Categorical Semantics of Reversible Pattern-Matching

September 1st, 2021

CALCO2021 MFPSXXXVII

Reversible programming

• Reversible computation: only apply bijections.

 $^{^1} Rolf$ Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.

 $^{^1} Rolf Landauer (1961):$ Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.
- Application in quantum computing, where operations (except measurement) are reversible.

 $^{^1} Rolf Landauer (1961):$ Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.
- Application in quantum computing, where operations (except measurement) are reversible.

What we are focusing on today:

 $^{^1} Rolf Landauer (1961):$ Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.
- Application in quantum computing, where operations (except measurement) are reversible.

What we are focusing on today:

Reversible programming language

 $^{^1} Rolf Landauer (1961):$ Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.
- Application in quantum computing, where operations (except measurement) are reversible.

What we are focusing on today:

- Reversible programming language
- Detailed denotational semantics

 $^{^1} Rolf$ Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

(Value types)	a, b ::=	$lpha \mid a \oplus b \mid a \otimes b$
(lso types)	<i>T</i> ::=	$a \leftrightarrow b$
(Values)	v ::=	$c_{lpha} \mid x \mid \operatorname{inj}_{l} v \mid \operatorname{inj}_{r} v \mid \langle v_{1}, v_{2} \rangle$
(Functions)	ω ::=	$\{ \mid v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \}$
(Terms)	t ::=	$v \mid \omega t$

 $\{ \mid \operatorname{inj}_{I} x \leftrightarrow \operatorname{inj}_{r} x \mid \operatorname{inj}_{r} x \leftrightarrow \operatorname{inj}_{I} x \}$

 $\{ \mid \operatorname{inj}_{I} x \leftrightarrow \operatorname{inj}_{r} x \mid \operatorname{inj}_{r} x \leftrightarrow \operatorname{inj}_{I} x \}$

• Two partial morphisms joined

(Value types)	a, b ::=	$lpha \mid a \oplus b \mid a \otimes b$
(lso types)	<i>T</i> ::=	$a \leftrightarrow b$
(Values)	v ::=	$c_{lpha} \mid x \mid \operatorname{inj}_{I} v \mid \operatorname{inj}_{r} v \mid \langle v_{1}, v_{2} \rangle$
(Functions)	ω ::=	$\{ \mid v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \}$
(Terms)	t ::=	$v \mid \omega t$

$$\{ \mid \operatorname{inj}_{I} x \leftrightarrow \operatorname{inj}_{r} x \mid \operatorname{inj}_{r} x \leftrightarrow \operatorname{inj}_{I} x \}$$

- Two partial morphisms joined
- With compatible domains

(Value types)	a, b ::=	$lpha \mid a \oplus b \mid a \otimes b$
(Iso types)	<i>T</i> ::=	$a \leftrightarrow b$
(Values)	v ::=	$c_{lpha} \mid x \mid \operatorname{inj}_{I} v \mid \operatorname{inj}_{r} v \mid \langle v_{1}, v_{2} \rangle$
(Functions)	ω ::=	$\{ \mid v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \}$
(Terms)	t ::=	$v \mid \omega t$

$$\{ \mid \operatorname{inj}_{I} x \leftrightarrow \operatorname{inj}_{r} x \mid \operatorname{inj}_{r} x \leftrightarrow \operatorname{inj}_{I} x \}$$

- Two partial morphisms joined
- With compatible domains
- Which inverses have compatible domains

(Value types)	a, b ::=	$lpha \mid a \oplus b \mid a \otimes b$
(Iso types)	<i>T</i> ::=	$a \leftrightarrow b$
(Values)	v ::=	$c_{lpha} \mid x \mid \operatorname{inj}_{I} v \mid \operatorname{inj}_{r} v \mid \langle v_{1}, v_{2} \rangle$
(Functions)	ω ::=	$\{ \mid v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \}$
(Terms)	t ::=	$v \mid \omega t$

$$\{ \mid \operatorname{inj}_{I} x \leftrightarrow \operatorname{inj}_{r} x \mid \operatorname{inj}_{r} x \leftrightarrow \operatorname{inj}_{I} x \}$$

- Two partial morphisms joined
- With compatible domains
- Which inverses have compatible domains

Operational semantics:

 $\{ | \operatorname{inj}_{I} x \leftrightarrow \operatorname{inj}_{r} x | \operatorname{inj}_{r} x \leftrightarrow \operatorname{inj}_{I} x \} (\operatorname{inj}_{r} \star) \longrightarrow \operatorname{inj}_{I} \star$

Categorical model

Domain and partiality

Partial inverse

Compatibility

Domain and partiality Restriction category: $f \mapsto \overline{f}$.

Partial inverse

Compatibility

Domain and partiality Restriction category: $f \mapsto \overline{f}$. $f \circ \overline{f} = f$, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h \circ f}$.

Partial inverse

Compatibility

Domain and partiality Restriction category: $f \mapsto \overline{f}$. $f \circ \overline{f} = f$, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h \circ f}$. $h : \begin{array}{c} a \\ b \\ c \end{array} \xrightarrow{a} \begin{array}{c} b \\ c \end{array} \xrightarrow{b} \begin{array}{c} c \\ \overline{h} \end{array} \xrightarrow{b} \begin{array}{c} c \\ c \end{array} \xrightarrow{b} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \begin{array}{c} b \\ c \end{array} \xrightarrow{c} \begin{array}{c} c \\ \overline{h} \end{array} \xrightarrow{c} \begin{array}{c} a \\ c \\ c \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \\ c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \end{array}$ $c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \end{array}$ $c \end{array} \xrightarrow{c} \end{array}$

Compatibility

Domain and partialityRestriction category: $f \mapsto \overline{f}$. $f \circ \overline{f} = f$, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$. $h : \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} c \\ c \end{array} \begin{array}{c} b \\ c \end{array} \begin{array}{c} c \\ c \end{array} \end{array}$ Partial inverseInverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$.

Compatibility

Domain and partiality Restriction category: $f \mapsto \overline{f}$. $f \circ \overline{f} = f$, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$. $h : \begin{array}{c} a \\ b \\ c \end{array} \xrightarrow{a} \begin{array}{c} b \\ c \end{array} \xrightarrow{b} \begin{array}{c} c \\ b \\ c \end{array} \xrightarrow{b} \begin{array}{c} c \\ c \end{array} \xrightarrow{b} \begin{array}{c} c \\ c \end{array} \xrightarrow{b} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \begin{array}{c} c \\ c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \end{array} \xrightarrow{c} \begin{array}{c} c \end{array} \xrightarrow{c} \end{array}$

Compatibility

Domain and partialityRestriction category: $f \mapsto \overline{f}$. $f \circ \overline{f} = f$, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$. $h : \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} \phi \\ c \end{array} \begin{array}{c} \phi \\ c \end{array} \begin{array}{c} \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \\ \overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}, \\ \overline{h} \circ f = f \circ \overline{h} \circ \overline{f} \circ \overline{f} \end{array}$ Partial inverseInverse category: $f \mapsto f^{\circ}$. $f \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$.CompatibilityRestriction compatible: $f \smile g : f\overline{g} = g\overline{f}, f \asymp g : f \smile g$ and $f^{\circ} \smile g^{\circ}$.

Domain and partialityRestriction category: $f \mapsto \overline{f}$. $f \circ \overline{f} = f$, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h \circ f}$. $h \circ \overline{f} = f$, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f \circ g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h \circ f}$. $h \circ \overline{b} \sim \overline{b} \sim \overline{b}$ Partial inverseInverse category: $f \mapsto f^{\circ}$. $h^{\circ} : \overline{b} \sim \overline{b} \sim \overline{b}$ CompatibilityRestriction compatible: $f \sim g : f\overline{g} = g\overline{f}, f \simeq g : f \sim g \text{ and } f^{\circ} \sim g^{\circ}$. $f : \overline{b} \sim \overline{b} \sim \overline{b}$ Union of partial isosPartial order: $f \leq g : g\overline{f} = f$.

Domain and partiality Restriction category: $f \mapsto f$. $f \circ \overline{f} = f, \ \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \ \overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}, \ \overline{h} \circ f = f \circ \overline{h \circ f}.$ Inverse category: $f \mapsto f^\circ$. $f^\circ \circ f = \overline{f}$ and $f \circ f^\circ = \overline{f^\circ}$. Partial inverse $h^{\circ}: b \rightarrow b$ Compatibility Restriction compatible: $f \smile g : f\overline{g} = g\overline{f}, f \asymp g : f \smile g \text{ and } f^{\circ} \smile g^{\circ}.$ Partial order: $f \leq g : g\bar{f} = f$. Union of partial isos $a \longrightarrow a$ $k: b \qquad b$

Domain and partiality Restriction category: $f \mapsto f$. $f \circ \overline{f} = f, \ \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \ \overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}, \ \overline{h} \circ f = f \circ \overline{h \circ f}.$ $h: \begin{array}{c} a \\ b \\ \end{array} \begin{array}{c} b \\ b \\ \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \end{array} \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \end{array}$ \end{array} Partial inverse Inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$. $h^{\circ}: b \rightarrow b$ Compatibility Restriction compatible: $f \smile g : f\overline{g} = g\overline{f}, f \asymp g : f \smile g \text{ and } f^{\circ} \smile g^{\circ}.$ Partial order: $f \leq g : g\bar{f} = f$. Union of partial isos $\begin{array}{ccc} a & \longrightarrow & a \\ k: & b & & b \end{array}$ Join: \bigvee s. $s \in S$ $\text{if } s \leq t \text{, then } s \leq \bigvee_{s \in S} s, \bigvee_{s \in S} s \leq t, \overline{\bigvee_{s \in S} s} = \bigvee_{s \in S} \bar{s}, \\ \end{array}$

Domain and partiality Restriction category: $f \mapsto f$. $f \circ \overline{f} = f, \ \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \ \overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}, \ \overline{h} \circ f = f \circ \overline{h \circ f}.$ $h: \begin{array}{c} a \\ b \\ \end{array} \begin{array}{c} b \\ b \\ \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \end{array} \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \end{array}$ \end{array} Partial inverse Inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$. $h^{\circ}: b \xrightarrow{a} b$ Compatibility Restriction compatible: $f \smile g : f\overline{g} = g\overline{f}, f \asymp g : f \smile g \text{ and } f^{\circ} \smile g^{\circ}.$ $f: \begin{array}{ccc} a & \longrightarrow & a \\ b & \longrightarrow & b \end{array} \qquad \qquad g: \begin{array}{ccc} a & \longrightarrow & a \\ b & \longrightarrow & b \end{array}$ Partial order: $f \leq g : g\bar{f} = f$. Union of partial isos $\begin{array}{ccc} a \longrightarrow a \\ k: & b & b \end{array}$ Join: \/ *s*. se S $\text{if } s \leq t \text{, then } s \leq \bigvee_{s \in S} s \text{, } \bigvee_{s \in S} s \leq t \text{, } \overline{\bigvee_{s \in S} s} = \bigvee_{s \in S} \bar{s} \text{,} \\ \end{array}$ $f \circ \left(\bigvee_{s \in S} s\right) = \bigvee_{s \in S} fs, \left(\bigvee_{s \in S} s\right) \circ g = \bigvee_{s \in S} sg.$

Domain and partiality Restriction category: $f \mapsto f$. $f \circ \overline{f} = f, \ \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \ \overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}, \ \overline{h} \circ f = f \circ \overline{h \circ f}.$ $h: \begin{array}{c} a \\ b \\ \end{array} \begin{array}{c} b \\ b \\ \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \end{array} \end{array} \begin{array}{c} b \\ \overline{h}: \end{array} \end{array}$ \end{array} Inverse category: $f \mapsto f^\circ$. $f^\circ \circ f = \overline{f}$ and $f \circ f^\circ = \overline{f^\circ}$. Partial inverse $h^{\circ}: b \xrightarrow{a} b$ Compatibility Restriction compatible: $f \smile g : f\overline{g} = g\overline{f}, \ f \asymp g : f \smile g \text{ and } f^{\circ} \smile g^{\circ}.$ $f: \begin{array}{ccc} a & \longrightarrow & a \\ b & \longrightarrow & b \end{array} \qquad \qquad g: \begin{array}{ccc} a & \longrightarrow & a \\ b & \longrightarrow & b \end{array}$ Partial order: $f \leq g : g\bar{f} = f$. Union of partial isos $\begin{array}{ccc} a \longrightarrow a \\ k: & b & b \end{array}$ Join: \/ *s*. $s \in S$ $\text{if } s \leq t \text{, then } s \leq \bigvee_{s \in S} s \text{, } \bigvee_{s \in S} s \leq t \text{, } \overline{\bigvee_{s \in S} s} = \bigvee_{s \in S} \bar{s} \text{,} \\ \end{array}$ $f \circ \left(\bigvee_{s \in S} s\right) = \bigvee_{s \in S} fs, \left(\bigvee_{s \in S} s\right) \circ g = \bigvee_{s \in S} sg.$ $Id : \qquad b \longrightarrow b$

Example

S a set. PId_S category with one object * and morphisms $Y \subseteq S$.

- Composition: intersection
- Identity: S
- Restriction of Y: Y
- Partial inverse of Y: Y
- Join: union.

Denotational semantics

$$\llbracket \Delta \rrbracket = \llbracket a_1 \rrbracket \otimes \cdots \otimes \llbracket a_n \rrbracket$$
 whenever $\Delta \doteq x_1 : a_1, \dots, x_n : a_n$.

 $\llbracket \Delta \vdash \operatorname{inj}_{I} v : a \oplus b \rrbracket \doteq \iota_{I} \circ f$, whenever $f = \llbracket \Delta \vdash v : a \rrbracket$, and similarly for the right-projection.

If
$$f = \llbracket \Delta_1 \vdash v_1 : a_1 \rrbracket$$
 and $g = \llbracket \Delta_2 \vdash v_2 : a_2 \rrbracket$,
 $\llbracket \Delta_1, \Delta_2 \vdash \langle v_1, v_2 \rangle : a_1 \otimes a_2 \rrbracket \doteq f \otimes g$.

$\mathsf{An iso:} \ \{ \ \mid \ v_1 \leftrightarrow v_1' \mid \ldots \mid \ v_n \leftrightarrow v_n' \ \} : a \leftrightarrow b.$

An iso: $\{ | v_1 \leftrightarrow v'_1 | \dots | v_n \leftrightarrow v'_n \} : a \leftrightarrow b.$

The situation:

An iso: $\{ | v_1 \leftrightarrow v'_1 | \dots | v_n \leftrightarrow v'_n \} : a \leftrightarrow b.$

The situation:

What we'd like to build:

Careful: this diagram does not commute!

Lemma

If $v_1 \perp v_2$ and $v'_1 \perp v'_2$, then $\llbracket v'_1 \rrbracket \circ \llbracket v_1 \rrbracket^{\circ} \asymp \llbracket v'_2 \rrbracket \circ \llbracket v_2 \rrbracket^{\circ}$.

Lemma

If $v_1 \perp v_2$ and $v'_1 \perp v'_2$, then $\llbracket v'_1 \rrbracket \circ \llbracket v_1 \rrbracket^\circ \asymp \llbracket v'_2 \rrbracket \circ \llbracket v_2 \rrbracket^\circ$.

The definition of isos in the language involves these orthogonalities, thus all $\llbracket v_i \rrbracket \circ \llbracket v_i \rrbracket^\circ$ form a compatible set.

Lemma

If $v_1 \perp v_2$ and $v'_1 \perp v'_2$, then $\llbracket v'_1 \rrbracket \circ \llbracket v_1 \rrbracket^\circ \asymp \llbracket v'_2 \rrbracket \circ \llbracket v_2 \rrbracket^\circ$.

The definition of isos in the language involves these orthogonalities, thus all $\llbracket v_i \rrbracket \circ \llbracket v_i \rrbracket^\circ$ form a compatible set.

Definition

$$\llbracket \vdash_{\omega} \{ | v_1 \leftrightarrow v'_1 | v_2 \leftrightarrow v'_2 \dots \} : a \leftrightarrow b \rrbracket = \bigvee_i \llbracket v'_i \rrbracket \circ \llbracket v_i \rrbracket^\circ : \llbracket a \rrbracket \to \llbracket b \rrbracket.$$

The language is based is pattern-matching:

$$\vdash_{\omega} \{ \mid v_1 \leftrightarrow v'_1 \mid v_2 \leftrightarrow v'_2 \dots \}$$

decidable which pattern a term u fits. It should also be in the denotational semantics:

$$\left(\left(\llbracket v_1'\rrbracket \circ \llbracket v_1\rrbracket^\circ\right) \lor \left(\llbracket v_2'\rrbracket \circ \llbracket v_2\rrbracket^\circ\right)\right) \circ \llbracket u\rrbracket = \llbracket v_i'\rrbracket \circ \llbracket v_i\rrbracket^\circ \circ \llbracket u\rrbracket$$

for some *i*.

The language is based is pattern-matching:

$$\vdash_{\omega} \{ \mid v_1 \leftrightarrow v'_1 \mid v_2 \leftrightarrow v'_2 \dots \}$$

decidable which pattern a term u fits. It should also be in the denotational semantics:

$$\left(\left(\llbracket v_1'\rrbracket \circ \llbracket v_1\rrbracket^\circ\right) \lor \left(\llbracket v_2'\rrbracket \circ \llbracket v_2\rrbracket^\circ\right)\right) \circ \llbracket u\rrbracket = \llbracket v_i'\rrbracket \circ \llbracket v_i\rrbracket^\circ \circ \llbracket u\rrbracket$$

for some *i*.

Usually, it relies on disjointness (\oplus) .

Pattern-matching and consistency

In $(f \lor g)h$, we want h to choose:

 $fh \lor gh = fh$ or $fh \lor gh = gh$

A join inverse category with this property will be called *pattern-matching* category.

In $(f \lor g)h$, we want h to choose:

 $fh \lor gh = fh$ or $fh \lor gh = gh$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus) , rather fh = 0 or gh = 0.

In $(f \lor g)h$, we want h to choose:

 $fh \lor gh = fh$ or $fh \lor gh = gh$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus), rather fh = 0 or gh = 0. **The idea:** translate it as a notion of non decomposability, to have $fh \lor gh$ not decomposable.

For this, we need h to be not decomposable either.

In $(f \lor g)h$, we want h to choose:

 $fh \lor gh = fh$ or $fh \lor gh = gh$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus) , rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have $fh \lor gh$ not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism *k*, if *h* is non decomposable, so is *kh*. A join inverse category with this property will be called *consistent* category.

In $(f \lor g)h$, we want h to choose:

 $fh \lor gh = fh$ or $fh \lor gh = gh$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus), rather fh = 0 or gh = 0. **The idea:** translate it as a notion of non decomposability, to have $fh \lor gh$ not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism *k*, if *h* is non decomposable, so is *kh*. A join inverse category with this property will be called *consistent* category.

Consistency implies pattern-matching.

In $(f \lor g)h$, we want h to choose:

 $fh \lor gh = fh$ or $fh \lor gh = gh$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus), rather fh = 0 or gh = 0. **The idea:** translate it as a notion of non decomposability, to have $fh \lor gh$ not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism *k*, if *h* is non decomposable, so is *kh*. A join inverse category with this property will be called *consistent* category.

Consistency implies pattern-matching.

What about the other way around?

Definition (Strongly non decomposable)

Thus $m = u \lor v \Rightarrow u = 0$ or v = 0

Definition (Strongly non decomposable)

Thus $m = u \lor v \Rightarrow u = 0$ or v = 0

Definition (Linearly non decomposable)

$$0 - \cdots - f - m$$

Thus $m = u \lor v \Rightarrow u \le v$ or $v \le u$

Definition (Strongly non decomposable)

Thus $m = u \lor v \Rightarrow u = 0$ or v = 0

Definition (Linearly non decomposable)

$$0 - \cdots - f - m$$

Thus $m = u \lor v \Rightarrow u \le v$ or $v \le u$

Definition (Weakly non decomposable)

Thus $m = u \lor v \Rightarrow u = m$ or v = m

Definition (Strongly non decomposable)

Thus $m = u \lor v \Rightarrow u = 0$ or v = 0

Definition (Linearly non decomposable)

$$0 - \cdots - f - m$$

Thus $m = u \lor v \Rightarrow u \le v$ or $v \le u$

Definition (Weakly non decomposable)

Thus $m = u \lor v \Rightarrow u = m$ or v = m

strongly
$$\Rightarrow$$
 linearly \Rightarrow weakly

A weakly pattern-matching category is weakly consistent.

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

This allows to not rely on a disjointness (\oplus) structure. And to use a category like Pld_S as a sound and adequate denotation.

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

This allows to not rely on a disjointness (\oplus) structure. And to use a category like Pld_S as a sound and adequate denotation.

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

This allows to not rely on a disjointness (\oplus) structure. And to use a category like Pld_S as a sound and adequate denotation.

Recursion

 $\mathcal C$ a join inverse category.

For any A, B objects of C, $Hom_{\mathcal{C}}(A, B)$ is a DCPO.

Quantum programming language

Patterns are vectors in a basis of a Hilbert space. Work in progress.

Thank you