Semantics for a Turing-complete Reversible Programming

Language with Inductive Types

Kostia CHARDONNET?, Louis LEMONNIER? and Benoit VALIRON®
! University of Bologna — Inria Nancy
2 LMF, Université Paris-Saclay — University of Edinburgh

3 CentraleSupélec, LMF, Université Paris-Saclay

THE UNIVERSITY quDINBURGH Laboratoire
<] Méthod
informatics Eoneties

= FSCD’'24. 12th July 2024

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.

For example, (Ax.x+ 2)3 —

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.

For example, (Ax.x+2)3 -3 +2 —

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.

For example, (Ax.x+2)3 — 3 +2 — 5.

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.
For example, (Ax.x+2)3 — 3 +2 — 5.

Denotational semantics: mathematical function [¢].

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.
For example, (Ax.x+2)3 — 3 +2 — 5.

Denotational semantics: mathematical function [¢].

Strong enough if relation between operational and denotational:

t~ ¢ iff [1] = [¢].

Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.
For example, (Ax.x+2)3 — 3 +2 — 5.

Denotational semantics: mathematical function [¢].

Strong enough if relation between operational and denotational:

t~ ¢ iff [1] = [¢].

= Prove that the language does what it is supposed to do,
= Compile the language and perform optimisations safely,

= Inform on which features can be added to the language.

Reversible Programming

Originally

= Landauer and Bennett, 1961: Reversible Computation and Energy Dissipation.
= Programs are reversible: for a program t, there is t=! such that t;t~! = skip.
= Applications to quantum computing (we can chat about this later).

What we do Backward determinism Forward determinism

= Reversibility, but not totality. O\‘O
= |mprove the language through the model. O//v .

= Soundness and adequacy.

[Kaarsgaard&Rennela21]

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaardi6].

Domain and partiality

Partial inverse

Union of morphisms

Order

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaardi6].

Domain and partiality ~ Restriction category: fi— f.

Partial inverse

Union of morphisms

Order

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaardi6].

Domain and partiality ~ Restriction category: fi— f.
fof=f, fog=gof, fog=fog, hof=fohof

Partial inverse

Union of morphisms

Order

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaardi6].

Domain and partiality ~ Restriction category: fi— f.
=fog, hof=fohof

fof=f, fog=gof,

T3
[gienl] 0q ‘

a2 _
AR .
h:b3b h:

Partial inverse

Union of morphisms

Order

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaardi6].

Domain and partiality ~ Restriction category: fi— f.

fof=f, fog=gof, fog=fog hof=fohof
h:B3h 7:B5B
e h:2—2
Partial inverse Inverse category: f— f°. P of=fand fof =F.

Union of morphisms

Order

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaardi6].

Domain and partiality ~ Restriction category: fi— f.

fof=f, fog=gof, fog=fog hof=fohof
h:B3h 7:B5B
C\C h (= (=
Partial inverse Inverse category: f— f°. P of=fand fof =F.

Union of morphisms

Order

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaardi6].

Domain and partiality ~ Restriction category: fi— f.

fof=f, fog=gof, fog=fog hof=fohof
h:B3h 7:B5B
C\C h (= (=
Partial inverse Inverse category: f— f°. P of=fand fof =F.

Union of morphisms Join: \/ s.
seS

Order

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaardi6].

Domain and partiality ~ Restriction category: fi— f.

fof=f, fog=gof, fog=fog, hof=fohof
h:B3h =y
C\C c (=
Partial inverse Inverse category: f— f°. P of=fand fof =F.
o 223
h® 222
Union of morphisms Join: \/ s.
seS
fol Vs|]=VTfs \Vs|og=V sg
se€S seS seS seS
Order

The categorical model: inverse categories

Category theory around reversibility is well studied [Axelsen&Kaarsgaardi6].

Domain and partiality ~ Restriction category: fi— f.
fof=f, fog=gof, fog=fog, hof=fohof

Partial inverse Inverse category: f— f°. P of=fand fof =F.
Union of morphisms Join: \/ s.
seS
fol Vs|]=VTfs \Vs|og=V sg
se€S seS seS seS
Order f<gifgf=f

Gives a dcpo structure to homsets.

How do you extract syntax from inverse categories?

Cartesian closed category ——

How do you extract syntax from inverse categories?

Cartesian closed category ——

= Cartesian product x.

How do you extract syntax from inverse categories?

Cartesian closed category ——

= Cartesian product x.
¢ Type Ax B.

How do you extract syntax from inverse categories?

Cartesian closed category ——

= Cartesian product x.

¢ Type Ax B.
¢ Constructor (ti, to).

How do you extract syntax from inverse categories?

Cartesian closed category ——

= Cartesian product x.

¢ Type Ax B.
¢ Constructor (ti, to).

= Right adjoint to the tensor —.

How do you extract syntax from inverse categories?

Cartesian closed category ——

= Cartesian product x.

¢ Type Ax B.
¢ Constructor (ti, to).

= Right adjoint to the tensor —.
¢ Type A— B.

How do you extract syntax from inverse categories?

Cartesian closed category ——

= Cartesian product x.
¢ Type Ax B.
¢ Constructor (ti, to).
= Right adjoint to the tensor —.

¢ Type A— B.
¢ Constructor Ax.t.

How do you extract syntax from inverse categories?

Cartesian closed category —— ——— Inverse category

= Cartesian product x.
¢ Type Ax B.
¢ Constructor (ti, to).
= Right adjoint to the tensor —.

¢ Type A— B.
¢ Constructor Ax.t.

How do you extract syntax from inverse categories?

Cartesian closed category —— ——— Inverse category
= Cartesian product x. = Not cartesian, but monoidal tensor.
¢ Type Ax B.

¢ Constructor (ti, to).
= Right adjoint to the tensor —.

¢ Type A— B.
¢ Constructor Ax.t.

How do you extract syntax from inverse categories?

Cartesian closed category —— ——— Inverse category
= Cartesian product x. = Not cartesian, but monoidal tensor.
¢ Type Ax B. ¢ Type AR B.

¢ Constructor (ti, to).
= Right adjoint to the tensor —.

¢ Type A— B.
¢ Constructor Ax.t.

How do you extract syntax from inverse categories?

Cartesian closed category —— ——— Inverse category
= Cartesian product x. = Not cartesian, but monoidal tensor.
¢ Type Ax B. ¢ Type AR B.
¢ Constructor (ti, to). ¢ Linear type system.

= Right adjoint to the tensor —.

¢ Type A— B.
¢ Constructor Ax.t.

How do you extract syntax from in

Cartesian closed category ——

= Cartesian product x.
¢ Type Ax B.
¢ Constructor (ti, to).
= Right adjoint to the tensor —.

¢ Type A— B.
¢ Constructor Ax.t.

erse categories?

Inverse category
= Not cartesian, but monoidal tensor.
¢ Type AR B.
¢ Linear type system.
= Not monoidal closed.

How do you extract syntax from inverse categories?

Cartesian closed category —— Inverse category
= Cartesian product x.

¢ Type Ax B.
¢ Constructor (ti, to).

= Not cartesian, but monoidal tensor.
¢ Type AR B.

¢ Linear type system.
= Right adjoint to the tensor —. .

¢ Type A— B.
¢ Constructor Ax.t.

Not monoidal closed.

¢ No ground function type.

How do you extract syntax from inverse categories?

Cartesian closed category —— ——— Inverse category

= Cartesian product x. = Not cartesian, but monoidal tensor.

¢ Type Ax B. ¢ Type AR B.

¢ Constructor (ti, to). ¢ Linear type system.

= Right adjoint to the tensor —. .
¢ Type A— B.

¢ Constructor Ax.t.

Not monoidal closed.

¢ No ground function type.
¢ Is there a way to form functions?

How do you extract syntax from inverse categories?

Cartesian closed category —— ——— Inverse category

= Cartesian product x. = Not cartesian, but monoidal tensor.

¢ Type Ax B. ¢ Type AR B.

¢ Constructor (ti, to). ¢ Linear type system.

= Right adjoint to the tensor —. .
¢ Type A— B.

¢ Constructor Ax.t.

Not monoidal closed.

¢ No ground function type.
¢ Is there a way to form functions?

Hopefully, there is a way to cheat.

Our new functions

We can cheat with our partial inverse!

Our new functions

We can cheat with our partial inverse!

[AFt Al [A] = [A]
[AFt A - [A] = [A]

Our new functions

We can cheat with our partial inverse!

[AFt Al [A] = [A]
[AFt A - [A] = [A]

What do we do with this?

Our new functions

We can cheat with our partial inverse!
[Att: Al [A] = [A]
[AFt: Al [A] —[4]
What do we do with this?

Given ARt A AFt:B

We form a function t+— t': A < B, Whose semantics is

Our new functions

We can cheat with our partial inverse!

[AFt Al [A] = [A]
[AFt A - [A] = [A]

What do we do with this?
Given At A A-t: B
We form a function t+— t': A < B, Whose semantics is

[[A)—t_:)A]] [[AH 8]

[Al [A] [B]

Our new functions

We can cheat with our partial inverse!

[Att: Al [A] = [A]
[AFt: Al [A] —[4]
What do we do with this?
Given At A A-t:B
We form a function t+— t': A < B, Whose semantics is

[[A)—t_:)A]] [[AH 8]

[Al [B]

This is a reversible function! We have (t+ t')~! = ¢ + t, whose semantics is:

[A]

Our new functions

We can cheat with our partial inverse!

[Att: Al [A] = [A]
[AFt: Al [A] —[4]
What do we do with this?
Given At A A-t:B
We form a function t+— t': A < B, Whose semantics is

[[A)—t_:)A]] [[AH 8]

[Al [B]

This is a reversible function! We have (t+ t')~! = ¢ + t, whose semantics is:

[A]

18] [[Ais]] N [[AH A] 4]

Together with pattern-matching

With a sum type @:
At A AFt: B

AFinj, t: A®B AFinj, t: A®B

Together with pattern-matching

With a sum type @:
At A AFt: B

AFinj, t: A®B AFinj, t: A®B

We introduce orthogonality:

Together with pattern-matching

With a sum type @:
At A AFt: B

AFinj, t: A®B AFinj, t: A®B

We introduce orthogonality:

t1 Lt
inj, ty L inj, t (t] L Cto]

Together with pattern-matching

With a sum type @:
At A AFt: B

AFinj, t: A®B AFinj, t: A®B

We introduce orthogonality:

t1 Lt
inj, ty L inj, t (t] L Cto]

Our functions are then:

tp tjl
to — tlz

A< B
tm —

whenever AjF t;: Aand t; L ty, A;l t;: Band tj-J_ i

Example and operational semantics

inj,; x +— inj, x CA® B BoA
inj,y + inj,y '

Example and operational semantics

inj,; x +— inj, x CAGBw B A
inj,y ~ injy [

Can be seen as:

= Partial morphisms joined together.
= With compatible domains.

= Whose inverse have compatible domains.

Operational semantics:

Example and operational semantics

inj,; x +— inj, x CAGBw B A
inj,y ~ injy [

Can be seen as:

= Partial morphisms joined together.
= With compatible domains.

= Whose inverse have compatible domains.

Operational semantics:

inj, x +— inj,k x
o S b ang v
inj, x +— inj,; x

Example and operational semantics

inj,; x +— inj, x CAGBw B A
inj,y ~ injy [

Can be seen as:

= Partial morphisms joined together.
= With compatible domains.

= Whose inverse have compatible domains.
Operational semantics:

{inj,x — inj, x

- - }inJ',V—>(inJ'/><)[V/><]—>
inj, x +— inj,; x

Example and operational semantics

inj,; x +— inj, x CAGBw B A
inj,y ~ injy [

Can be seen as:

= Partial morphisms joined together.
= With compatible domains.

= Whose inverse have compatible domains.
Operational semantics:

{inj,x — inj, x

- - }inj,v—>(inj/X)[V/X]—>inJ'/V
inj, x +— inj,; x

The mathematical recipe /'1es.1.pi/

Our category C such that:

The mathematical recipe /'

Our category C such that:

= |nverse category.
¢ Partial inverse (—)°.

The mathematical recipe

Our category C such that:

= |nverse category.
¢ Partial inverse (—)°.
¢ Takes care of pattern-matching.

The mathematical recipe

Our category C such that:

= |nverse category.

¢ Partial inverse (—)°.

¢ Takes care of pattern-matching.
= Rig structure.

¢ Usual monoidal product ®.

The mathematical recipe

Our category C such that:

= |nverse category.
¢ Partial inverse (—)°.
¢ Takes care of pattern-matching.
= Rig structure.
¢ Usual monoidal product ®.
¢ Disjointness tensor @ with jointly monic injections.

The mathematical recipe

Our category C such that:

= |nverse category.
¢ Partial inverse (—)°.
¢ Takes care of pattern-matching.
= Rig structure.
¢ Usual monoidal product ®.
¢ Disjointness tensor @ with jointly monic injections.
= Join structure.
¢ Compatible morphisms on their domain and codomain admit a join V.

The mathematical recipe

Our category C such that:

= |nverse category.
¢ Partial inverse (—)°.
¢ Takes care of pattern-matching.
= Rig structure.
¢ Usual monoidal product ®.
¢ Disjointness tensor @ with jointly monic injections.
= Join structure.
¢ Compatible morphisms on their domain and codomain admit a join V.
¢ Provides a nice structure on morphisms.

Example: Sets and partial injective functions Plnj.

The mathematical recipe

Our category C such that:

= |nverse category.
¢ Partial inverse (—)°.
¢ Takes care of pattern-matching.
= Rig structure.
¢ Usual monoidal product ®.
¢ Disjointness tensor @ with jointly monic injections.
= Join structure.
¢ Compatible morphisms on their domain and codomain admit a join V.
¢ Provides a nice structure on morphisms.

Example: Sets and partial injective functions Plnj.

L I
H{ %nJ.’X ?n‘].rx } A® B« BEBAH = [inj, x = inj, x| V [inj, y — inj, y]
inj, y +~ inj,y

How much can one express with this language?

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaardl6] + [Fiore04] + some calculations.

— Our category C

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaardl6] + [Fiore04] + some calculations.

— Our category C is parameterised DCPQ-algebraically w-compact.

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaardl6] + [Fiore04] + some calculations.

— Our category C can model infinite data types uX.A.

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaardl6] + [Fiore04] + some calculations.
— Our category C can model infinite data types uX.A.

Examples:
Nat = uX.1@ X

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaardl6] + [Fiore04] + some calculations.
— Our category C can model infinite data types uX.A.

Examples:
Nat = pX1lae X [Al=puX1a(A®X)

And we want to parse those infinite types:

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaardl6] + [Fiore04] + some calculations.
— Our category C can model infinite data types uX.A.

Examples:
Nat = pX1lae X [Al=puX1a(A®X)

And we want to parse those infinite types:

map(w) = fix f. { L]t:u h) = (f 1) }:[A]H[B]

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaardl6] + [Fiore04] + some calculations.
— Our category C can model infinite data types uX.A.

Examples:
Nat = pX1lae X [Al=puX1a(A®X)

And we want to parse those infinite types:

map(w) = fix f. { L]t:u h) = (f 1) }:[A]H[B]

Works in the category thanks to DCPO-enrichment.

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaardl6] + [Fiore04] + some calculations.
— Our category C can model infinite data types uX.A.

Examples:
Nat = pX1lae X [Al=puX1a(A®X)

And we want to parse those infinite types:

map(w) = fix f. { L]t:u h) = (f 1) }:[A]H[B]

Works in the category thanks to DCPO-enrichment. ’fix(F) =sup,{F'(L)} ‘

Summary of the language (mandatory slide)

(Ground types)
(Function types)

(Unit term)

(Pairing)

(Injections)

(Function application)

(Abstraction)

A B
T17 T2

t, b1, t2

I|A@B|AQB|
A+ B

*
|t ®t
|inj, t|inj, ¢
|wt

=t |t)

10

(Ground types) A B
(Function types) Ti, To

Unit term) t, t1, to
Pairing)

(
(
(Injections)
(Function application)
(

Inductive terms)

(Abstraction) w
(Fixed points)

Summary of the language (mandatory slide)

I|AGB|A®B| X| uXA
A<+ B

*
|t ®t
|inj, t|inj, ¢
|wt

| fold t

=ty |t B}
| f] fix fw

10

Summary of the language (mandatory slide)

(Ground types) AB = I|A@B|A®B|X|uXA
(Function types) T, T, == AB|T1 =T

(Unit term) tti,tr = *

(Pairing) |t ® t

(Injections) | inj, t| inj, t

(Function application) |wt

(Inductive terms) | fold t

(Abstraction) w n= {tn= || tm t)
(Fixed points) | f] fix fw

(Higher abstractions) | Mw | wowy

A-calculus thanks to DCPO-enrichment.

10

The language is Turing complete! (even if it is reversible)

11

The language is Turing complete! (even if it is reversible)

+— ask this guy (Kostia Chardonnet, currently works in Nancy)

11

The language is Turing complete! (even if it is reversible)

+— ask this guy (Kostia Chardonnet, currently works in Nancy)

Roughly

= Reversible Turing Machines [Axelsen&Glick11].
¢ Simulate your favourite Turing machines.
= Encode RTMs in our language:

¢ Alphabet & states mapped to I @ --- @ I.

¢ Tape as lists.

¢ Functions simulating one-step transition of J.
¢ lterate until final state.

11

A variety of diverging functions

Usual

fix fT . f: T

12

A variety of diverging functions

Usual

fix fT . f: T

Less usual

fix FAE x> fx}: Ao B

12

A variety of diverging functions

Usual

fix fT . f: T

Less usual

fix FAE x> fx}: Ao B

(fix f. {x—=rFx})v — {x—=(fixf.{x— fx})x}v
— ((fix f. {x—= fx}) x)[v/x]

(fix . {x—fx}) v

12

A variety of diverging functions

Usual

fix fT . f: T

Less usual

fix FAE x> fx}: Ao B
(fix f. {x—=rFx})v — {x—=(fixf.{x— fx})x}v
— ((fix f. {x—= fx}) x)[v/x]
= (fixf. {x—fx})v

New challenger

12

A variety of diverging functions

Usual

fix fT . f: T

Less usual

fix FAE x> fx}: Ao B

(fix f. {x—=rFx})v — {x—=(fixf.{x— fx})x}v
— ((fix f. {x—= fx}) x)[v/x]
= (fixf. {x—fx})v

New challenger

O . T s (R s AL U QU RPN S
inj, y + inj, (fy)

12

Let’s conclude

= Typed and reversible programming language.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.

= Categorical model: join inverse rig DCPQO-categories.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.
= Categorical model: join inverse rig DCPQO-categories.

= Turing completeness!

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.

= Categorical model: join inverse rig DCPQO-categories.
= Turing completeness!

= Soundness. if t—t, then [t] =[t].

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.

= Categorical model: join inverse rig DCPQO-categories.
= Turing completeness!

= Soundness. if t — t/, then [[t] = [¢].

= Adequacy. if [t] # L, thent].

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.
= Categorical model: join inverse rig DCPQO-categories.

= Turing completeness!

= Soundness. if t — t/, then [[t] = [¢].
= Adequacy. if [t] # L, thent].
= (Full) completeness. Any computable partial injection is representable.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.
= Categorical model: join inverse rig DCPQO-categories.

= Turing completeness!

= Soundness. if t — t/, then [[t] = [¢].
= Adequacy. if [t] # L, thent].
= (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.
= Categorical model: join inverse rig DCPQO-categories.

= Turing completeness!

= Soundness. if t — t/, then [[t] = [¢].
= Adequacy. if [t] # L, thent].
= (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions,

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.
= Categorical model: join inverse rig DCPQO-categories.

= Turing completeness!

= Soundness. if t — t/, then [[t] = [¢].
= Adequacy. if [t] # L, thent].
= (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types,

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.
= Categorical model: join inverse rig DCPQO-categories.

= Turing completeness!

= Soundness. if t — t/, then [[t] = [¢].
= Adequacy. if [t] # L, thent].
= (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

Let’s conclude

= Typed and reversible programming language.
= Categorical model: join inverse rig DCPQO-categories.

= Turing completeness!

= Soundness. if t — t/, then [[t] = [¢].
= Adequacy. if [t] # L, thent].
= (Full) completeness. Any computable partial injection is representable.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.
Self promotion:
= Kostia's PhD thesis, https://theses.hal.science/tel-03959403v1

= My PhD thesis, https://theses.hal.science/tel-04625771v1
= Benoit's habilitation, to be defended on 24th September 2024.

13

https://theses.hal.science/tel-03959403v1
https://theses.hal.science/tel-04625771v1

