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Programming languages

de f f a c t (n ) :
i f n == 0 :

re turn (1 )
e l s e :

r e turn (n∗ f a c t (n−1))
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Programming languages

l e t r e c f a c t (n : i n t ) =
i f n=0 then 1
e l s e n ∗ f a c t (n−1)
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Programming languages

f a c t :
movq $0 , %rax
j e . case_zero
movq %rdi , %rax
pushq %rax
subq $1 , %r d i
c a l l f a c t
popq %rbx
multq %rbx , %rax
jmp . e l s e

. case_zero :
movq $1 , %rax

. e l s e :
r e t
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Programming languages

λm.λg.(λx.g(xx))(λx.g(xx))(λp.λa.λb.pab)
(λn.n(λx.(λa.λb.b))(λa.λb.a))(λf.λx.fx)
(m(λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λx.x)))
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Semantics

Syntax: terms t.

Operational semantics: t → t′.

Interpreted as a mathematical object: JtK.
Wish: Relation between an operational view and a denotational view:

t ' t′ iff JtK = Jt′K .
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Domain theory (for babies)

N⊥
def
= N ∪ {⊥} is a partial-ordered set with nice properties.

⊥ means undefined.

0 1 2 3 4 · · ·

⊥

The set [D → D′] of monotone functions also has nice properties.

How do we use it?
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Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.

Write ⊥ : N⊥ → N⊥ the constant function with output ⊥.
⊥ : N⊥ → N⊥ is:

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

The interpretation of the factorial is then the limit of (Fn(⊥))n.

A notion of limit linked to the order is necessary.
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Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
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Interpretation of recursion

Define F : [[N⊥ → N⊥] → [N⊥ → N⊥]] as:

F(g)(n) =
{

1 if n = 0,
n × g(n − 1) else.
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What is quantum control?

Quantum computation seen as an effect:

• Non-deterministic: True + False.
• Probabilistic: 1

2 True + 1
2 False.

• Quantum: 1√
2 True + (− 1√

2 )False.

(not a monad! [Heunen16])

Physics says that apart from measurement, operations must be reversible.

Quantum control:

• Not only superposition of states,
• Superposition of processes.

E.g. if x then P1 else P2, where x is in superposition.

5
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Quick stop: Recursion in Classical Reversibility

Suppose we have a syntax with:

• Only reversible functions,
• Inductive types,
• A fixpoint operator,
• A CbV operational semantics.

It is Turing-comlete!

Sound and adequate denotational semantics in partial injective functions.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixpoints.

(The category of partial injective functions between sets is enriched in pointed dcpos.)

Read about it: [CLV23].
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The Quantum Case

A unitary operator f is such that the inverse of f is its adjoint.

Dimension 2 for simple examples.

Reversible quantum operations are subunitaries such as:(
1 0
0 1

) (
1 0
0 0

) (
0 0
0 1

)
(

1√
2

1√
2

1√
2 − 1√

2

) (
1√
2 0

1√
2 0

) (
0 1√

2
0 − 1√

2

)
(

0 1
1 0

) (
0 0
1 0

) (
0 1
0 0

)

Arguably, undefined (⊥) in a Hilbert space is the zero vector
(

0
0

)
.

(
0 0
0 0

)
is less defined than

(
1 0
0 0

)
which is less defined than

(
1 0
0 1

)
.
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A disappointment

However, this order does not interact well with composition:(
1 0
0 0

)
≤

(
1 0
0 1

)
,

thus
(

1√
2

1√
2

)
◦

(
1 0
0 0

)
◦

(
1√
2

− 1√
2

)
≤

(
1√
2

1√
2

)
◦

(
1√
2

− 1√
2

)
,

i.e. 1/2 ≤ 0.

Theorem (No go theorem)
There is no such order on contractive maps between Hilbert spaces.
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Recursion through a Trace

We start from:
A B

U U
f

The recurring example: g :


N ] (N× N) → N ] (N× N)
left n 7→ right (n, 1)
right (n + 1,m) 7→ right (n, n × m)

right (0,m) 7→ left m

The trace is: TrA,B
U (f) =

A B

U U
f

And TrN,NN⊎N(g)(n) = n!.
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The Quantum Case

Given
A B

U U
f

The canonical trace formula is:

Tr(f ) = fAB +
∑

n
fUBf n

UUfAU

This is a trace for unitaries between finite dimension Hilbert space.

However:
Lemma (Towards no go)
The canonical trace on infinite dimension Hilbert spaces is not a trace.

My take:
Conjecture: No go
There is no trace for (sub)unitaries between infinite dimension Hilbert
spaces.
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Until we meet again

Is quantum recursion not possible?

If you ask people in the community:

• Classical recursion allows non termination.
• “Non-terminating quantum-controlled program do not make sense.”
• But no mathematical account of this point yet.

Terminaison needs to be ensured!

A technique called guarded recursion. To be continued...

Thank you!
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