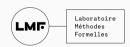
Semantics for a Turing-complete Reversible Programming Language with Inductive Types

Kostia CHARDONNET¹, Louis LEMONNIER² and Benoît VALIRON³

- 1 University of Bologna \longrightarrow Inria Nancy
- 2 LMF, Université Paris-Saclay \longrightarrow University of Edinburgh
- ³ CentraleSupélec, LMF, Université Paris-Saclay



FSCD'24. 12th July 2024

Comes from Ancient Greek, to provide a meaning.

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution $t \rightarrow t'$.

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution $t \rightarrow t'$.

For example,
$$(\lambda x.x+2)3 \rightarrow$$

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution $t \rightarrow t'$.

For example,
$$(\lambda x.x+2)3 \rightarrow 3+2 \rightarrow$$

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution $t \rightarrow t'$.

For example,
$$(\lambda x.x + 2)3 \rightarrow 3 + 2 \rightarrow 5$$
.

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution $t \rightarrow t'$.

For example,
$$(\lambda x.x + 2)3 \rightarrow 3 + 2 \rightarrow 5$$
.

Denotational semantics: mathematical function [t].

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution $t \rightarrow t'$.

For example,
$$(\lambda x.x + 2)3 \rightarrow 3 + 2 \rightarrow 5$$
.

Denotational semantics: mathematical function [t].

Strong enough if relation between operational and denotational:

$$t \simeq t'$$
 iff $\llbracket t
rbracket = \llbracket t'
rbracket$.

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution $t \rightarrow t'$.

For example,
$$(\lambda x.x + 2)3 \rightarrow 3 + 2 \rightarrow 5$$
.

Denotational semantics: mathematical function [t].

Strong enough if relation between operational and denotational:

$$t \simeq t'$$
 iff $\llbracket t \rrbracket = \llbracket t' \rrbracket$.

- Prove that the language does what it is supposed to do,
- Compile the language and perform optimisations safely,
- Inform on which features can be added to the language.

Reversible Programming

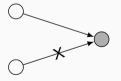
Originally –

- Landauer and Bennett, 1961: Reversible Computation and Energy Dissipation.
- Programs are reversible: for a program t, there is t^{-1} such that t; $t^{-1} = skip$.
- Applications to quantum computing (we can chat about this later).

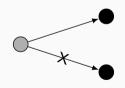
——— What we do —————

- Reversibility, but not totality.
- Improve the language through the model.
- Soundness and adequacy.

Backward determinism



Forward determinism



[Kaarsgaard&Rennela21]

 ${\tt Category\ theory\ around\ reversibility\ is\ well\ studied\ [Axelsen\&Kaarsgaard16]}.$

Domain and partiality

Partial inverse

Union of morphisms

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].

Domain and partiality Restriction category: $f \mapsto \bar{f}$.

Partial inverse

Union of morphisms

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].

- Domain and partiality Restriction category: $f \mapsto \bar{f}$.
 - $f\circ \bar{f}=f,\ \bar{f}\circ \overline{g}=\overline{g}\circ \bar{f},\ \overline{f\circ \overline{g}}=\bar{f}\circ \overline{g},\ \overline{h}\circ f=f\circ \overline{h\circ f}.$

Partial inverse

Union of morphisms

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].

Domain and partiality Restriction category: $f \mapsto \overline{f}$. $f \circ \overline{f} = f, \quad \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \quad \overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}, \quad \overline{h} \circ f = f \circ \overline{h} \circ \overline{f}.$ $h : \mathring{g} \otimes \mathring{g} \qquad \overline{h} : \mathring{g} \to \mathring{g}$

Partial inverse

Union of morphisms

 ${\tt Category\ theory\ around\ reversibility\ is\ well\ studied\ [Axelsen\&Kaarsgaard16]}.$

Domain and partiality Restriction category: $f \mapsto \bar{f}$.

$$f \circ \overline{f} = f, \quad \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \quad \overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}, \quad \overline{h} \circ f = f \circ \overline{h \circ f}.$$

$$h : \mathring{f} \circ \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \quad \overline{h} \circ \mathring{f} \circ \overline{g} \circ \overline{f} \circ \overline{g} \circ \overline{f} \circ \overline{g}.$$

Partial inverse Inverse category: $f \mapsto f^{\circ}$. $f \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{F}^{\circ}$.

Union of morphisms

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].

Domain and partiality Restriction category: $f \mapsto \bar{f}$.

$$f \circ \overline{f} = f, \quad \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \quad \overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}, \quad \overline{h} \circ f = f \circ \overline{h \circ f}.$$

$$h: \stackrel{\partial}{b} \searrow \stackrel{\partial}{b} \qquad \overline{h}: \stackrel{\partial}{b} \longrightarrow \stackrel{\partial}{b}$$

Partial inverse linear larger Partial inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$.

Union of morphisms

 ${\tt Category\ theory\ around\ reversibility\ is\ well\ studied\ [Axelsen\&Kaarsgaard16]}.$

Domain and partiality Restriction category: $f \mapsto \bar{f}$.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$.

$$h: \stackrel{\partial}{b} \searrow \stackrel{\partial}{b} \qquad \overline{h}: \stackrel{\partial}{b} \longrightarrow \stackrel{\partial}{b}$$

Partial inverse linear linear Partial inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$.

Union of morphisms Join: $\bigvee_{s \in S} s$.

Category theory around reversibility is well studied [Axelsen & Kaarsgaard 16].

Domain and partiality Restriction category: $f \mapsto \bar{f}$.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$.

$$h: \stackrel{a}{b} \searrow \stackrel{a}{b} \stackrel{a}{b} \qquad \overline{h}: \stackrel{a}{b} \stackrel{\rightarrow}{\rightarrow} \stackrel{a}{b} \stackrel{a}{c}$$

Partial inverse

Inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$.

Union of morphisms

Join: $\bigvee s$.

$$f \circ \left(\bigvee_{s \in S} s\right) = \bigvee_{s \in S} fs, \quad \left(\bigvee_{s \in S} s\right) \circ g = \bigvee_{s \in S} sg.$$

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].

Domain and partiality Restriction category: $f \mapsto \bar{f}$.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$.

$$h: \stackrel{a}{b} \stackrel{\searrow}{\searrow} \stackrel{a}{b} \stackrel{A}{c} \qquad \overline{h}: \stackrel{a}{b} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{a}{b} \stackrel{A}{c}$$

Partial inverse linear linear Partial inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$.

Union of morphisms Join: V

$$f \circ \left(\bigvee_{s \in S} s\right) = \bigvee_{s \in S} fs, \quad \left(\bigvee_{s \in S} s\right) \circ g = \bigvee_{s \in S} sg.$$

Order
$$f \leq g$$
 if $g\bar{f} = f$

Gives a dcpo structure to homsets.

——— Cartesian closed category ——

——— Cartesian closed category ——

 $\bullet \quad \text{Cartesian product} \ \times.$

——— Cartesian closed category ——

- Cartesian product ×.
 - Type $A \times B$.

———— Cartesian closed category ———

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - lack Constructor $\langle t_1, t_2 \rangle$.

— Cartesian closed category ———

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .

- Cartesian closed category ——

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- $\bullet \ \ \mathsf{Right\ adjoint\ to\ the\ tensor} \to.$
 - ♦ Type $A \rightarrow B$.

Cartesian closed category ——

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - lack Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - ♦ Type $A \rightarrow B$.
 - lacktriangle Constructor $\lambda x.t.$

———— Cartesian closed category ————— Inverse category —————

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - ♦ Type $A \rightarrow B$.
 - ♦ Constructor $\lambda x.t$.

———— Cartesian closed category ————— Inverse category —————

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - lack Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - ♦ Type $A \rightarrow B$.
 - lacktriangle Constructor $\lambda x.t.$

• Not cartesian, but monoidal tensor.

——— Cartesian closed category ———— Inverse category —————

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - ♦ Type $A \rightarrow B$.
 - lacktriangle Constructor $\lambda x.t.$

- Not cartesian, but monoidal tensor.
 - ♦ Type $A \otimes B$.

—— Cartesian closed category ———— Inverse category —————

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - lack Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - ♦ Type $A \rightarrow B$.
 - lacktriangle Constructor $\lambda x.t.$

- Not cartesian, but monoidal tensor.
 - ♦ Type $A \otimes B$.
 - ♦ Linear type system.

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - ♦ Type $A \rightarrow B$.
 - lacktriangle Constructor $\lambda x.t.$

- Not cartesian, but monoidal tensor.
 - ♦ Type $A \otimes B$.
 - Linear type system.
- Not monoidal closed.

– Cartesian closed category —— —— Inverse category –

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - lack Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - ♦ Type $A \rightarrow B$.
 - lacktriangle Constructor $\lambda x.t.$

- Not cartesian, but monoidal tensor.
 - ♦ Type $A \otimes B$.
 - ♦ Linear type system.
- Not monoidal closed.
 - ♦ No ground function type.

- Cartesian closed category — — — Inverse category -

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - lack Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - ♦ Type $A \rightarrow B$.
 - lacktriangle Constructor $\lambda x.t.$

- Not cartesian, but monoidal tensor.
 - ♦ Type $A \otimes B$.
 - ♦ Linear type system.
- Not monoidal closed.
 - ♦ No ground function type.
 - ♦ Is there a way to form functions?

Cartesian closed category — Inverse category –

inverse category ————

- Cartesian product ×.
 - ♦ Type $A \times B$.
 - lack Constructor $\langle t_1, t_2 \rangle$.
- Right adjoint to the tensor \rightarrow .
 - ♦ Type $A \rightarrow B$.
 - lacktriangle Constructor $\lambda x.t.$

- Not cartesian, but monoidal tensor.
 - ♦ Type $A \otimes B$.
 - ♦ Linear type system.
- Not monoidal closed.
 - ♦ No ground function type.
 - ♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

Our new functions

We can **cheat** with our partial inverse!

Our new functions

We can cheat with our partial inverse!

We can cheat with our partial inverse!

What do we do with this?

5

We can cheat with our partial inverse!

What do we do with this?

Given
$$\Delta \vdash t: A$$
 $\Delta \vdash t': B$

We form a function $t \mapsto t' : A \leftrightarrow B$, Whose semantics is

We can cheat with our partial inverse!

What do we do with this?

Given
$$\Delta \vdash t: A$$
 $\Delta \vdash t': B$

We form a function $t \mapsto t' : A \leftrightarrow B$, Whose semantics is

$$\llbracket A \rrbracket \stackrel{\llbracket \Delta \vdash t \ : \ A \rrbracket}{\longrightarrow}^{\circ} \ \llbracket \Delta \rrbracket \stackrel{\llbracket \Delta \vdash t' \ : \ B \rrbracket}{\longrightarrow} \ \llbracket B \rrbracket$$

5

We can cheat with our partial inverse!

$$\begin{bmatrix} \triangle \vdash t \colon A \end{bmatrix} & : & [\![\triangle]\!] \to [\![A]\!] \\ [\![\triangle \vdash t \colon A]\!]^{\circ} & : & [\![A]\!] \to [\![\triangle]\!]$$

What do we do with this?

Given
$$\Delta \vdash t: A$$
 $\Delta \vdash t': B$

We form a function $t \mapsto t' : A \leftrightarrow B$, Whose semantics is

$$\llbracket A \rrbracket \xrightarrow{\llbracket \Delta \vdash t \ : \ A \rrbracket}^{\circ} \llbracket \Delta \rrbracket \xrightarrow{\llbracket \Delta \vdash t' \ : \ B \rrbracket} \llbracket B \rrbracket$$

This is a reversible function! We have $(t \mapsto t')^{-1} = t' \mapsto t$, whose semantics is:

We can cheat with our partial inverse!

$$\begin{bmatrix} \triangle \vdash t \colon A \end{bmatrix} \quad : \quad [\![\triangle]\!] \to [\![A]\!] \\ [\![\triangle \vdash t \colon A]\!]^{\circ} \quad : \quad [\![A]\!] \to [\![\triangle]\!]$$

What do we do with this?

Given
$$\Delta \vdash t: A \qquad \Delta \vdash t': B$$

We form a function $t \mapsto t' : A \leftrightarrow B$, Whose semantics is

$$\llbracket A \rrbracket \xrightarrow{\llbracket \Delta \vdash t \ : \ A \rrbracket}^{\circ} \llbracket \Delta \rrbracket \xrightarrow{\llbracket \Delta \vdash t' \ : \ B \rrbracket} \llbracket B \rrbracket$$

This is a reversible function! We have $(t \mapsto t')^{-1} = t' \mapsto t$, whose semantics is:

$$\llbracket B \rrbracket \overset{\llbracket \Delta \vdash t' \colon B \rrbracket^{\circ}}{\longrightarrow} \llbracket \Delta \rrbracket \overset{\llbracket \Delta \vdash t \ \colon A \rrbracket}{\longrightarrow} \llbracket A \rrbracket$$

5

With a sum type \oplus :

$$\frac{\Delta \vdash t \colon A}{\Delta \vdash \operatorname{inj}_{l} t \colon A \oplus B} \qquad \frac{\Delta \vdash t \colon B}{\Delta \vdash \operatorname{inj}_{r} t \colon A \oplus B}$$

With a sum type \oplus :

$$\frac{\Delta \vdash t \colon A}{\Delta \vdash \operatorname{inj}_{t} t \colon A \oplus B} \qquad \frac{\Delta \vdash t \colon B}{\Delta \vdash \operatorname{inj}_{r} t \colon A \oplus B}$$

We introduce orthogonality:

With a sum type \oplus :

$$\frac{\Delta \vdash t \colon A}{\Delta \vdash \operatorname{inj}_{l} t \colon A \oplus B} \qquad \frac{\Delta \vdash t \colon B}{\Delta \vdash \operatorname{inj}_{r} t \colon A \oplus B}$$

We introduce orthogonality:

$$\frac{t_1 \perp t_2}{\operatorname{inj}_{l} t_1 \perp \operatorname{inj}_{l} t_2} \qquad \frac{t_1 \perp t_2}{C[t_1] \perp C[t_2]}$$

With a sum type \oplus :

$$\frac{\Delta \vdash t \colon A}{\Delta \vdash \operatorname{inj}_{l} t \colon A \oplus B} \qquad \frac{\Delta \vdash t \colon B}{\Delta \vdash \operatorname{inj}_{r} t \colon A \oplus B}$$

We introduce orthogonality:

$$\frac{t_1 \perp t_2}{\operatorname{inj}_t t_1 \perp \operatorname{inj}_t t_2} \qquad \frac{t_1 \perp t_2}{C[t_1] \perp C[t_2]}$$

Our functions are then:

$$\left\{\begin{array}{ccc} t_1 & \mapsto & t_1' \\ t_2 & \mapsto & t_2' \\ & \vdots \\ t_m & \mapsto & t_m' \end{array}\right\} : A \leftrightarrow B$$

whenever $\Delta_i \vdash t_i$: A and $t_j \perp t_k$, $\Delta_i \vdash t_i'$: B and $t_j' \perp t_k'$.

$$\left\{\begin{array}{ccc} \operatorname{inj}_{I} x & \mapsto & \operatorname{inj}_{I} x \\ \operatorname{inj}_{I} y & \mapsto & \operatorname{inj}_{I} y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

$$\left\{\begin{array}{ccc} \operatorname{inj}_{I} x & \mapsto & \operatorname{inj}_{I} x \\ \operatorname{inj}_{I} y & \mapsto & \operatorname{inj}_{I} y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

Can be seen as:

- Partial morphisms joined together.
- With compatible domains.
- Whose inverse have compatible domains.

Operational semantics:

$$\left\{\begin{array}{ccc} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{l} y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

Can be seen as:

- Partial morphisms joined together.
- With compatible domains.
- Whose inverse have compatible domains.

Operational semantics:

$$\left\{\begin{array}{ccc} \operatorname{inj}_{I} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} x & \mapsto & \operatorname{inj}_{I} x \end{array}\right\} \operatorname{inj}_{r} v \rightarrow$$

7

$$\left\{\begin{array}{ccc} \operatorname{inj}_{I} x & \mapsto & \operatorname{inj}_{I} x \\ \operatorname{inj}_{I} y & \mapsto & \operatorname{inj}_{I} y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

Can be seen as:

- Partial morphisms joined together.
- With compatible domains.
- Whose inverse have compatible domains.

Operational semantics:

$$\left\{\begin{array}{ccc} \operatorname{inj}_{l}x & \mapsto & \operatorname{inj}_{r}x \\ \operatorname{inj}_{r}x & \mapsto & \operatorname{inj}_{l}x \end{array}\right\} \ \operatorname{inj}_{r}v \to (\operatorname{inj}_{l}x)[v/x] \to$$

$$\left\{\begin{array}{ccc} \operatorname{inj}_{I} x & \mapsto & \operatorname{inj}_{I} x \\ \operatorname{inj}_{I} y & \mapsto & \operatorname{inj}_{I} y \end{array}\right\} : A \oplus B \leftrightarrow B \oplus A$$

Can be seen as:

- Partial morphisms joined together.
- With compatible domains.
- Whose inverse have compatible domains.

Operational semantics:

$$\left\{\begin{array}{ccc} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} x & \mapsto & \operatorname{inj}_{l} x \end{array}\right\} \ \operatorname{inj}_{r} v \to (\operatorname{inj}_{l} x)[v/x] \to \operatorname{inj}_{l} v$$

Our category ${\bf C}$ such that:

Our category **C** such that:

- Inverse category.
 - lacktriangle Partial inverse $(-)^{\circ}$.

Our category **C** such that:

- Inverse category.
 - \blacklozenge Partial inverse $(-)^{\circ}$.
 - ♦ Takes care of pattern-matching.

Our category ${\bf C}$ such that:

- Inverse category.
 - lacktriangle Partial inverse $(-)^{\circ}$.
 - ♦ Takes care of pattern-matching.
- Rig structure.
 - lack Usual monoidal product \otimes .

Our category ${\bf C}$ such that:

- Inverse category.
 - lacktriangle Partial inverse $(-)^{\circ}$.
 - ♦ Takes care of pattern-matching.
- Rig structure.
 - ♦ Usual monoidal product ⊗.
 - ♦ Disjointness tensor ⊕ with jointly monic injections.

Our category **C** such that:

- Inverse category.
 - lacktriangle Partial inverse $(-)^{\circ}$.
 - ♦ Takes care of pattern-matching.
- Rig structure.
 - ♦ Usual monoidal product ⊗.
 - ♦ Disjointness tensor ⊕ with jointly monic injections.
- Join structure.
 - ♦ Compatible morphisms on their domain and codomain admit a join ∨.

Our category **C** such that:

- Inverse category.
 - lacktriangle Partial inverse $(-)^{\circ}$.
 - ♦ Takes care of pattern-matching.
- Rig structure.
 - ♦ Usual monoidal product ⊗.
 - ♦ Disjointness tensor ⊕ with jointly monic injections.
- Join structure.
 - ♦ Compatible morphisms on their domain and codomain admit a join ∨.
 - ♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions Plnj.

Our category **C** such that:

- Inverse category.
 - \blacklozenge Partial inverse $(-)^{\circ}$.
 - ♦ Takes care of pattern-matching.
- Rig structure.
 - ♦ Usual monoidal product ⊗.
 - ♦ Disjointness tensor ⊕ with jointly monic injections.
- Join structure.
 - ♦ Compatible morphisms on their domain and codomain admit a join ∨.
 - ♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions Plnj.

$$\left[\left\{ \begin{array}{ccc} \operatorname{inj}_{l} x & \mapsto & \operatorname{inj}_{r} x \\ \operatorname{inj}_{r} y & \mapsto & \operatorname{inj}_{l} y \end{array} \right\} : A \oplus B \leftrightarrow B \oplus A \right] = \left[\left[\operatorname{inj}_{l} x \mapsto \operatorname{inj}_{r} x \right] \vee \left[\left[\operatorname{inj}_{r} y \mapsto \operatorname{inj}_{l} y \right] \right]$$

How much can one express with this language?

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow \mathsf{Our}\ \mathsf{category}\ \boldsymbol{C}$

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \longrightarrow Our category ${\bf C}$ is parameterised ${\bf DCPO}\textsubscript{-algebraically}$ $\omega\textsubscript{-compact}.$

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \longrightarrow Our category **C** can model infinite data types $\mu X.A$.

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \longrightarrow Our category **C** can model infinite data types $\mu X.A$.

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X$$

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \longrightarrow Our category **C** can model infinite data types $\mu X.A$.

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X \qquad [A] = \mu X.1 \oplus (A \otimes X)$$

And we want to parse those infinite types:

9

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \longrightarrow Our category **C** can model infinite data types $\mu X.A.$

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X \qquad [A] = \mu X.1 \oplus (A \otimes X)$$

And we want to parse those infinite types:

$$\operatorname{map}(\omega) = \operatorname{fix} f. \left\{ \begin{array}{l} [\] & \mapsto [\] \\ h :: t \mapsto (\omega \ h) :: (f \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

9

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \longrightarrow Our category **C** can model infinite data types $\mu X.A.$

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X \qquad [A] = \mu X.1 \oplus (A \otimes X)$$

And we want to parse those infinite types:

$$\operatorname{map}(\omega) = \operatorname{fix} f. \left\{ \begin{array}{l} [\] & \mapsto [\] \\ h :: t \mapsto (\omega \ h) :: (f \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Works in the category thanks to **DCPO**-enrichment.

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 \longrightarrow Our category **C** can model infinite data types $\mu X.A.$

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X \qquad [A] = \mu X.1 \oplus (A \otimes X)$$

And we want to parse those infinite types:

$$map(\omega) = \mathbf{fix} \ \mathbf{f} . \ \left\{ \begin{array}{l} [\] & \mapsto [\] \\ h :: t \mapsto (\omega \ h) :: (\mathbf{f} \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Works in the category thanks to **DCPO**-enrichment. $fix(F) = \sup_n \{F^n(\bot)\}$

9

Summary of the language (mandatory slide)

```
(Ground types) A, B ::= I | A \oplus B | A \otimes B |
(Function types) T_1, T_2 ::= A \leftrightarrow B
(Unit term) t, t_1, t_2 := *
(Pairing)
                                        t_1 \otimes t_2
(Injections)
                                        | inj_t t | inj_t t
(Function application)
                                     |\omega|
                  \omega ::= \{t_1 \mapsto t'_1 \mid \cdots \mid t_m \mapsto t'_m\}
(Abstraction)
```

Summary of the language (mandatory slide)

```
(Ground types) A, B ::= I | A \oplus B | A \otimes B | X | \mu X.A
(Function types) T_1, T_2 ::= A \leftrightarrow B
(Unit term)
                           t, t_1, t_2 ::= *
(Pairing)
                                             t_1 \otimes t_2
(Injections)
                                             | inj_t t | inj_t t
(Function application)
                                            \omega t
(Inductive terms)
                                             fold t
                       \omega \qquad ::= \{t_1 \mapsto t'_1 \mid \cdots \mid t_m \mapsto t'_m\}
(Abstraction)
(Fixed points)
                                             | f | fix f.\omega
```

Summary of the language (mandatory slide)

```
(Ground types) A, B ::= I | A \oplus B | A \otimes B | X | \mu X.A
(Function types) T_1, T_2 ::= A \leftrightarrow B \mid T_1 \rightarrow T_2
(Unit term)
                       t, t_1, t_2 ::= *
(Pairing)
                                                t_1 \otimes t_2
(Injections)
                                                |\inf_{t} t| \inf_{t} t
(Function application)
                                               \omega t
(Inductive terms)
                                                fold t
                      \omega \qquad ::= \{t_1 \mapsto t'_1 \mid \cdots \mid t_m \mapsto t'_m\}
(Abstraction)
(Fixed points)
                                                | f | fix f.\omega
(Higher abstractions)
                                                |\lambda f.\omega| \omega_2\omega_1
```

 λ -calculus thanks to **DCPO**-enrichment.

Expressivity

The language is Turing complete! (even if it is reversible)

Expressivity

The language is Turing complete! (even if it is reversible)

← ask this guy (Kostia Chardonnet, currently works in Nancy)

The language is Turing complete! (even if it is reversible)

 \longleftarrow ask this guy (Kostia Chardonnet, currently works in Nancy)

– Roughly -

- Reversible Turing Machines [Axelsen&Glück11].
 - ♦ Simulate your favourite Turing machines.
- Encode RTMs in our language:
 - lack Alphabet & states mapped to $I \oplus \cdots \oplus I$.
 - ♦ Tape as lists.
 - lacktriangle Functions simulating one-step transition of δ .
 - ♦ Iterate until final state.

_____ Usual _____

fix f^T . f^T : T

fix $f^{A \leftrightarrow B}$. $\{x \mapsto f x\}$: $A \leftrightarrow B$

— Usual ———

fix
$$f^T$$
 . f^T : T

Less usual ———

fix
$$f^{A \leftrightarrow B}$$
. $\{x \mapsto f x\}$: $A \leftrightarrow B$

(fix
$$f \cdot \{x \mapsto fx\}$$
) $v \rightarrow \{x \mapsto (\text{fix } f \cdot \{x \mapsto fx\}) x\} v$
 $\rightarrow ((\text{fix } f \cdot \{x \mapsto fx\}) x)[v/x]$
 $= (\text{fix } f \cdot \{x \mapsto fx\}) v$

_____ Usual _____

fix
$$f^T$$
 . f^T : T

Less usual ———

fix
$$f^{A \leftrightarrow B}$$
 . $\{x \mapsto f x\}$: $A \leftrightarrow B$

$$(\operatorname{fix} f. \{x \mapsto fx\}) \ v \to \{x \mapsto (\operatorname{fix} f. \{x \mapsto fx\}) \ x\} \ v$$
$$\to ((\operatorname{fix} f. \{x \mapsto fx\}) \ x)[v/x]$$
$$= (\operatorname{fix} f. \{x \mapsto fx\}) \ v$$

New challenger ———

— Usual ——

fix
$$f^T$$
 . f^T : T

Less usual ——

fix
$$f^{A \leftrightarrow B}$$
. $\{x \mapsto f x\}$: $A \leftrightarrow B$

$$(\operatorname{fix} f. \{x \mapsto fx\}) \ v \to \{x \mapsto (\operatorname{fix} f. \{x \mapsto fx\}) \ x\} \ v \\ \to ((\operatorname{fix} f. \{x \mapsto fx\}) \ x)[v/x] \\ = (\operatorname{fix} f. \{x \mapsto fx\}) \ v$$

New challenger –

$$\lambda g^{A_1 \leftrightarrow B_1}$$
 fix $f^{A_2 \leftrightarrow B_2}$ $\left\{ \begin{array}{ccc} \operatorname{inj}_f x & \mapsto & \operatorname{inj}_f (g x) \\ \operatorname{inj}_r y & \mapsto & \operatorname{inj}_r (f y) \end{array} \right\} : A_1 \oplus A_2 \leftrightarrow B_1 \oplus B_2$

• Typed and reversible programming language.

- Typed and reversible programming language.
- Categorical model: join inverse rig **DCPO**-categories.

- Typed and reversible programming language.
- Categorical model: join inverse rig **DCPO**-categories.
- Turing completeness!

- Typed and reversible programming language.
- Categorical model: join inverse rig DCPO-categories.
- Turing completeness!
- Soundness. if $t \to t'$, then $[\![t]\!] = [\![t']\!]$.

- Typed and reversible programming language.
- Categorical model: join inverse rig DCPO-categories.
- Turing completeness!
- Soundness. if $t \to t'$, then [t] = [t'].
- $\bullet \ \ \mathsf{Adequacy}. \qquad \mathsf{if} \ \llbracket t \rrbracket \neq \bot, \ \mathsf{then} \ t \downarrow .$

- Typed and reversible programming language.
- Categorical model: join inverse rig DCPO-categories.
- Turing completeness!
- Soundness. if $t \to t'$, then [t] = [t'].
- Adequacy. if $[t] \neq \bot$, then $t \downarrow$.
- (Full) completeness. Any computable partial injection is representable.

- Typed and reversible programming language.
- Categorical model: join inverse rig DCPO-categories.
- Turing completeness!
- Soundness. if $t \to t'$, then [t] = [t'].
- Adequacy. if $[t] \neq \bot$, then $t \downarrow$.
- (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have

- Typed and reversible programming language.
- Categorical model: join inverse rig DCPO-categories.
- Turing completeness!
- Soundness. if $t \to t'$, then [t] = [t'].
- Adequacy. if $[t] \neq \bot$, then $t \downarrow$.
- (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions,

- Typed and reversible programming language.
- Categorical model: join inverse rig DCPO-categories.
- Turing completeness!
- Soundness. if $t \to t'$, then [t] = [t'].
- Adequacy. if $[t] \neq \bot$, then $t \downarrow$.
- (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types,

- Typed and reversible programming language.
- Categorical model: join inverse rig DCPO-categories.
- Turing completeness!
- Soundness. if $t \to t'$, then [t] = [t'].
- Adequacy. if $[t] \neq \bot$, then $t \downarrow$.
- (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

- Typed and reversible programming language.
- Categorical model: join inverse rig DCPO-categories.
- Turing completeness!
- Soundness. if $t \to t'$, then [t] = [t'].
- Adequacy. if $\llbracket t \rrbracket \neq \bot$, then $t \downarrow$.
- (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Self promotion:

- Kostia's PhD thesis, https://theses.hal.science/tel-03959403v1
- My PhD thesis, https://theses.hal.science/tel-04625771v1
- Benoît's habilitation, to be defended on 24th September 2024.