
Semantics for a Turing-complete Reversible Programming
Language with Inductive Types

Kostia CHARDONNET1, Louis LEMONNIER2 and Benoît VALIRON3

1 University of Bologna −→ Inria Nancy
2 LMF, Université Paris-Saclay −→ University of Edinburgh
3 CentraleSupélec, LMF, Université Paris-Saclay

FSCD’24. 12th July 2024

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: mathematical function JtK.
Strong enough if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

1

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: mathematical function JtK.
Strong enough if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

1

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→

3 + 2→ 5.

Denotational semantics: mathematical function JtK.
Strong enough if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

1

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→

5.

Denotational semantics: mathematical function JtK.
Strong enough if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

1

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: mathematical function JtK.
Strong enough if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

1

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: mathematical function JtK.

Strong enough if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

1

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: mathematical function JtK.
Strong enough if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .

• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

1

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: mathematical function JtK.
Strong enough if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.

1

Reversible Programming

Originally

• Landauer and Bennett, 1961: Reversible Computation and Energy Dissipation.
• Programs are reversible: for a program t, there is t−1 such that t; t−1 = skip.
• Applications to quantum computing (we can chat about this later).

What we do

• Reversibility, but not totality.
• Improve the language through the model.
• Soundness and adequacy.

Backward determinism Forward determinism

[Kaarsgaard&Rennela21]

2

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].
Domain and partiality

Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

abc
abch :

abc
abch :

Partial inverse

Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
abc

abch◦ :

Union of morphisms

Join:
∨

s∈S
s.

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,

(∨
s∈S

s
)

◦ g =
∨

s∈S
sg.

Order

f ≤ g if ḡf = f
Gives a dcpo structure to homsets.

3

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].
Domain and partiality Restriction category: f 7→ f.

f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.
abc

abch :
abc

abch :

Partial inverse

Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
abc

abch◦ :

Union of morphisms

Join:
∨

s∈S
s.

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,

(∨
s∈S

s
)

◦ g =
∨

s∈S
sg.

Order

f ≤ g if ḡf = f
Gives a dcpo structure to homsets.

3

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].
Domain and partiality Restriction category: f 7→ f.

f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

abc
abch :

abc
abch :

Partial inverse

Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
abc

abch◦ :

Union of morphisms

Join:
∨

s∈S
s.

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,

(∨
s∈S

s
)

◦ g =
∨

s∈S
sg.

Order

f ≤ g if ḡf = f
Gives a dcpo structure to homsets.

3

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].
Domain and partiality Restriction category: f 7→ f.

f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.
abc

abch :
abc

abch :

Partial inverse

Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
abc

abch◦ :

Union of morphisms

Join:
∨

s∈S
s.

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,

(∨
s∈S

s
)

◦ g =
∨

s∈S
sg.

Order

f ≤ g if ḡf = f
Gives a dcpo structure to homsets.

3

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].
Domain and partiality Restriction category: f 7→ f.

f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.
abc

abch :
abc

abch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.

abc
abch◦ :

Union of morphisms

Join:
∨

s∈S
s.

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,

(∨
s∈S

s
)

◦ g =
∨

s∈S
sg.

Order

f ≤ g if ḡf = f
Gives a dcpo structure to homsets.

3

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].
Domain and partiality Restriction category: f 7→ f.

f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.
abc

abch :
abc

abch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
abc

abch◦ :

Union of morphisms

Join:
∨

s∈S
s.

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,

(∨
s∈S

s
)

◦ g =
∨

s∈S
sg.

Order

f ≤ g if ḡf = f
Gives a dcpo structure to homsets.

3

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].
Domain and partiality Restriction category: f 7→ f.

f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.
abc

abch :
abc

abch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
abc

abch◦ :

Union of morphisms Join:
∨

s∈S
s.

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,

(∨
s∈S

s
)

◦ g =
∨

s∈S
sg.

Order

f ≤ g if ḡf = f
Gives a dcpo structure to homsets.

3

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].
Domain and partiality Restriction category: f 7→ f.

f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.
abc

abch :
abc

abch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
abc

abch◦ :

Union of morphisms Join:
∨

s∈S
s.

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,

(∨
s∈S

s
)

◦ g =
∨

s∈S
sg.

Order

f ≤ g if ḡf = f
Gives a dcpo structure to homsets.

3

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaard16].
Domain and partiality Restriction category: f 7→ f.

f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.
abc

abch :
abc

abch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
abc

abch◦ :

Union of morphisms Join:
∨

s∈S
s.

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,

(∨
s∈S

s
)

◦ g =
∨

s∈S
sg.

Order f ≤ g if ḡf = f
Gives a dcpo structure to homsets.

3

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.

♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.

♦ Constructor ⟨t1, t2⟩.
• Right adjoint to the tensor →.

♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.

♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.

♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.

♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.

♦ Linear type system.
• Not monoidal closed.

♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.

♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.

♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

How do you extract syntax from inverse categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Inverse category

• Not cartesian, but monoidal tensor.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is a way to cheat.

4

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K→ JAKJ∆ ` t : AK◦ : JAK→ J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A↔ B, Whose semantics is

JAK J∆⊢t : AK◦

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK◦

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K→ JAKJ∆ ` t : AK◦ : JAK→ J∆K

What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A↔ B, Whose semantics is

JAK J∆⊢t : AK◦

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK◦

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K→ JAKJ∆ ` t : AK◦ : JAK→ J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A↔ B, Whose semantics is

JAK J∆⊢t : AK◦

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK◦

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K→ JAKJ∆ ` t : AK◦ : JAK→ J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A↔ B, Whose semantics is

JAK J∆⊢t : AK◦

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK◦

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K→ JAKJ∆ ` t : AK◦ : JAK→ J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A↔ B, Whose semantics is

JAK J∆⊢t : AK◦

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK◦

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K→ JAKJ∆ ` t : AK◦ : JAK→ J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A↔ B, Whose semantics is

JAK J∆⊢t : AK◦

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK◦

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K→ JAKJ∆ ` t : AK◦ : JAK→ J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A↔ B, Whose semantics is

JAK J∆⊢t : AK◦

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK◦

−→ J∆K J∆⊢t : AK
−→ JAK

5

Together with pattern-matching

With a sum type ⊕:
∆ ` t : A

∆ ` injl t : A⊕ B
∆ ` t : B

∆ ` injr t : A⊕ B

We introduce orthogonality:

injl t1 ⊥ injr t2

t1 ⊥ t2
C[t1] ⊥ C[t2]

Our functions are then: 
t1 7→ t′1
t2 7→ t′2

...
tm 7→ t′m

 : A↔ B

whenever ∆i ` ti : A and tj ⊥ tk, ∆i ` t′i : B and t′j ⊥ t′k.

6

Together with pattern-matching

With a sum type ⊕:
∆ ` t : A

∆ ` injl t : A⊕ B
∆ ` t : B

∆ ` injr t : A⊕ B

We introduce orthogonality:

injl t1 ⊥ injr t2

t1 ⊥ t2
C[t1] ⊥ C[t2]

Our functions are then: 
t1 7→ t′1
t2 7→ t′2

...
tm 7→ t′m

 : A↔ B

whenever ∆i ` ti : A and tj ⊥ tk, ∆i ` t′i : B and t′j ⊥ t′k.

6

Together with pattern-matching

With a sum type ⊕:
∆ ` t : A

∆ ` injl t : A⊕ B
∆ ` t : B

∆ ` injr t : A⊕ B

We introduce orthogonality:

injl t1 ⊥ injr t2

t1 ⊥ t2
C[t1] ⊥ C[t2]

Our functions are then: 
t1 7→ t′1
t2 7→ t′2

...
tm 7→ t′m

 : A↔ B

whenever ∆i ` ti : A and tj ⊥ tk, ∆i ` t′i : B and t′j ⊥ t′k.

6

Together with pattern-matching

With a sum type ⊕:
∆ ` t : A

∆ ` injl t : A⊕ B
∆ ` t : B

∆ ` injr t : A⊕ B

We introduce orthogonality:

injl t1 ⊥ injr t2

t1 ⊥ t2
C[t1] ⊥ C[t2]

Our functions are then: 
t1 7→ t′1
t2 7→ t′2

...
tm 7→ t′m

 : A↔ B

whenever ∆i ` ti : A and tj ⊥ tk, ∆i ` t′i : B and t′j ⊥ t′k.

6

Example and operational semantics

{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

Can be seen as:

• Partial morphisms joined together.
• With compatible domains.
• Whose inverse have compatible domains.

Operational semantics:

{
injl x 7→ injr x
injr x 7→ injl x

}
injr v→ (injl x)[v/x]→ injl v

7

Example and operational semantics

{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

Can be seen as:

• Partial morphisms joined together.
• With compatible domains.
• Whose inverse have compatible domains.

Operational semantics:

{
injl x 7→ injr x
injr x 7→ injl x

}
injr v→ (injl x)[v/x]→ injl v

7

Example and operational semantics

{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

Can be seen as:

• Partial morphisms joined together.
• With compatible domains.
• Whose inverse have compatible domains.

Operational semantics:

{
injl x 7→ injr x
injr x 7→ injl x

}
injr v→

(injl x)[v/x]→ injl v

7

Example and operational semantics

{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

Can be seen as:

• Partial morphisms joined together.
• With compatible domains.
• Whose inverse have compatible domains.

Operational semantics:

{
injl x 7→ injr x
injr x 7→ injl x

}
injr v→ (injl x)[v/x]→

injl v

7

Example and operational semantics

{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

Can be seen as:

• Partial morphisms joined together.
• With compatible domains.
• Whose inverse have compatible domains.

Operational semantics:

{
injl x 7→ injr x
injr x 7→ injl x

}
injr v→ (injl x)[v/x]→ injl v

7

The mathematical recipe /"ôEs.I.pi/

Our category C such that:

• Inverse category.
♦ Partial inverse (−)◦.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly monic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join ∨.
♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions PInj.

t{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

|
= Jinjl x 7→ injr xK ∨ Jinjr y 7→ injl yK

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:
• Inverse category.

♦ Partial inverse (−)◦.

♦ Takes care of pattern-matching.
• Rig structure.

♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly monic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join ∨.
♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions PInj.

t{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

|
= Jinjl x 7→ injr xK ∨ Jinjr y 7→ injl yK

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:
• Inverse category.

♦ Partial inverse (−)◦.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly monic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join ∨.
♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions PInj.

t{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

|
= Jinjl x 7→ injr xK ∨ Jinjr y 7→ injl yK

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:
• Inverse category.

♦ Partial inverse (−)◦.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.

♦ Disjointness tensor ⊕ with jointly monic injections.
• Join structure.

♦ Compatible morphisms on their domain and codomain admit a join ∨.
♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions PInj.

t{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

|
= Jinjl x 7→ injr xK ∨ Jinjr y 7→ injl yK

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:
• Inverse category.

♦ Partial inverse (−)◦.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly monic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join ∨.
♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions PInj.

t{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

|
= Jinjl x 7→ injr xK ∨ Jinjr y 7→ injl yK

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:
• Inverse category.

♦ Partial inverse (−)◦.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly monic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join ∨.

♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions PInj.

t{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

|
= Jinjl x 7→ injr xK ∨ Jinjr y 7→ injl yK

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:
• Inverse category.

♦ Partial inverse (−)◦.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly monic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join ∨.
♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions PInj.

t{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

|
= Jinjl x 7→ injr xK ∨ Jinjr y 7→ injl yK

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:
• Inverse category.

♦ Partial inverse (−)◦.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly monic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join ∨.
♦ Provides a nice structure on morphisms.

Example: Sets and partial injective functions PInj.

t{
injl x 7→ injr x
injr y 7→ injl y

}
: A⊕ B↔ B⊕ A

|
= Jinjl x 7→ injr xK ∨ Jinjr y 7→ injl yK

8

How much can one express with this language?

8

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ Our category C

Examples:
Nat = µX.1⊕ X

[A] = µX.1⊕ (A⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A]↔ [B]

Works in the category thanks to DCPO-enrichment.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ Our category C is parameterised DCPO-algebraically ω-compact.

Examples:
Nat = µX.1⊕ X

[A] = µX.1⊕ (A⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A]↔ [B]

Works in the category thanks to DCPO-enrichment.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ Our category C can model infinite data types µX.A.

Examples:
Nat = µX.1⊕ X

[A] = µX.1⊕ (A⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A]↔ [B]

Works in the category thanks to DCPO-enrichment.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ Our category C can model infinite data types µX.A.

Examples:
Nat = µX.1⊕ X

[A] = µX.1⊕ (A⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A]↔ [B]

Works in the category thanks to DCPO-enrichment.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ Our category C can model infinite data types µX.A.

Examples:
Nat = µX.1⊕ X [A] = µX.1⊕ (A⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A]↔ [B]

Works in the category thanks to DCPO-enrichment.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ Our category C can model infinite data types µX.A.

Examples:
Nat = µX.1⊕ X [A] = µX.1⊕ (A⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A]↔ [B]

Works in the category thanks to DCPO-enrichment.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ Our category C can model infinite data types µX.A.

Examples:
Nat = µX.1⊕ X [A] = µX.1⊕ (A⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A]↔ [B]

Works in the category thanks to DCPO-enrichment.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ Our category C can model infinite data types µX.A.

Examples:
Nat = µX.1⊕ X [A] = µX.1⊕ (A⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A]↔ [B]

Works in the category thanks to DCPO-enrichment. fix(F) = supn{Fn(⊥)}

9

Summary of the language (mandatory slide)

(Ground types) A,B ::= I | A⊕ B | A⊗ B |

X | µX.A

(Function types) T1,T2 ::= A↔ B |

T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t

(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}

(Fixed points) | f | fix f.ω
(Higher abstractions) | λf.ω | ω2ω1

λ-calculus thanks to DCPO-enrichment.

10

Summary of the language (mandatory slide)

(Ground types) A,B ::= I | A⊕ B | A⊗ B | X | µX.A
(Function types) T1,T2 ::= A↔ B |

T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t
(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}
(Fixed points) | f | fix f.ω

(Higher abstractions) | λf.ω | ω2ω1

λ-calculus thanks to DCPO-enrichment.

10

Summary of the language (mandatory slide)

(Ground types) A,B ::= I | A⊕ B | A⊗ B | X | µX.A
(Function types) T1,T2 ::= A↔ B | T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t
(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}
(Fixed points) | f | fix f.ω
(Higher abstractions) | λf.ω | ω2ω1

λ-calculus thanks to DCPO-enrichment.
10

Expressivity

The language is Turing complete! (even if it is reversible)

←− ask this guy (Kostia Chardonnet, currently works in Nancy)

Roughly

• Reversible Turing Machines [Axelsen&Glück11].
♦ Simulate your favourite Turing machines.

• Encode RTMs in our language:
♦ Alphabet & states mapped to I ⊕ · · · ⊕ I.
♦ Tape as lists.
♦ Functions simulating one-step transition of δ.
♦ Iterate until final state.

11

Expressivity

The language is Turing complete! (even if it is reversible)
←− ask this guy (Kostia Chardonnet, currently works in Nancy)

Roughly

• Reversible Turing Machines [Axelsen&Glück11].
♦ Simulate your favourite Turing machines.

• Encode RTMs in our language:
♦ Alphabet & states mapped to I ⊕ · · · ⊕ I.
♦ Tape as lists.
♦ Functions simulating one-step transition of δ.
♦ Iterate until final state.

11

Expressivity

The language is Turing complete! (even if it is reversible)
←− ask this guy (Kostia Chardonnet, currently works in Nancy)

Roughly

• Reversible Turing Machines [Axelsen&Glück11].
♦ Simulate your favourite Turing machines.

• Encode RTMs in our language:
♦ Alphabet & states mapped to I ⊕ · · · ⊕ I.
♦ Tape as lists.
♦ Functions simulating one-step transition of δ.
♦ Iterate until final state.

11

A variety of diverging functions

Usual

fix fT . fT : T

Less usual

fix f A↔B . {x 7→ f x} : A↔ B

(fix f . {x 7→ f x}) v → {x 7→ (fix f . {x 7→ f x}) x} v
→ ((fix f . {x 7→ f x}) x)[v/x]
= (fix f . {x 7→ f x}) v

New challenger

λgA1↔B1 . fix f A2↔B2 .

{
injl x 7→ injl (g x)
injr y 7→ injr (f y)

}
: A1 ⊕ A2 ↔ B1 ⊕ B2

12

A variety of diverging functions

Usual

fix fT . fT : T
Less usual

fix f A↔B . {x 7→ f x} : A↔ B

(fix f . {x 7→ f x}) v → {x 7→ (fix f . {x 7→ f x}) x} v
→ ((fix f . {x 7→ f x}) x)[v/x]
= (fix f . {x 7→ f x}) v

New challenger

λgA1↔B1 . fix f A2↔B2 .

{
injl x 7→ injl (g x)
injr y 7→ injr (f y)

}
: A1 ⊕ A2 ↔ B1 ⊕ B2

12

A variety of diverging functions

Usual

fix fT . fT : T
Less usual

fix f A↔B . {x 7→ f x} : A↔ B

(fix f . {x 7→ f x}) v → {x 7→ (fix f . {x 7→ f x}) x} v
→ ((fix f . {x 7→ f x}) x)[v/x]
= (fix f . {x 7→ f x}) v

New challenger

λgA1↔B1 . fix f A2↔B2 .

{
injl x 7→ injl (g x)
injr y 7→ injr (f y)

}
: A1 ⊕ A2 ↔ B1 ⊕ B2

12

A variety of diverging functions

Usual

fix fT . fT : T
Less usual

fix f A↔B . {x 7→ f x} : A↔ B

(fix f . {x 7→ f x}) v → {x 7→ (fix f . {x 7→ f x}) x} v
→ ((fix f . {x 7→ f x}) x)[v/x]
= (fix f . {x 7→ f x}) v

New challenger

λgA1↔B1 . fix f A2↔B2 .

{
injl x 7→ injl (g x)
injr y 7→ injr (f y)

}
: A1 ⊕ A2 ↔ B1 ⊕ B2

12

A variety of diverging functions

Usual

fix fT . fT : T
Less usual

fix f A↔B . {x 7→ f x} : A↔ B

(fix f . {x 7→ f x}) v → {x 7→ (fix f . {x 7→ f x}) x} v
→ ((fix f . {x 7→ f x}) x)[v/x]
= (fix f . {x 7→ f x}) v

New challenger

λgA1↔B1 . fix f A2↔B2 .

{
injl x 7→ injl (g x)
injr y 7→ injr (f y)

}
: A1 ⊕ A2 ↔ B1 ⊕ B2

12

Let’s conclude

• Typed and reversible programming language.

• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.

• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!

• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .

• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .

• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have

functions, inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions,

inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types,

recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

• Typed and reversible programming language.
• Categorical model: join inverse rig DCPO-categories.
• Turing completeness!
• Soundness. if t→ t′, then JtK = Jt′K .
• Adequacy. if JtK 6= ⊥, then t ↓ .
• (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Self promotion:

• Kostia’s PhD thesis, https://theses.hal.science/tel-03959403v1

• My PhD thesis, https://theses.hal.science/tel-04625771v1

• Benoît’s habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

