The Semantics of Effects:
Centrality, Quantum Control and Reversible Recursion

Louis LEMONNIER

Supervised by: Pablo ARRIGHI, Benoit VALIRON, Vladimir ZAMDZHIEV

[)
" Laboratoire
C‘g7 Méthodes
g ‘uaCS Formelles
W

PhD Defence. 19th June 2024

v d

lr

7

czea—

école
normale
supérieure
paris—saclay

[]
universite
PARIS-SACLAY

Introduction: Languages and Types

A-calculus:

e Form a function: f= Mxx+2 = x—>x+2
e Apply the function: £ (3), or 3.

Introduction: Languages and Types

A-calculus:

e Form a function: f= Mxx+2 = x—>x+2
e Apply the function: £ (3), or 3.

A type A is a specification of a term t, we write t: A.

For example:
True: Bool 2: Nat Ax.x+ 2: Nat — Nat

Introduction: Languages and Types

A-calculus:

e Form a function: f= Mxx+2 = x—>x+2
e Apply the function: £ (3), or 3.

A type A is a specification of a term t, we write t: A.

For example:
True: Bool 2: Nat Ax.x+ 2: Nat — Nat

We also have variables: if x then y
else y+2

Example of judgement:

x: Bool,y: Nat F if x then y else y+ 2: Nat

Introduction: Type constructors and destructors

Types Constructor Destructor
I * letx =tin t

Introduction: Type constructors and destructors

Types Constructor Destructor
I * letx =tin t
A—B Ax.t tt’

Introduction: Type constructors and destructors

Types Constructor Destructor
I * letx =tin t
A—B Ax.t tt’

AR B (t1, ta) let (x,y) = tin t

Introduction: Type constructors and destructors

Types Constructor Destructor

I * letx =tin t
A—B Ax.t tt’

A® B (t1, 1) let (x,y) = tin t

Nat zero, St match t with {zero—t; | S — tp}

Introduction: Type constructors and destructors

Types Constructor Destructor

I * letx =tin t

A— B Ax.t tt

A® B (t1, 1) let (x,y) = tin t

Nat zero, St match t with {zero—t; | S — tp}

List(A Empty, Cons (h,t match t with {Empty +— t; | Cons — t»
pty pty

Introduction: Type constructors and destructors

Types Constructor Destructor

I * letx =tin t

A—B Ax.t tt

A® B (t1, 1) let (x,y) = tin t

Nat zero, St match t with {zero—t; | S — tp}
List(A) Empty, Cons (h,t) match t with {Empty — t; | Cons — tp}

A® B left t, right t match t with {left — t; | right — 6}

Introduction: Type constructors and destructors

Types Constructor Destructor

I * letx=tin t

A— B Ax.t tt’

AR B (t1, ta) let (x,y) = tin t

Nat zero, St match t with {zero—t; | S — tp}
List(A) Empty, Cons (h,t) match t with {Empty — t; | Cons — tp}
Ad B left t, right t match t with {left — t; | right — 6}

Nat = I & Nat

Introduction: Type constructors and destructors

Types Constructor Destructor

I * letx=tin t

A— B Ax.t tt’

AR B (t1, ta) let (x,y) = tin t

Nat zero, St match t with {zero—t; | S — tp}
List(A) Empty, Cons (h,t) match t with {Empty — t; | Cons — tp}
Ad B left t, right t match t with {left — t; | right — 6}

Nat 2 I & Nat List(A) =2 I® (A® List(A))

Introduction: Type constructors and destructors

Types Constructor Destructor

I * letx=tin t

A— B Ax.t tt’

AR B (t1, ta) let (x,y) = tin t

Nat zero, St match t with {zero—t; | S — tp}
List(A) Empty, Cons (h,t) match t with {Empty — t; | Cons — tp}
Ad B left t, right t match t with {left — t; | right — 6}

Nat 2 I & Nat List(A) =2 I® (A® List(A))
General inductive types: uX.A.

Nat = pXI® X List(A) = uXI®(AxX)

Introduction: Effects

Dichotomy between purely functional programs and an interaction with the environment.

Introduction: Effects

Dichotomy between purely functional programs and an interaction with the environment.

Effectful types are written with 7 X.
dox«t; t

Introduction: Effects

Dichotomy between purely functional programs and an interaction with the environment.

Effectful types are written with 7 X.
dox«t; t

Writer effect
= 2 tape external to the program

= effectful programs write on the tape

Introduction: Effects

Dichotomy between purely functional programs and an interaction with the environment.

Effectful types are written with 7 X.

dox«t; t
Writer effect Non-deterministic effect
= 3 tape external to the program = Example: x < True || False.
= effectful programs write on the tape = No control over the value.

Introduction: Effects

Dichotomy between purely functional programs and an interaction with the environment.

Effectful types are written with 7 X.

dox«t; t
Writer effect Non-deterministic effect
= 3 tape external to the program = Example: x < True || False.
= effectful programs write on the tape = No control over the value.

Probabilistic effect
= Example: x < Coin().

= According to a probability distribution.

Introduction: Effects

Dichotomy between purely functional programs and an interaction with the environment.

Effectful types are written with 7 X.

dox«t; t
Writer effect Non-deterministic effect
= 3 tape external to the program = Example: x < True || False.
= effectful programs write on the tape = No control over the value.
Probabilistic effect Quantum effect
= Example: x <« Coin(). = Example: x < QCoin().
= According to a probability distribution. = Superposition.

= Can be observed with measurement.

Introduction: Quantum Computing

= Quantum bits in C® C, we write |0) = [;] and [1) = [ﬂ

= Generally: quantum data as normalised vectors in a Hilbert space.

Introduction: Quantum Computing

= Quantum bits in C ® C, we write |0) = [;] and |1) = [0]

= Generally: quantum data as normalised vectors in a Hilbert space.

= Physically admissible operations are unitaries (reversible) and measurement (irreversible).

Introduction: Quantum Computing

Quantum bits in C & C, we write |0) = [;] and |1) = [0]

Generally: quantum data as normalised vectors in a Hilbert space.
= Physically admissible operations are unitaries (reversible) and measurement (irreversible).

= The most used model of quantum computation is circuits.

Introduction: Quantum Computing

Quantum bits in C & C, we write |0) = [(1)] and [1) = [O]

= Generally: quantum data as normalised vectors in a Hilbert space.
= Physically admissible operations are unitaries (reversible) and measurement (irreversible).

= The most used model of quantum computation is circuits.

H

Introduction: Quantum Computing

Quantum bits in C & C, we write |0) = [(1)] and |1) = [O]

Generally: quantum data as normalised vectors in a Hilbert space.

Physically admissible operations are unitaries (reversible) and measurement (irreversible).

The most used model of quantum computation is circuits.

H

S

Input:
Program:

%, ¥)

x < Hx

y« Ty

if x then (x,1—y)
else (x,y)

meas(y)

Introduction: Quantum Computing

Quantum bits in C & C, we write |0) = [(1)] and [1) = [O]

Generally: quantum data as normalised vectors in a Hilbert space.

Physically admissible operations are unitaries (reversible) and measurement (irreversible).

The most used model of quantum computation is circuits.

1
1
)

H

X

T

R N TR

CONTROLLED NoOT

Input:
Program:

%, ¥)

x < Hx

y« Ty

if x then (x,1—y)
else (x,y)

meas(y)

Introduction: Classical vs. Quantum Control

Quantum A-calculus [SelingerValiron09].
Input: [x, y)
Program: x <« Uix
if meas(x) then Upy
else y

meas(x) is 0 or 1 with a certain probability.
Therefore, compute U,y is only probable.

Introduction: Classical vs. Quantum Control

Quantum A-calculus [SelingerValiron09].
Input: [x, y)
Program: x <« Uix
if meas(x) then Upy
else y

meas(x) is 0 or 1 with a certain probability.
Therefore, compute U,y is only probable.

Our goal (Chapter 3).
Input: [x, y)
Program: x <« U;x
if x then |x, Usy)
else |x,y)

If x is a superposition a |0) + 3|1),
we get

a)0,y) + 81, Uay) .

Introduction: Classical vs. Quantum Control

Quantum A-calculus [SelingerValiron09].
Input: [x, y)
Program: x <« Uix
if meas(x) then Upy
else y

meas(x) is 0 or 1 with a certain probability.
Therefore, compute U,y is only probable.

Studied with a point of view from semantics.

Our goal (Chapter 3).
Input: [x, y)
Program: x <« U;x
if x then |x, Usy)
else |x,y)

If x is a superposition « |0) + 1),
we get

a)0,y) + 81, Uay) .

Introduction: Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Introduction: Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.

Introduction: Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.

For example, (Ax.x+ 2)3 —

Introduction: Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.

For example, (Ax.x+2)3 -3 +2 —

Introduction: Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.

For example, (Ax.x+2)3 — 3 +2 — 5.

Introduction: Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.
For example, (Ax.x+2)3 — 3 +2 — 5.

Denotational semantics: mathematical function [¢].

Introduction: Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.
For example, (Ax.x+2)3 — 3 +2 — 5.

Denotational semantics: mathematical function [¢].

Strong enough if relation between operational and denotational:

t~ ¢ iff [1] = [¢].

Introduction: Why study semantics?

Comes from Ancient Greek, to provide a meaning.

Operational semantics: formal program execution t — t.
For example, (Ax.x+2)3 — 3 +2 — 5.

Denotational semantics: mathematical function [¢].

Strong enough if relation between operational and denotational:

t~ ¢ iff [1] = [¢].

= Prove that the language does what it is supposed to do,
= Compile the language and perform optimisations safely,

= Inform on which features can be added to the language.

Introduction: Category theory

Category Type system
= Objects: X, Y, Z,... = Types: A, B, C,...
= Morphisms: f: X = Y. = Type judgements: x: A t: B.
= Composition: = Also composable:
FX—=Y gVY—>Z x:AFt: B y:B-t: C
gof: X—=Z x: A t[t/y]: C

= |dentity morphism: idx: X — X = |dentity axiom: x: At x: A.

Introduction: Category theory

Category Type system
= Objects: X, Y, Z,... = Types: A, B, C,...
= Morphisms: f: X = Y. = Type judgements: x: A t: B.
= Composition: = Also composable:
FX—=Y gVY—>Z x:AFt: B y:B-t: C
gof: X—Z x: A t[t/y]: C
= |dentity morphism: idx: X — X = |dentity axiom: x: At x: A.

Most effects are interpreted as a (strong) monad 7 [Moggig9].

Introduction: Category theory

Category Type system
= Objects: X, Y, Z,... = Types: A, B, C,...
= Morphisms: f: X = Y. = Type judgements: x: A t: B.
= Composition: = Also composable:
FX—=Y gVY—>Z x:AFt: B y:B-t: C
gof: X—Z x: A t[t/y]: C
= |dentity morphism: idx: X — X = |dentity axiom: x: At x: A.

Most effects are interpreted as a (strong) monad 7 [Moggig9].
Example (writer effect), with a monoid (M, -, e): Monad: M x — Objects: M x X

Introduction: Category theory

Category Type system
= Objects: X, Y, Z,... = Types: A, B, C,...
= Morphisms: f: X = Y. = Type judgements: x: A t: B.
= Composition: = Also composable:
FX—=Y gVY—>Z x:AFt: B y:B-t: C
gof: X—Z x: A t[t/y]: C
= |dentity morphism: idx: X — X = |dentity axiom: x: At x: A.

Most effects are interpreted as a (strong) monad 7 [Moggig9].
Example (writer effect), with a monoid (M, -, e): Monad: M x — Objects: M x X

Unit:)X = MxX
T x e (e x)

Introduction: Category theory

Category Type system
= Objects: X, Y, Z,... = Types: A, B, C,...
= Morphisms: f: X = Y. = Type judgements: x: A t: B.
= Composition: = Also composable:
FX—=Y gVY—>Z x:AFt: B y:B-t: C
gof: X—Z x: A t[t/y]: C
= |dentity morphism: idx: X — X = |dentity axiom: x: At x: A.

Most effects are interpreted as a (strong) monad 7 [Moggig9].
Example (writer effect), with a monoid (M, -, e): Monad: M x — Objects: M x X

Unit: nx = X MxX Multiplication: _] Mx(MxX) = MxX
SXEY x = (e x) P X (m,(m', x) = (m-m, x)

Effects
X)
) O
Centrality Quantum Control Reversible Recursion
Chapter 2, LICS'23 Chapter 3, Submitted Chapter 4, FSCD'24

Quantum Recursion
Chapter 5

Effects
X)
9 O
Centrality Quantum Control Reversible Recursion
Chapter 2 Chapter 3 Chapter 4

Quantum Recursion
Chapter 5

Centrality: Motivation

= represent computational effects.
= Monads have an algebraic flavour (category theory).
= Centre (algebraically): elements that commute with all others.

Centrality: Motivation

= represent computational effects.
= Monads have an algebraic flavour (category theory).
= Centre (algebraically): elements that commute with all others.

pl: p2:
do do
x <— opl y <— op2
y <— op2 x <— opl
fxy fxy

Two examples of monadic sequencing in Haskell.

= Intuition: If opl or op2 is central, p1 and p2 should be equivalent.

Centrality: Motivation

= represent computational effects.
= Monads have an algebraic flavour (category theory).
= Centre (algebraically): elements that commute with all others.

pl: p2:
do do
x <— opl y <— op2
y <— op2 x <— opl
fxy fxy

Two examples of monadic sequencing in Haskell.

= Intuition: If opl or op2 is central, p1 and p2 should be equivalent.

Question:

What is centrality for monads?

Centrality: Background on Premonoidal categories

[PowerRobinson97] Premonoidal categories as model of effects.

Monoidal category Premonoidal category

4] B g

= A premonoidal category P has a centre Z(P);
= Z(P) is a monoidal subcategory of P.

Centrality: Strong monads

Strong monad 7 combines effect with pairing (®) with a strength 7:

xy: XQTY—=T(X®Y).

Operationally:
Input: (x, M)
Output: do y + M ; return (xy)

With strong monad 7: C — C, the category C7:

= Objects of C;
= Morphisms X — TY.

is called Kleisli category, and is a premonoidal category.

10

Centrality: Examples on Set

Writer monad Powerset monad: non-determinism
= Monoid M with centre Z(M). = Commutative.
= Monad — (M x —): Set — Set. = Centre — itself.

= Centre — (Z(M) x —): Set — Set.

11

Centrality: Examples on Set

Writer monad Powerset monad: non-determinism
= Monoid M with centre Z(M). = Commutative.
= Monad — (M x —): Set — Set. = Centre — itself.

= Centre — (Z(M) x —): Set — Set.

Obtained by considering the appropriate subset ZX C T X.

11

Centrality: Central cone

Commutative monad: Central cone: A pair (Z,v: Z— TX)

for all M and N- such that, for all M:
x< N y+< M x + 1(2) y«— M
y+ M = x+ N y+— M = x + 1(2)
return (X, y) return (X, y) return (x,y) return (x,y)

12

Centrality: Central cone

Commutative monad: Central cone: A pair (Z,v: Z— TX)

for all M and N- such that, for all M:
x< N y+< M x + 1(2) y«— M
y+ M = x+ N y+— M = x + 1(2)
return (X, y) return (X, y) return (x,y) return (x,y)

If the universal central cone at X exists, write ZX def 7

12

Centrality: Conditions for Centralisability

Theorem 2.11: Equivalent conditions for a monad 7 to have a centre:

1. All universal central cones.

2. A monad Z linked to Z(C).
3. An adjunction between C and Z(C7).

13

Centrality: Conditions for Centralisability

Theorem 2.11: Equivalent conditions for a monad 7 to have a centre:

1. All universal central cones.
2. A monad Z linked to Z(C).
3. An adjunction between C and Z(C7).

Corollaries (1) Strong monads on Set, DCPO, Top, Vect,... are centralisable.

13

Centrality: Conditions for Centralisability

Theorem 2.11: Equivalent conditions for a monad 7 to have a centre:

1. All universal central cones.
2. A monad Z linked to Z(C).
3. An adjunction between C and Z(C7).

Corollaries (1) Strong monads on Set, DCPO, Top, Vect,... are centralisable.
(2) A commutative monad is its own centre.

13

Centrality: Conditions for Centralisability

Theorem 2.11: Equivalent conditions for a monad 7 to have a centre:

1. All universal central cones.

2. A monad Z linked to Z(C).

3. An adjunction between C and Z(C7).

Corollaries (1) Strong monads on Set, DCPO, Top, Vect,... are centralisable.

(2) A commutative monad is its own centre.
(3) If C closed and total, every strong monad on it admits a centre.

13

Centrality: Conditions for Centralisability

Theorem 2.11: Equivalent conditions for a monad 7 to have a centre:

1. All universal central cones.
2. A monad Z linked to Z(C).
3. An adjunction between C and Z(C7).

Corollaries (1) Strong monads on Set, DCPO, Top, Vect,... are centralisable.
(2) A commutative monad is its own centre.
(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable?

13

Centrality: Conditions for Centralisability

Theorem 2.11: Equivalent conditions for a monad 7 to have a centre:

1. All universal central cones.

2. A monad Z linked to Z(C).

3. An adjunction between C and Z(C7).

Corollaries (1) Strong monads on Set, DCPO, Top, Vect,... are centralisable.

(2) A commutative monad is its own centre.
(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable? No, but only artificial counterexamples!

13

Centrality: Conditions for Centralisability

Theorem 2.11: Equivalent conditions for a monad 7 to have a centre:

1. All universal central cones.
2. A monad Z linked to Z(C).
3. An adjunction between C and Z(C7).

Corollaries (1) Strong monads on Set, DCPO, Top, Vect,... are centralisable.
(2) A commutative monad is its own centre.
(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable? No, but only artificial counterexamples!

If M monoid, X C Z(M) contains only central elements.

13

Centrality: Conditions for Centralisability

Theorem 2.11: Equivalent conditions for a monad 7 to have a centre:

1. All universal central cones.
2. A monad Z linked to Z(C).
3. An adjunction between C and Z(C7).

Corollaries (1) Strong monads on Set, DCPO, Top, Vect,... are centralisable.
(2) A commutative monad is its own centre.
(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable? No, but only artificial counterexamples!

If M monoid, X C Z(M) contains only central elements.

Central submonad: S — 7T with only central effects.

13

Centrality: Computational Interpretation

’ Language ‘ Model ‘
Simply-typed A-calculus (STAC) | Cartesian Closed Category (CCC)
Moggi's metalanguage CCC with strong monad 7 [Moggi89]
77 CCC with central submonad § — T

14

Centrality: Computational Interpretation

’ Language ‘ Model ‘
Simply-typed A-calculus (STAC) | Cartesian Closed Category (CCC)
Moggi's metalanguage CCC with strong monad 7 [Moggi89]
CSC CCC with central submonad § — T

CSC (Central Submonad Calculus):

Simply-typed A-calculus;
+ new types: SX and TX;
+ terms for monadic computation (a la Moggi);
+ equational rules, such as:

I doy x< 'M; do y< N; P
=doy y+ N, doy x+< M, P:TC

14

Centrality: Completeness and Internal Language

Completeness

T

Folklore: STMACs 1 CCCs

Internal Language

Completeness

T

Theorem 2.60 CSCs Il CSC-models

Internal Language

15

Centrality
Chapter 2

)

——

1) O

Quantum Control Reversible Recursion
Chapter 3 Chapter 4

Quantum Recursion
Chapter 5

Motivation

Usual quantum programming languages: unitaries (circuits) and measurement.

16

Quantum Control: Motivation

Usual quantum programming languages: unitaries (circuits) and measurement.

Example, Toffoli:

7
;

Tt T

16

Quantum Control: Motivation

Usual quantum programming languages: unitaries (circuits) and measurement.

Example, Toffoli:

Ei DHeyz — [0Ry®z
o7 T x®0)®z — x®[|0)®z
Helhez —» [He|l)e(1l-2)

16

Quantum Control: Motivation

Usual quantum programming languages: unitaries (circuits) and measurement.

Example, Toffoli:

Ei DHeyz — [0Ry®z

o7 T x®0)®z — x®[|0)®z
[z -e—{1}—e—{r] NHe|lhez —» [1)®[l)e(l-2)

Goal:

Represent syntactically normalised quantum states and unitaries. Based on [SVV18].

16

Quantum Control: Motivation

Usual quantum programming languages: unitaries (circuits) and measurement.

Example, Toffoli:

@i Deyez — [0)y®z

o7 T x®0)®z — x®[|0)®z
(i1 —o—{7}-o—{r] NHe|lhez —» [1)®[l)e(l-2)

Goal:

Represent syntactically normalised quantum states and unitaries. Based on [SVV18].

Difficulties:

= A notion of orthogonality for the norm.

= A notion of orthonormal basis for unitarity.

16

Quantum Control: The syntax

Types:
I Ao B A® B Nat

Terms and semantics as isometries:

17

Quantum Control: The syntax

Types:
I Ao B A® B Nat

Terms and semantics as isometries:

Syntax cr
1 1 _1_ 1

]

left +: I @1 " 0)
| 0]

right x: I®1I 1 1)

(- left %)+ (0 -right x): I @I g al0) 4+ 811)
17

Quantum Control: The syntax

Types:
I A®B A® B Nat

Terms and semantics as isometries:

Syntax cr
Qj
e IPI i
ﬁi‘| |9i)
[e51e%)
. Braz
Hh®t: (I6I)® (I6I) |91) @ |¢2)
a1

B152

17

Quantum Control: The syntax

Types:
I A®B A® B Nat

Terms and semantics as isometries:

Syntax /2(N)
zero: Nat t [1 @ oo } 0)
S zero: Nat t {0 10 } 1)

(- zero) + (5 - S S zero): Nat t[a 0 50 } a|0) + B12)

17

Quantum Control: Examples of Unitaries

Can be seen as A-abstractions with pattern-matching.

tt = right *
)] ff = left *
id = {x — x}:qub1t—>qub1t qubit = T &1
£ o tt qubit®? = qubit ® qubit
NOT = i qubit — qubit
tt — ff
ff —~ Lff+ Lt
QCoin = { ‘? \? } i qubit — qubit
tt — %ff %tt
SWAP = { Xy = yRx }: qubit®? — qubit®?
(ff) @ x = (ff)®x
CNOT = (tt) ® (£f) +— (tt) ® (tt) p: qubit®? — qubit®?
(tt) ® (tt) — (tt)® (ff)

18

Quantum Control: Orthogonality

Mathematically (Hilbert spaces): Syntactically:
= Normalised vector |¢). = Well-typed term A - ¢t: A.
= Orthogonality: |¢) L |1). = Orthogonality relation: t; L t,.
= Orthonormal basis (ONB): {|¢:)}:. = Orthogonal decomposition: OD({t}/).
= Normalised superposition: = Typed superposition:

If |¢;) are pairwise orthogonal,
and > |aif? =1,
then >, aj|¢j) is normalised.

Art:A Lt YlalP=1
A"Z,‘(O{,"f,‘)i A

19

Quantum Control: Orthogonal Decomposition

Mathematically (Hilbert spaces): Syntactically:
= Unitaries. = Syntactic unitaries.
= Orthonormal basis (ONB): {|¢:)}:. = Orthogonal decomposition: ODa({t}/).
= Bijection between two ONBs =
<> unitary. ODA({t;};)) ODg({t})) AiFt:A A;j-t:B
= Resolution of the identity. {t—t}:A>B

= Denotational resolution of the identity.

20

Quantum Control: Completeness

. Completeness i i
Equational theory (Theorem 3.67) Denotational semantics

(Figures 3.5-8) (Hilbert spaces and isometries)

Ftp=t:A ff [['l—tliA]]:[['l_tziA]]

™

Unique normal form
(Lemma 3.33)

21

Effects
X)
) O
Centrality Quantum Control Reversible Recursion
Chapter 2 Chapter 3 Chapter 4

Quantum Recursion
Chapter 5

Reversible Recursion: M

Question:

How does reversibility interact with infinite data?

22

Reversible Recursion: M

Question:

How does reversibility interact with infinite data?

In Chapter 4: Backward determinism Forward determinism
= Focus on classical reversible fragment. O\ .
= |nductive types. O
= A fixed point operator. Q//v .

[KaarsgaardRennela21]

22

Reversible Recursion: Mathematical model

Inverse category:
= Every morphism f has a partial inverse.
= Every morphism f has a domain f.

» < giff f= gf.

23

Reversible Recursion: Mathematical model

Inverse category: With a join structure:
= Every morphism f has a partial |r1verse. If £ g: X— Y agree on there domains,
= Every morphism f has a domain f. then fV g.

» < giff f= gf.

23

Reversible Recursion: Mathematical model

Inverse category: With a join structure:
= Every morphism f has a partial |r1verse. If £ g: X— Y agree on there domains,
= Every morphism f has a domain f. then fV g.

» < giff f= gf.

Together with function variables and a fixed point operator.

23

Reversible Recursion: Mathematical model

Inverse category: With a join structure:

= Every morphism f has a partial inverse. If £ g: X— Y agree on there domains,

= Every morphism f has a domain f. then fV g.
» < giff f=gf.

Together with function variables and a fixed point operator.
Given two sets A and B, the set [A — B] has nice properties for fixed points.

(A rig join inverse category is enriched in pointed dcpos.)

23

Reversible Recursion: Turing-completeness, Adequacy

This language is Turing-complete! (Theorem 4.60, proven by Kostia Chardonnet)

24

Reversible Recursion: Turing-completeness, Adequacy

This language is Turing-complete! (Theorem 4.60, proven by Kostia Chardonnet)

Theorem 4.29: Sound and adequate denotational semantics.

24

Reversible Recursion: Turing-completeness, Adequacy

This language is Turing-complete! (Theorem 4.60, proven by Kostia Chardonnet)
Theorem 4.29: Sound and adequate denotational semantics.
Concrete model: partial injective functions.

Theorem 4.61: Any computable partial injection is representable in the language.

24

Reversible Recursion: Turing-completeness, Adequacy

This language is Turing-complete! (Theorem 4.60, proven by Kostia Chardonnet)
Theorem 4.29: Sound and adequate denotational semantics.
Concrete model: partial injective functions.

Theorem 4.61: Any computable partial injection is representable in the language.

However!

24

Centrality
Chapter 2

) O

Quantum Control Reversible Recursion
Chapter 3 Chapter 4

Quantum Recursion
Chapter 5

Quantum Recursion?

The nice structure (inherited from partial injections) is not preserved.

25

Q tum Recursion?

The nice structure (inherited from partial injections) is not preserved.

Assumptions:

= Partial identity smaller than the identity.

= Order preserved by composition.

25

Quantum Recursion?

The nice structure (inherited from partial injections) is not preserved.

Assumptions:

= Partial identity smaller than the identity.

= Order preserved by composition.

25

Quantum Recursion?

The nice structure (inherited from partial injections) is not preserved.

Assumptions:

= Partial identity smaller than the identity.

= Order preserved by composition.

| —|
o =
o O
| S
IN
| —|
o =
= O
| S

thus [

Nig
S
—_
o
o o
|
Nis
| S —
IN
—
N
N
O
o
= 9
|
e
| I

25

Quantum Recursion?

The nice structure (inherited from partial injections) is not preserved.

Assumptions:

= Partial identity smaller than the identity.

= Order preserved by composition.

1
o =
=2 @

IN
| —|
o =
= O
| S

thus [

Sl
Sl
—
o
o O
[
Sl
Nl L L= T
INA
—
Sl
Sl
[
1
o =
e
|
Sl
—_

IN
o

25

An attempt: Guarded Recursion

Addition of:

= New types » A.

= New constructor next: pause the computation.

26

An attempt: Guarded Recursion

Addition of:

= New types » A.

= New constructor next: pause the computation.

Semantics of guarded recursion [BMSS12]. Xy < X1 < X5 < X3+ ...

The topos of trees Set'"”

26

An attempt: Guarded Recursion

Addition of:

= New types » A.

= New constructor next: pause the computation.

Semantics of guarded recursion [BMSS12]. Xy < X1 < X5 < X3+ ...
The topos of trees Set'" (CCC < A-calculus).

Results:

26

An attempt: Guarded Recursion

Addition of:

= New types » A.

= New constructor next: pause the computation.

Semantics of guarded recursion [BMSS12]. Xy < X1 < X5 < X3+ ...
The topos of trees Set'" (CCC < A-calculus).

Results:

= Defined a (non-cartesian) category enriched in Set" (Lemma 5.5).

26

An attempt: Guarded Recursion

Addition of:

= New types » A.

= New constructor next: pause the computation.

Semantics of guarded recursion [BMSS12]. Xy < X1 < X5 < X3+ ...
The topos of trees Set'" (CCC < A-calculus).

Results:

= Defined a (non-cartesian) category enriched in Set" (Lemma 5.5).

= Models inifinite data types and fixed point operators (Theorems 5.29 & 5.32).

26

Conclusion

Centrality and Monads, LICS’23

= With: Titouan Carette and Vladimir Zamdzhiev.
= What: Categorical study and computational interpretation of the centrality of effects.
= Why: A more refined view on the (non-)commutativity of effects.

27

Conclusion

Centrality and Monads, LICS’23

= With: Titouan Carette and Vladimir Zamdzhiev.
= What: Categorical study and computational interpretation of the centrality of effects.
= Why: A more refined view on the (non-)commutativity of effects.

Syntax for Quantum Control, Submitted

= With: Vladimir Zamdzhiev.
= What: Syntax and semantics for pure quantum computation.
= Why: Go beyond quantum circuits, master quantum control.

27

Conclusion

Centrality and Monads, LICS’23

= With: Titouan Carette and Vladimir Zamdzhiev.
= What: Categorical study and computational interpretation of the centrality of effects.
= Why: A more refined view on the (non-)commutativity of effects.

Syntax for Quantum Control, Submitted

= With: Vladimir Zamdzhiev.
= What: Syntax and semantics for pure quantum computation.
= Why: Go beyond quantum circuits, master quantum control.

Reversible Recursion, FSCD’'24

= With: Kostia Chardonnet, Benoit Valiron.
= What: Semantics for a Turing-complete reversible language.
= Why: Develop reversible languages and make a step towards quantum recursion.

27

