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Introduction: Languages and Types

λ-calculus:
• Form a function: f = λx.x + 2 ≡ x 7→ x + 2
• Apply the function: f (3), or f 3.

A type A is a specification of a term t, we write t : A.

For example:
True : Bool 2 : Nat λx.x + 2 : Nat→ Nat

We also have variables: if x then y
else y + 2

Example of judgement:

x : Bool, y : Nat ` if x then y else y + 2 : Nat
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Introduction: Type constructors and destructors

Types Constructor Destructor
I ∗ let ∗ = t in t′

A→ B λx.t tt′
A⊗ B 〈t1, t2〉 let 〈x, y〉 = t in t′
Nat zero, S t match t with {zero 7→ t1 | S 7→ t2}
List(A) Empty, Cons 〈h, t〉 match t with {Empty 7→ t1 | Cons 7→ t2}
A⊕ B left t, right t match t with {left 7→ t1 | right 7→ t2}

Nat ∼= I⊕ Nat List(A) ∼= I⊕ (A⊗ List(A))

General inductive types: µX.A.

Nat = µX.I⊕ X List(A) = µX.I⊕ (A× X)
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Introduction: Effects

Dichotomy between purely functional programs and an interaction with the environment.

Effectful types are written with T X.
do x← t; t′

Writer effect
• a tape external to the program
• effectful programs write on the tape

Non-deterministic effect
• Example: x← True ‖ False.
• No control over the value.

Probabilistic effect
• Example: x← Coin().
• According to a probability distribution.

Quantum effect
• Example: x← QCoin().
• Superposition.
• Can be observed with measurement.
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Introduction: Quantum Computing

• Quantum bits in C⊕ C, we write |0〉 =
[

1
0

]
and |1〉 =

[
0
1

]
.

• Generally: quantum data as normalised vectors in a Hilbert space.

• Physically admissible operations are unitaries (reversible) and measurement (irreversible).
• The most used model of quantum computation is circuits.
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Input: |x, y〉
Program: x← Hx
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Introduction: Classical vs. Quantum Control

Quantum λ-calculus [SelingerValiron09].
Input: |x, y〉
Program: x← U1x

if meas(x) then U2y
else y

meas(x) is 0 or 1 with a certain probability.
Therefore, compute U2y is only probable.

Our goal (Chapter 3).
Input: |x, y〉
Program: x← U1x

if x then |x,U2y〉
else |x, y〉

If x is a superposition α |0〉+ β |1〉,
we get

α |0, y〉+ β |1,U2y〉 .
Studied with a point of view from semantics.
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Introduction: Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t→ t′.

For example, (λx.x + 2)3→ 3 + 2→ 5.

Denotational semantics: mathematical function JtK.
Strong enough if relation between operational and denotational:

t ' t′ iff JtK = Jt′K .
• Prove that the language does what it is supposed to do,
• Compile the language and perform optimisations safely,
• Inform on which features can be added to the language.
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Introduction: Category theory

Category
• Objects: X,Y,Z, . . .
• Morphisms: f : X→ Y.
• Composition:

f : X→ Y g : Y→ Z
g ◦ f : X→ Z

• Identity morphism: idX : X→ X.

Type system
• Types: A,B,C, . . .
• Type judgements: x : A ` t : B.
• Also composable:

x : A ` t : B y : B ` t′ : C
x : A ` t′[t/y] : C

• Identity axiom: x : A ` x : A.

Most effects are interpreted as a (strong) monad T [Moggi89].

Example (writer effect), with a monoid (M, ·, e): Monad: M×− Objects: M× X

Unit: ηX =

{
X → M× X
x 7→ (e, x) Multiplication: µX =

{
M× (M× X) → M× X
(m, (m′, x) 7→ (m ·m′, x)

7



Introduction: Category theory

Category
• Objects: X,Y,Z, . . .
• Morphisms: f : X→ Y.
• Composition:

f : X→ Y g : Y→ Z
g ◦ f : X→ Z

• Identity morphism: idX : X→ X.

Type system
• Types: A,B,C, . . .
• Type judgements: x : A ` t : B.
• Also composable:

x : A ` t : B y : B ` t′ : C
x : A ` t′[t/y] : C

• Identity axiom: x : A ` x : A.
Most effects are interpreted as a (strong) monad T [Moggi89].

Example (writer effect), with a monoid (M, ·, e): Monad: M×− Objects: M× X

Unit: ηX =

{
X → M× X
x 7→ (e, x) Multiplication: µX =

{
M× (M× X) → M× X
(m, (m′, x) 7→ (m ·m′, x)

7



Introduction: Category theory

Category
• Objects: X,Y,Z, . . .
• Morphisms: f : X→ Y.
• Composition:

f : X→ Y g : Y→ Z
g ◦ f : X→ Z

• Identity morphism: idX : X→ X.

Type system
• Types: A,B,C, . . .
• Type judgements: x : A ` t : B.
• Also composable:

x : A ` t : B y : B ` t′ : C
x : A ` t′[t/y] : C

• Identity axiom: x : A ` x : A.
Most effects are interpreted as a (strong) monad T [Moggi89].

Example (writer effect), with a monoid (M, ·, e): Monad: M×− Objects: M× X

Unit: ηX =

{
X → M× X
x 7→ (e, x) Multiplication: µX =

{
M× (M× X) → M× X
(m, (m′, x) 7→ (m ·m′, x)

7



Introduction: Category theory

Category
• Objects: X,Y,Z, . . .
• Morphisms: f : X→ Y.
• Composition:

f : X→ Y g : Y→ Z
g ◦ f : X→ Z

• Identity morphism: idX : X→ X.

Type system
• Types: A,B,C, . . .
• Type judgements: x : A ` t : B.
• Also composable:

x : A ` t : B y : B ` t′ : C
x : A ` t′[t/y] : C

• Identity axiom: x : A ` x : A.
Most effects are interpreted as a (strong) monad T [Moggi89].

Example (writer effect), with a monoid (M, ·, e): Monad: M×− Objects: M× X

Unit: ηX =

{
X → M× X
x 7→ (e, x)

Multiplication: µX =

{
M× (M× X) → M× X
(m, (m′, x) 7→ (m ·m′, x)

7



Introduction: Category theory

Category
• Objects: X,Y,Z, . . .
• Morphisms: f : X→ Y.
• Composition:

f : X→ Y g : Y→ Z
g ◦ f : X→ Z

• Identity morphism: idX : X→ X.

Type system
• Types: A,B,C, . . .
• Type judgements: x : A ` t : B.
• Also composable:

x : A ` t : B y : B ` t′ : C
x : A ` t′[t/y] : C

• Identity axiom: x : A ` x : A.
Most effects are interpreted as a (strong) monad T [Moggi89].

Example (writer effect), with a monoid (M, ·, e): Monad: M×− Objects: M× X

Unit: ηX =

{
X → M× X
x 7→ (e, x) Multiplication: µX =

{
M× (M× X) → M× X
(m, (m′, x) 7→ (m ·m′, x)

7



Contents

U

|φ〉

|ψ〉

Centrality Quantum Control Reversible Recursion

Quantum Recursion

Chapter 2, LICS’23 Chapter 3, Submitted Chapter 4, FSCD’24

Chapter 5

Effects



Contents

U

|φ〉

|ψ〉

Centrality Quantum Control Reversible Recursion

Quantum Recursion

Chapter 2 Chapter 3 Chapter 4

Chapter 5

Effects



Centrality: Motivation

• Monads represent computational effects.
• Monads have an algebraic flavour (category theory).
• Centre (algebraically): elements that commute with all others.

1 p1: p2:
2 do do
3 x <− op1 y <− op2
4 y <− op2 x <− op1
5 f x y f x y

Two examples of monadic sequencing in Haskell.

• Intuition: If op1 or op2 is central, p1 and p2 should be equivalent.

Question:

What is centrality for monads?

8
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Centrality: Background on Premonoidal categories

[PowerRobinson97] Premonoidal categories as model of effects.

f

g
=

f

g

Monoidal category

f

g
6=

f

g

Premonoidal category

• A premonoidal category P has a centre Z(P);
• Z(P) is a monoidal subcategory of P.
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Centrality: Strong monads

Strong monad T : combines effect with pairing (⊗) with a strength τ :

τX,Y : X⊗ T Y→ T (X⊗ Y).

Operationally:

Input: 〈x,M〉
Output: do y← M ; return 〈x, y〉

With strong monad T : C→ C, the category CT :

• Objects of C;
• Morphisms X→ T Y.

is called Kleisli category, and is a premonoidal category.

10



Centrality: Examples on Set

Writer monad
• Monoid M with centre Z(M).
• Monad – (M×−) : Set→ Set.
• Centre – (Z(M)×−) : Set→ Set.

Powerset monad: non-determinism
• Commutative.
• Centre – itself.

Obtained by considering the appropriate subset ZX ⊆ T X.

11
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Centrality: Central cone

Commutative monad:
for all M and N:

x← N y← M
y← M ≡ x← N
return 〈x, y〉 return 〈x, y〉

Central cone: A pair (Z, ι : Z→ T X)
such that, for all M:

x← ι(z) y← M
y← M ≡ x← ι(z)
return 〈x, y〉 return 〈x, y〉

If the universal central cone at X exists, write ZX def
= Z.

12
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Centrality: Conditions for Centralisability

Theorem 2.11: Equivalent conditions for a monad T to have a centre:

1. All universal central cones.
2. A monad Z linked to Z(CT ).
3. An adjunction between C and Z(CT ).

Corollaries (1) Strong monads on Set,DCPO,Top,Vect, . . . are centralisable.
(2) A commutative monad is its own centre.
(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable? No, but only artificial counterexamples!

If M monoid, X ⊆ Z(M) contains only central elements.

Central submonad: S ↪−→ T with only central effects.
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Centrality: Computational Interpretation

Language Model
Simply-typed λ-calculus (STλC) Cartesian Closed Category (CCC)
Moggi’s metalanguage CCC with strong monad T [Moggi89]
??? CCC with central submonad S ↪−→ T

CSC (Central Submonad Calculus):

Simply-typed λ-calculus;
+ new types: SX and T X;
+ terms for monadic computation (à la Moggi);
+ equational rules, such as:

Γ ` doT x← ιM; doT y← N; P
= doT y← N; doT x← ιM; P : T C

14
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Centrality: Completeness and Internal Language

STλCs CCCs

Completeness

Internal Language

'
CSCs CSC-models

Completeness

Internal Language

'

Folklore:

Theorem 2.60
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Quantum Control: Motivation

Usual quantum programming languages: unitaries (circuits) and measurement.

Example, Toffoli:

T

T † T

H T † T T † T H


|0〉 ⊗ y⊗ z 7→ |0〉 ⊗ y⊗ z
x⊗ |0〉 ⊗ z 7→ x⊗ |0〉 ⊗ z
|1〉 ⊗ |1〉 ⊗ z 7→ |1〉 ⊗ |1〉 ⊗ (1− z)

Goal:

Represent syntactically normalised quantum states and unitaries. Based on [SVV18].

Difficulties:

• A notion of orthogonality for the norm.
• A notion of orthonormal basis for unitarity.
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Quantum Control: The syntax

Types:
I A⊕ B A⊗ B Nat

Terms and semantics as isometries:

17



Quantum Control: The syntax

Types:
I A⊕ B A⊗ B Nat

Terms and semantics as isometries:
Syntax Cn

∗ : I
[
1
]

1

left ∗ : I⊕ I

[
1
0

]
|0〉

right ∗ : I⊕ I

[
0
1

]
|1〉

(α · left ∗) + (β · right ∗) : I⊕ I

[
α

β

]
α |0〉+ β |1〉

17



Quantum Control: The syntax

Types:
I A⊕ B A⊗ B Nat

Terms and semantics as isometries:
Syntax Cn

ti : I⊕ I

[
αi
βi

]
|φi〉

t1 ⊗ t2 : (I⊕ I)⊗ (I⊕ I)


α1α2
β1α2
α1β2
β1β2

 |φ1〉 ⊗ |φ2〉

17



Quantum Control: The syntax

Types:
I A⊕ B A⊗ B Nat

Terms and semantics as isometries:
Syntax `2(N)

zero : Nat t
[
1 0 · · ·

]
|0〉

S zero : Nat t
[
0 1 0 · · ·

]
|1〉

(α · zero) + (β · S S zero) : Nat t
[
α 0 β 0 · · ·

]
α |0〉+ β |2〉

17



Quantum Control: Examples of Unitaries

tt = right ∗
ff = left ∗
qubit = I⊕ I
qubit⊗2 = qubit⊗ qubit

Can be seen as λ-abstractions with pattern-matching.

id =
{

x 7→ x
}
: qubit→ qubit

NOT =

{
ff 7→ tt
tt 7→ ff

}
: qubit→ qubit

QCoin =

{
ff 7→ 1√

2 ff + 1√
2 tt

tt 7→ 1√
2 ff− 1√

2 tt

}
: qubit→ qubit

SWAP =
{

x⊗ y 7→ y⊗ x
}
: qubit⊗2 → qubit⊗2

CNOT =


(ff)⊗ x 7→ (ff)⊗ x
(tt)⊗ (ff) 7→ (tt)⊗ (tt)
(tt)⊗ (tt) 7→ (tt)⊗ (ff)

 : qubit⊗2 → qubit⊗2

18



Quantum Control: Orthogonality

Mathematically (Hilbert spaces):
• Normalised vector |φ〉.
• Orthogonality: |φ〉⊥ |ψ〉.
• Orthonormal basis (ONB): {|φi〉}i.
• Normalised superposition:

If |φi〉 are pairwise orthogonal,
and

∑
i |αi|2 = 1,

then
∑

i αi |φi〉 is normalised.

Syntactically:
• Well-typed term ∆ ` t : A.
• Orthogonality relation: t1 ⊥ t2.
• Orthogonal decomposition: ODA({ti}i).
• Typed superposition:

∆ ` ti : A tj ⊥ tk
∑

i |αi|2 = 1
∆ ` Σi(αi · ti) : A

19



Quantum Control: Orthogonal Decomposition

Mathematically (Hilbert spaces):
• Unitaries.
• Orthonormal basis (ONB): {|φi〉}i.
• Bijection between two ONBs

↔ unitary.
• Resolution of the identity.

Syntactically:
• Syntactic unitaries.
• Orthogonal decomposition: ODA({ti}i).
•

ODA({ti}i) ODB({t′i}i) ∆i ` ti : A ∆i ` t′i : B
{ti 7→ t′i} : A→ B

• Denotational resolution of the identity.

20



Quantum Control: Completeness

· ` t1 = t2 : A iff J· ` t1 : AK = J· ` t2 : AK
Equational theory

(Figures 3.5-8)
Completeness
(Theorem 3.67) Denotational semantics

(Hilbert spaces and isometries)

Unique normal form
(Lemma 3.33)

21
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Reversible Recursion: Motivation

Question:

How does reversibility interact with infinite data?

In Chapter 4:
• Focus on classical reversible fragment.
• Inductive types.
• A fixed point operator.

Backward determinism Forward determinism

[KaarsgaardRennela21]
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Question:

How does reversibility interact with infinite data?

In Chapter 4:
• Focus on classical reversible fragment.
• Inductive types.
• A fixed point operator.

Backward determinism Forward determinism

[KaarsgaardRennela21]
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Reversible Recursion: Mathematical model

Inverse category:
• Every morphism f has a partial inverse.
• Every morphism f has a domain f.
• f ≤ g iff f = gf.

With a join structure:

If f, g : X→ Y agree on there domains,
then f ∨ g.

Together with function variables and a fixed point operator.

Given two sets A and B, the set [A ⇀ B] has nice properties for fixed points.

(A rig join inverse category is enriched in pointed dcpos.)
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Reversible Recursion: Turing-completeness, Adequacy

This language is Turing-complete! (Theorem 4.60, proven by Kostia Chardonnet)

Theorem 4.29: Sound and adequate denotational semantics.

Concrete model: partial injective functions.

Theorem 4.61: Any computable partial injection is representable in the language.

However!

24
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Quantum Recursion?

The nice structure (inherited from partial injections) is not preserved.

Assumptions:

• Partial identity smaller than the identity.
• Order preserved by composition.

[
1 0
0 0

]
≤

[
1 0
0 1

]
,

thus
[

1√
2

1√
2

]
◦

[
1 0
0 0

]
◦

[
1√
2

− 1√
2

]
≤

[
1√
2

1√
2

]
◦

[
1 0
0 1

]
◦

[
1√
2

− 1√
2

]
,

i.e. 1
2 ≤ 0.
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An attempt: Guarded Recursion

Addition of:

• New types ▶ A.
• New constructor next: pause the computation.

Semantics of guarded recursion [BMSS12]. X0 ← X1 ← X2 ← X3 ← . . .

The topos of trees SetN
op

(CCC ↔ λ-calculus).

Results:

• Defined a (non-cartesian) category enriched in SetN
op

(Lemma 5.5).
• Models inifinite data types and fixed point operators (Theorems 5.29 & 5.32).
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Conclusion

Centrality and Monads, LICS’23

• With: Titouan Carette and Vladimir Zamdzhiev.
• What: Categorical study and computational interpretation of the centrality of effects.
• Why: A more refined view on the (non-)commutativity of effects.

Syntax for Quantum Control, Submitted

• With: Vladimir Zamdzhiev.
• What: Syntax and semantics for pure quantum computation.
• Why: Go beyond quantum circuits, master quantum control.

Reversible Recursion, FSCD’24

• With: Kostia Chardonnet, Benoît Valiron.
• What: Semantics for a Turing-complete reversible language.
• Why: Develop reversible languages and make a step towards quantum recursion.
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