf

What is quantum control?

Quantum computation seen as an effect:

• Non-deterministic: True + False.
• Probabilistic: 1

2 True + 1
2 False.

• Quantum: 1√
2 True + (− 1√

2)False. (not a monad! [Heunen16])

Physics says that apart from measurement, operations must be reversible.

Quantum control:

• Not only superposition of states,
• Superposition of processes.

E.g. if x then P1 else P2, where x is in superposition.

5

https://arxiv.org/pdf/1012.4526v5.pdf

What is quantum control?

Quantum computation seen as an effect:

• Non-deterministic: True + False.
• Probabilistic: 1

2 True + 1
2 False.

• Quantum: 1√
2 True + (− 1√

2)False. (not a monad! [Heunen16])

Physics says that apart from measurement, operations must be reversible.

Quantum control:

• Not only superposition of states,
• Superposition of processes.

E.g. if x then P1 else P2, where x is in superposition.

5

https://arxiv.org/pdf/1012.4526v5.pdf

What is quantum control?

Quantum computation seen as an effect:

• Non-deterministic: True + False.
• Probabilistic: 1

2 True + 1
2 False.

• Quantum: 1√
2 True + (− 1√

2)False. (not a monad! [Heunen16])

Physics says that apart from measurement, operations must be reversible.

Quantum control:

• Not only superposition of states,
• Superposition of processes.

E.g. if x then P1 else P2, where x is in superposition.

5

https://arxiv.org/pdf/1012.4526v5.pdf

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-comlete!

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

6

https://arxiv.org/pdf/2309.12151.pdf

Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-comlete!

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].

6

https://arxiv.org/pdf/2309.12151.pdf

The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.

Dimension 2 for simple examples.

Reversible quantum operations are subunitaries such as:(
1 0
0 1

) (
1 0
0 0

) (
0 0
0 1

)
(

1√
2

1√
2

1√
2 − 1√

2

) (
1√
2 0

1√
2 0

) (
0 1√

2
0 − 1√

2

)
(

0 1
1 0

) (
0 0
1 0

) (
0 1
0 0

)

Arguably, undefined (⊥) in a Hilbert space is the zero vector
(

0
0

)
.

(
0 0
0 0

)
is less defined than

(
1 0
0 0

)
which is less defined than

(
1 0
0 1

)
.

7

The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.

Dimension 2 for simple examples.

Reversible quantum operations are subunitaries such as:(
1 0
0 1

) (
1 0
0 0

) (
0 0
0 1

)
(

1√
2

1√
2

1√
2 − 1√

2

) (
1√
2 0

1√
2 0

) (
0 1√

2
0 − 1√

2

)
(

0 1
1 0

) (
0 0
1 0

) (
0 1
0 0

)

Arguably, undefined (⊥) in a Hilbert space is the zero vector
(

0
0

)
.

(
0 0
0 0

)
is less defined than

(
1 0
0 0

)
which is less defined than

(
1 0
0 1

)
.

7

The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.

Dimension 2 for simple examples.

Reversible quantum operations are subunitaries such as:(
1 0
0 1

) (
1 0
0 0

) (
0 0
0 1

)
(

1√
2

1√
2

1√
2 − 1√

2

) (
1√
2 0

1√
2 0

) (
0 1√

2
0 − 1√

2

)
(

0 1
1 0

) (
0 0
1 0

) (
0 1
0 0

)

Arguably, undefined (⊥) in a Hilbert space is the zero vector
(

0
0

)
.

(
0 0
0 0

)
is less defined than

(
1 0
0 0

)
which is less defined than

(
1 0
0 1

)
.

7

A disappointment

However, this order does not interact well with composition:(
1 0
0 0

)
≤

(
1 0
0 1

)
,

thus
(

1√
2

1√
2

)
◦

(
1 0
0 0

)
◦

(
1√
2

− 1√
2

)
≤

(
1√
2

1√
2

)
◦

(
1√
2

− 1√
2

)
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on contractive maps between Hilbert spaces.

8

A disappointment

However, this order does not interact well with composition:(
1 0
0 0

)
≤

(
1 0
0 1

)
,

thus
(

1√
2

1√
2

)
◦

(
1 0
0 0

)
◦

(
1√
2

− 1√
2

)
≤

(
1√
2

1√
2

)
◦

(
1√
2

− 1√
2

)
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on contractive maps between Hilbert spaces.

8

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n × m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

9

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n × m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

9

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n × m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

9

Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :

N] (N× N) → N] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n × m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.

9

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no trace for (sub)unitaries between infinite dimension Hilbert
spaces.

10

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:

Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no trace for (sub)unitaries between infinite dimension Hilbert
spaces.

10

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no trace for (sub)unitaries between infinite dimension Hilbert
spaces.

10

The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no trace for (sub)unitaries between infinite dimension Hilbert
spaces.

10

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion. To be continued...

Thank you!

11

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion. To be continued...

Thank you!

11

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion. To be continued...

Thank you!

11

Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion. To be continued...

Thank you!

11

