
Combining quantum and classical control: syntax,
semantics and adequacy

Kinnari Dave1,2, Louis Lemonnier3, Romain Péchoux2, and
Vladimir Zamdzhiev1

1 Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, Laboratoire Méthodes
Formelles, 91190, Gif-sur-Yvette, France

2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
3 University of Edinburgh

Abstract. The two main notions of control in quantum programming
languages are often referred to as “quantum” control and “classical” con-
trol. With the latter, the control flow is based on classical information,
potentially resulting from a quantum measurement, and this paradigm
is well-suited to mixed state quantum computation. Whereas with quan-
tum control, we are primarily focused on pure quantum computation and
there the “control” is based on superposition. The two paradigms have not
mixed well traditionally and they are almost always treated separately.
In this work, we show that the paradigms may be combined within the
same system. The key ingredients for achieving this are: (1) syntacti-
cally: a modality for incorporating pure quantum types into a mixed
state quantum type system; (2) operationally: an adaptation of the no-
tion of “quantum configuration” from quantum lambda-calculi, where the
quantum data is replaced with pure quantum primitives; (3) denotation-
ally: suitable (sub)categories of Hilbert spaces, for pure computation and
von Neumann algebras, for mixed state computation in the Heisenberg
picture of quantum mechanics.

1 Introduction
There are two important paradigms in the design of quantum programming

languages – “classical control” and “quantum control”. In the classical control ap-
proach (e.g., [18,20,19,5,16,12]) the control flow of a program is conditioned on
classical information that may result from quantum measurements. Type sys-
tems for quantum programming languages that are based on classical control
are able to represent a variety of effects, e.g., quantum state preparation, state
evolution through the application of unitary operators, and probabilistic effects
induced by quantum measurements. Because of this, it is natural to conceptu-
alise such lambda-calculi using quantum structures and models that are suited
to describing mixed-state quantum computation and information (e.g., density
matrices, superoperators). In the quantum control approach (e.g., [17,9,10,1,22]),
one usually places an emphasis on pure state quantum computation and more
specifically on superposition of terms, pure quantum states and unitary opera-
tors. In approaches that utilise classical control, one often starts with a selection

2

λy.let B(x⊗ xs) = Tof(y)

in case meas(x) of

{inl(∗) → B(CNOT)(xs),

inr(∗) → xs} Toffoli

T

T T †

CNOT

H T † T T † T H

Fig. 1: A program and the corresponding circuit
of constants that represent some unitary operators (e.g., Hadamard, CNOT)
and more complex unitary operations can be described in a circuit-like fashion
by composing the atomic unitaries in a suitable way. Whereas in the quantum
control approach, unitary operators are defined through more fundamental prim-
itives that do not require the programmer to specify a circuit-like decomposition
of the unitary operation. Because of this, a considerable economy in terms of
syntax can be achieved with quantum control. For example, consider the cir-
cuit in Figure 1. It uses the well-known Toffoli gate, which would have to be
decomposed as a large circuit like the one in the figure. However, the program
representing this circuit can instead be written as a simple lambda term in our
language given in Figure 1, where Tof ≜ B(ctrl CNOT). To highlight this further
note that the controlled Hadamard can be defined similarly to the Toffoli in our
language, but a typical classically controlled quantum programming language
would require two H gates, six T gates and one CNOT gate. Thus, our lan-
guage offers an ease of writing programs by abstracting away quantum circuits.
We aim to shift focus from drawing quantum circuits, which is a more low-level
approach to writing code, to writing programs directly using syntax, which is a
more high-level approach. In classical (non-quantum) programming, we can use
high-level languages to write algorithms without having to specify boolean cir-
cuits or to encode integers using tuples of bits/booleans. With our paper, we are
trying to advance quantum programming abstractions towards such a direction.
For example, an individual qnat |n⟩ can be used instead of a tensor of qubits
|q1q2...qk⟩ whose binary encoding corresponds to n. We view boolean circuits
and binary encodings of integers as low-level and likewise for their quantum
counterparts. Our aim is to develop higher-level quantum abstractions.

Our Contributions Because of the potential presence of quantum entangle-
ment, it is impossible (in general) to decompose a quantum state into a non-
trivial tensor product of two smaller quantum states. Indeed, in the quantum
lambda-calculus (QLC) [14], which is based on classical control, the type qbit
of qubits is an opaque type in the sense that there are no closed values of such
a type. Program states may be described via quantum configurations which are
triples (|ψ⟩ , ℓ,M), where |ψ⟩ ∈ C2n is a pure quantum state (possibly entan-
gled); M is a program possibly containing free variables of type qbit; ℓ is a
linking function that maps the free quantum variables of M to appropriate com-
ponents of the state |ψ⟩. It is possible to also view ℓ as a unitary permutation
acting on |ψ⟩ and this view is important for our development. Such configura-
tions, even though they are not part of the user-facing syntax, allow us to reason

3

about entangled states and the operational semantics are described via a relation
(|ψ⟩ , ℓ,M) →p (|ψ′⟩ , ℓ′,M ′), with p the probability of reduction.

The main idea that allows us to combine both quantum and classical control is
to modify the quantum configurations described above by replacing the quantum
state |ψ⟩ with a suitable pure quantum term t and to replace the linking function
ℓ with a suitable unitary permutation uσ, where both t and uσ are syntactic
constructs from our pure quantum language that may be assigned types.

In order to accurately model the situation with the QLC, the term t has to
correspond to a normalised vector and we replace the unitary constants from
the QLC with programmable unitary constructs, so the pure subsystem also has
to ensure their unitarity. Our pure subsystem is based on ideas described in
[3,17], but we further build on this by introducing an equational theory for our
pure subsystem, which has unique normal forms and we describe a denotational
semantics for it that is sound and complete with respect to the equational theory.

Next, we integrate the pure quantum subsystem into our main calculus, which
allows us to describe both quantum and classical information and, therefore also
classical control. This is a variant of the QLC with the addition of a modality
B(Q) which allows us to view pure quantum types Q as types of mixed state
quantum operations in the Heisenberg picture. The intuition behind this is the
following: mixed states in the Schrödinger picture can be seen as CPTP maps
(1 7→ ρ) : C → T (H) whereas mixed states in the Heisenberg picture are given
by functionals of the form tr(ρ−) : B(H) → C4, both of which are determined
by a choice of density operator ρ : H → H. This modality allows us to replace
the constants for state preparation and unitaries acting on qubits in the QLC
with terms and expressions from the pure subsystem acting on more general
quantum types beyond qubits. The operational semantics are described via a
suitable adaptation of the aforementioned quantum configurations. The deno-
tational semantics follows previous work on quantum programming semantics
based on von Neumann algebras [5,16,12] and we show, in addition, that the
assignment B(−) may be extended to a strict monoidal functor (between the
relevant categories of Hilbert spaces and von Neumann algebras) that is crucial
for our denotational semantics.

Overall, the two main contributions of our work are: (1) we show that quan-
tum and classical control can be combined in a syntactic, operational and deno-
tational sense by integrating a pure quantum control subsystem as part of the
meta-theory and syntax of a quantum lambda-calculus; (2) an equational theory
for a (sub)system for quantum control with unique normal forms and a sound
and complete denotational semantics. Some supplementary material including
extra examples, proofs, and complete figures for formation rule predicates are
provided in Appendix.

Related Work We begin by commenting on semantic approaches to classical
control. In [14], the authors describe a QLC where the higher-order primitives are
interpreted using techniques from the semantics of quantitative models of linear
4 T (H) and B(H) stand for the trace-class and bounded linear operators, respectively,

on a Hilbert space H.

4

Our
work Qunity λ-S1 Sym Quipper QWIRE Q.λ-calculus

[24] [9,10,1,8,2] [17] [11] [15] [14] [7,6,23] [21]
Quantum control ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Classical control ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Infinite dimensional
quantum type ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

Unitary function
spaces ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗

Normalised
quantum terms ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Denotational
semantics ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Adequacy ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Termination ✓ ✓ ✓ ✗∗ ✓ ✗∗ ✗∗ ✗∗

Fig. 2: A comparison of some quantum programming languages.
logic. In [7,6,23], the author(s) work with QLCs whose denotational semantics
is given via game semantics. More recently, in [21], the authors have shown
how to interpret a QLC with recursive types using presheaves that are enriched
over a suitable base category and they also prove full abstraction. The approach
that we use in this paper is based on von Neumann algebras which have been
previously used for the semantics of quantum programming languages [5,12,16].
In particular, if we disregard the interaction between the pure subsystem and
the main calculus, then our denotational model for the main calculus coincides
with the one in [5]. The reason that we choose von Neumann algebras over the
other approaches is because we think this gives the model which is the closest
to mathematical physics out of the ones mentioned. Furthermore, our primary
focus is not on developing the semantics of the classical paradigm; instead it is
on the interaction between the pure quantum control subsystem and the main
calculus based on classical control. Another distinguishing feature of our system,
compared to the ones above, is the addition of types such as B(qnat) which al-
low us to describe states in infinite-dimensional Hilbert spaces, such as ℓ2(N),
and which we do not think can be easily included using the other approaches.
For the quantum control paradigm, relevant work includes [9,10,1,8,2]. What

all these approaches have in common is that they have specific terms in their
syntax for representing superposition. However, these approaches do not ensure
unitarity of the relevant function spaces, in general. Our approach, instead, is
based on related work first described in [17] and then later in [3]. One of the most
distinctive features of this approach to quantum control is that the terms that
introduce superposition are subject to strict formation conditions that ensure
(linear algebraic) normalisation of the corresponding vectors. Furthermore, this
approach to quantum control also imposes strict admissibility criteria on the
unitary function spaces that can be formed through the type system and this
ensures unitarity of the relevant expressions. Because of these considerations, we
choose this approach to model quantum control in our pure subsystem. However,
we have made some changes, in particular, we replace the operational seman-
tics from these works with an equational theory instead. This works better for

∗ These languages admit general recursion.

5

our approach to combining quantum and classical control within the quantum
configurations (in QLCs the quantum data is considered modulo equality). We
continue building on this development by describing a denotational semantics
that is sound and complete with respect to the equational theory. This is the
first such result for languages with quantum control.

Another paper which combines quantum and classical control is Qunity [24].
However, compared to our work, Qunity does not have an operational semantics,
but instead there is a compilation procedure to quantum circuits. Furthermore,
the denotational semantics of Qunity: (1) does not ensure unitarity and normal-
isation of the pure primitives in its language, whereas ours does; (2) does not
ensure trace-preservation of the mixed primitives in the Schrödinger picture,
whereas ours does indeed ensure unitality of the mixed primitives in the Heisen-
berg picture (which corresponds to trace-preservation under the Heisenberg-
Schrödinger duality). Other differences include that Qunity is restricted to finite-
dimensional quantum data and they do not have higher-order lambda abstrac-
tions for dealing with mixed-state primitives. Instead, Qunity relies on a try-
catch mechanism to combine quantum and classical control, whereas our ap-
proach is based on quantum configurations. The table in Figure 2 gives a com-
parison of our work with other quantum programming languages. Normalised
quantum terms refers to the property that terms representing pure/mixed quan-
tum states always correspond to complex vectors with norm one/density oper-
ators with trace one. Adequacy refers to the property that two observationally
distinct programs have distinct denotational interpretations.

2 Quantum Control

This part is adapted from one of the authors’ PhD thesis [13, Chapter 3], to
which we refer the readers for full detail and proofs.

We write Unitary ⊆ Isometry ⊆ Hilb for the (sub)categories whose ob-
jects are the Hilbert spaces and whose morphisms are the unitaries (resp. isome-
tries, bounded linear maps) between them.

2.1 Pure Quantum Syntax

We begin by describing a subsystem for quantum control. The syntax is based
on symmetric pattern-matching [17]. The pure quantum types are given by the
following grammar: Q ::= I | Q1 ⊗Q2 | Q1 ⊕Q2 | qnat.

We interpret every quantum type as a separable Hilbert space: the unit type
is interpreted as JIK ≜ C; pair types are interpreted as tensor products; (quan-
tum) sum types are interpreted as direct sums; finally, JqnatK ≜ ℓ2(N). The type
of qubits may be defined as qbit ≜ I ⊕ I. We write qbitn for the n-fold tensor
product qbit⊗ · · ·⊗qbit. The Hilbert space ℓ2(N) allows us to form superposi-
tions with respect to a countable orthonormal basis (e.g., 1/

√
2 |3⟩+ 1/

√
2 |7⟩). We

may think of ℓ2(N) as a quantum analogue of the natural numbers, to abstract
from qubit-level computation. The addition of qnat allows us to reason about
pure quantum computation while abstracting away from quantum circuits.

6

b ::= x | ∗ | inl b | inr b | b1 ⊗ b2 | 0 | S b

v ::=
∑

i∈Iαi · bi
u ::= { | b1 7→ v1 . . . | bn 7→ vn } | u1 ⊕ u2 | u1 ⊗ u2 | u2 ◦ u1 | u∗ | ctrl u

t ::= x | ∗ | inl t | inr t | t1 ⊗ t2 | 0 | S t | u t |
∑

i∈Iαi · ti

Fig. 3: Term grammar for the pure quantum subsystem.
The unitary types, written as U(Q1,Q2), represent the unitary function

spaces of our language. They are not interpreted as Hilbert spaces, but as sets of
unitary operators: JU(Q1,Q2)K ≜ {u : JQ1K → JQ2K | u is a unitary operator}.

We now describe the language of the pure quantum subsystem whose gram-
mar is given in Figure 3. (Pure) Terms t are written in bold notation in order
to distinguish with other syntactic constructs. The symbols x,y, z denote pure
quantum variables. We write inlQ1⊕Q2

t and inrQ1⊕Q2
t for sum type injec-

tions, and, for brevity, we often omit writing the subscripts. The term t1 ⊗ t2 is
used for forming pairs of terms. The terms 0 and S t represent the qnat |0⟩ and
the qnat |n+ 1⟩, provided that t represents the qnat |n⟩. We define |n⟩ ≜ Sn 0
and

∣∣t+n
〉
≜ Sn t, for n ∈ N. The term u t represents the application of a

unitary u to a term t. Superpositions are represented by the term
∑

i∈Iαi · ti.
We impose strict conditions on these terms that ensure normalisation in §2.2.

In Figure 3, the Basis Terms (ranged over by symbols b, bi) are the simplest
kind of pure terms. The (pure) Values, ranged over by v and defined in Figure
3, are the normal forms in this subsystem. They are of the form

∑
i∈I αi · bi,

where αi ∈ C, bi are basis terms, and I is a finite index set. We consider I as a
totally ordered set so that we can work with unique normal forms. We also write
α1 · b1 + · · · + αn · bn for

∑
i∈{1,...,n} αi · bi. The formation conditions (§2.2)

ensure that all terms in the sums are pairwise distinct, orthogonal, and of the
same type, and thus well-formed values correspond to normalised vectors. In our
equational theory, every quantum term t can be rewritten to a normalised pure
value v (Proposition 3). The values are the canonical forms of this subsystem.
Example 1. The basis term ∗ : I represents the complex scalar 1 ∈ C. The basis
terms that represent the computational basis for qubits can be defined by |0⟩ ≜
inl ∗ : qbit and |1⟩ ≜ inr ∗ : qbit. Other basis terms that can be defined include
|00⟩ ≜ |0⟩ ⊗ |0⟩ : qbit2 and |11⟩ ≜ |1⟩ ⊗ |1⟩ : qbit2. If b is a basis term, we
often write it as |b⟩ to distinguish it from other (non-basis) terms, e.g., |2⟩ : qnat
represents the qnat |2⟩ ∈ ℓ2(N). Single-qubit states may be defined by |±⟩ ≜
(1/

√
2 · |0⟩± 1/

√
2 · |1⟩) : qbit. (Entangled) quantum states can be defined, e.g.,

Bell ≜ (1/
√
2 · |00⟩+ 1/

√
2 · |11⟩) : qbit2. Linear combinations of qnats can also

be written in the language, i.e. (1/√2 · |0⟩+ 1/
√
6 · |1⟩+ 1/

√
3 · |2⟩) : qnat.

Next, we describe the Unitaries u of Figure 3. Unitary pattern-matching
{ | b1 7→ v1 . . . | bn 7→ vn } allows us to build unitary maps out of basis terms
and values: every closed basis term bi is mapped to the closed value vi; ba-
sis terms with free variables bi determine a mapping through the use of sub-
stitution with respect to the corresponding value vi, wherein both bi and vi

7

have the same free variables occurring within them, and the induced mapping
is determined by performing all possible substitutions of the free variables on
both sides with the same closed basis terms. The formation conditions (§2.2)
ensure that the basis terms bi (resp. the values vi) determine an ONB for
the type Q1 (resp. Q2) and therefore { | b1 7→ v1 . . . | bn 7→ vn } determines
a unitary map. We introduce syntactic sugar for quantum if statements, writ-
ten qif. If u1 is of the form { | b1 7→ v1 . . . | bn 7→ vn } and u2 of the form{
| b′1 7→ v′

1 . . . | b′m 7→ v′
m

}
then qif x then x⊗ u2 else x⊗ u1 is short for

the unitary:
|0⟩ ⊗ b1 7→ |0⟩ ⊗ v1

...
|0⟩ ⊗ bn 7→ |0⟩ ⊗ vn

,

|1⟩ ⊗ b′1 7→ |1⟩ ⊗ v′
1

...
|1⟩ ⊗ b′m 7→ |1⟩ ⊗ v′

m

Example 2. The unitaries Had and CNOT below encode the standard Hadamard
and CNOT gates, respectively. CNOT makes use of some simple pattern-matching
on its last line: it can match either with |0⟩⊗ |0⟩ or with |0⟩⊗ |1⟩. The unitary
Hadqnat defines an extension of the Hadamard gate on the space ℓ2(N).

Had : U(qbit,qbit)

Had≜

{
| |0⟩ 7→ 1/

√
2 · |0⟩+ 1/

√
2 · |1⟩

| |1⟩ 7→ 1/
√
2 · |0⟩ − 1/

√
2 · |1⟩

} CNOT : U(qbit2,qbit2)

CNOT≜

 | |1⟩⊗ |0⟩ 7→ |1⟩⊗ |1⟩
| |1⟩⊗ |1⟩ 7→ |1⟩⊗ |0⟩
| |0⟩⊗ |x⟩ 7→ |0⟩⊗ |x⟩

Hadqnat : U(qnat,qnat)

Hadqnat≜

 | |0⟩ 7→ 1/
√
2 · |0⟩+ 1/

√
2 · |1⟩

| |1⟩ 7→ 1/
√
2 · |0⟩ − 1/

√
2 · |1⟩

|
∣∣x+2

〉
7→

∣∣x+2
〉

The remaining expressions for forming unitaries are easy to understand: u2 ◦

u1 represents composition of unitaries, u∗ represents the adjoint of a unitary,
u1 ⊗ u2 and u1 ⊕ u2 represent tensor products and direct sums of unitaries,
and finally, ctrl u represents a qubit-controlled unitary operator. For simplicity,
we sometimes write {. . . | bi 7→ vi . . .} as a shorthand notation for the unitary
{ | b1 7→ v1 . . . | bn 7→ vn }, when n is clear from context or unimportant. We
also point out that unitaries depend only on values and basis terms and that
general pure terms cannot be used for the construction of unitaries.

2.2 Formation Conditions

In order to guarantee (linear-algebraic) normalisation for quantum terms
and unitarity for functions, we rely on formulating: (1) a suitable orthogonality
relation ⊥ ⊆ Terms ×Terms, which is used as part of the formation condition
of some terms; (2) additional predicates ONBQ and ONBval

Q which ensure that
a set of basis terms/values of type Q determines an ONB which is used as part
of the formation conditions for the atomic introduction rule of unitaries.

The relation ⊥ is defined as the smallest binary relation ⊥ ⊆ Terms ×
Terms that is closed under the rules in Figure 4. Quantum terms that are
orthogonal via this relation are orthogonal in a denotational sense as well (§2.3).

8

inl t1 ⊥ inr t2 0 ⊥ S t

t1 ⊥ t2
u t1 ⊥ u t2

j ̸= k. tj ⊥ tk
∑

i∈J∪K αiβi = 0∑
j∈J (αj · tj) ⊥

∑
k∈K(βk · tk)

Fig. 4: Rules for the orthogonality relation (excerpt).

ONBQ({x}) ONBI({∗})
ONBQ1

(S) ONBQ2
(T)

ONBQ1⊕Q2
({inl b | b ∈ S} ∪ {inr b | b ∈ T})

ONBQi
(πi(S)) ∀b ∈ πi(S), ONBQj

(Si
b)

i, j ∈ {1, 2}, i ̸= j
ONBQ1⊗Q2

(S)

ONBqnat(S)

ONBqnat({0} ∪ {S b | b ∈ S})
(αb,b′)(b,b′)∈S×S is a unitary matrix ONBQ(S)

ONBval
Q ({

∑∗
b′∈S αb,b′ · b′ | b ∈ S})

Fig. 5: Orthonormal basis predicates.
This relation allows us to enforce the orthogonality of terms appearing within
a superposition

∑
i∈I(αi · ti). Under the assumption that all terms ti represent

normalised vectors that are pairwise orthogonal, the norm of the superposition
is easy to calculate (statically), and it is given by

∑
i∈I |αi|2. This justifies the

formulation of the introduction rule for superposition (Figure 6) and guarantees
that the vector represented by this superposition of terms is normalised.
Example 3. The rules for the orthogonality relation are not restricted to closed
quantum terms, e.g., 0 ⊥ S x and inl x ⊥ inr y. One can also show that |+⟩ ⊥
|−⟩ (defined in Example 1). However, we cannot show that Had |0⟩ ⊥ |−⟩ even
though Had |0⟩ is equal to |+⟩ with respect to our equational logic and also
with respect to our denotational semantics (both introduced later). The reason
for this is that we wish to define the orthogonality relation statically.

In order to determine whether a finite set S of (potentially open) basis terms
determines an ONB for a type Q, we introduce the orthonormal basis predicates
ONBQ(S) in Figure 5, originally known as orthogonal decomposition [17]. Note
that there is a mistake with the rule for the tensor product in the original paper,
e.g. it does not allow for the typing of a CNOT.

Given a type Q and a finite set of basis terms S, we say that S determines
an orthonormal basis of Q, which we write as ONBQ(S), if this can be derived
via the rules in Figure 5. We now explain some of the notation used therein. If S
is a set of the form {b1 ⊗ b′1, . . . , bn ⊗ b′m} then we define π1(S) ≜ {b1, . . . , bn}
and π2(S) ≜ {b′1, . . . , b

′
m}. In this situation, we also define S1

b ≜ {b′ | b⊗b′ ∈ S}
and S2

b′ ≜ {b | b ⊗ b′ ∈ S}. Furthermore, the ONB predicate implies pairwise
orthogonality of the associated values. Note that the predicate ONBQ(S) is
defined for a finite set S consisting of basis terms. But, in order to be able to
define unitaries that make use of superposition, we also work with other ONBs.
Given a finite set S consisting of values, we say that S determines an ONB of type
Q, and we write ONBval

Q (S) to indicate this, whenever this can be derived via
the rules in Figure 5. We also introduce syntactic sugar: the value

∑∗
i∈I αi ·bi is

9

⊩ u : U(Q1,Q2) Γ ⊢ t : Q1

Γ ⊢ u t : Q2

∀k, Γ ⊢ tk : Q ∀k ̸= j, tk ⊥ tj
∑

i∈I |αi|2 = 1

Γ ⊢
∑

i∈I αi · ti : Q

∀i, Γ i ⊢ bi : Q1 ONBQ1
{b1, . . . , bn}

∀i, Γ i ⊢ vi : Q2 ONBval
Q2

{v1, . . . ,vn}
⊩ { | b1 7→ v1 . . . | bn 7→ vn } : U(Q1,Q2)

⊩ u1 : U(Q1,Q2) ⊩ u2 : U(Q3,Q4)

⊩ u1 ⊕ u2 : U(Q1 ⊕Q3,Q2 ⊕Q4)

⊩ u1 : U(Q1,Q2) ⊩ u2 : U(Q3,Q4)

⊩ u1 ⊗ u2 : U(Q1 ⊗Q3,Q2 ⊗Q4)

⊩ u1 : U(Q1,Q2) ⊩ u2 : U(Q2,Q3)

⊩ u2 ◦ u1 : U(Q1,Q3)

⊩ u : U(Q1,Q2)

⊩ u∗ : U(Q2,Q1)

⊩ u : U(Q,Q)

⊩ ctrl u : U(qbit ⊗Q,qbit ⊗Q)

Fig. 6: Formation rules for terms and unitaries (excerpt).
the finite linear combination where elements with scalar 0 are omitted. In other
words, the indices i ∈ I such that αi = 0 are ignored, e.g., if α1 = 1 and α2 = 0,∑∗

i∈{1,2} αi · bi is the value
∑

i∈{∗} 1 · b1.
Example 4. For qbit, the rules from Figure 5 show that ONBqbit({|0⟩, |1⟩})
and that ONBval

qbit({|+⟩, |−⟩}) hold (with |±⟩ defined in Example 1). We also
have that ONBqbit({x}), where x is a variable. In other words, we determine an
ONB for the type qbit by substituting x with all possible closed computational
basis terms of type qbit (see Figure 3). For qnat, any set S with the property
that ONBqnat(S) holds, must contain a term that is not closed. We have that
ONBqnat({|x⟩}), ONBqnat({|0⟩,

∣∣x+1
〉
}), and ONBqnat({|0⟩, |1⟩,

∣∣x+2
〉
}) hold

true and determine the same ONB for the type qnat (it represents the computa-
tional basis of ℓ2(N)). The set used in the last predicate allows us to conclude that
ONBval

qnat
({

1/
√
2 · |0⟩+ 1/

√
2 · |1⟩, 1/√2 · |0⟩− 1/

√
2 · |1⟩,

∣∣x+2
〉})

holds. This last
set of values is used to type Hadqnat from Example 2.

Judgements for pure quantum terms have the form Γ ⊢ t : Q where Γ stands
for a linear context of the form Γ ≜ x1 : Q1, . . . ,xn : Qn. The formation rules for
terms are presented in Figure 6; the first two lines are standard for a linearly-
typed term calculus. The rule for superposition depends on the orthogonality
relation ⊥, and the premise ensures that the resulting superposition corresponds
to a normalised vector. This is made precise later (Theorem 1). Finally, the
formation rule for u t, i.e. the application of a unitary u to a term t, is akin
to function application in lambda-calculi. However, the complexity is primarily
relegated to the judgement ⊩ u : U(Q1,Q2), which ensures the unitarity of u.

The formation rules for unitaries are presented in Figure 6. In the intro-
duction rule for atomic unitaries { | b1 7→ v1 . . . | bn 7→ vn }, we have that the
potentially open basis terms {b1, . . . , bn} (resp. values {v1, . . . ,vn}) determine
an ONB for Q1 (resp. Q2) in the sense explained above. Then the resulting
bijective mapping that associates bi to vi uniquely determines a unitary. The
formation rules for the remaining unitaries are straightforward, and they align
easily with the mathematical intuition that motivates them. We also wish to
note that unitaries do not depend on general terms (see Figure 3).

10

2.3 Denotational Semantics for Pure Quantum System

Recall (§2.1) that the interpretation of a pure quantum type Q is a Hilbert
space JQK, i.e., an object of the category Isometry, and the interpretation of a
unitary type U(Q1,Q2) is the set JU(Q1,Q2)K of unitaries in JQ1K → JQ2K.

A linear context is interpreted in the usual way JΓ K ≜ JQ1K⊗· · ·⊗JQnK. The
interpretation of a judgement Γ ⊢ t : Q is given by a morphism JΓ ⊢ t : QK ∈
Isometry(JΓ K, JQK). We also sometimes abuse notation and write JtK for brevity
instead of JΓ ⊢ t : QK. For closed quantum terms · ⊢ t : Q, we interpret the
empty context as C (the tensor unit in Isometry) and so we can identify
J· ⊢ t : QK(1) with a normalised vector.

Every value v is of the form
∑

i∈Iαi · bi, but the sum is subject to strict
admissibility conditions imposed by the orthogonality relation ⊥ from §2.2. The
denotational significance of this relation is provided by the statement: given
Γ 1 ⊢ t1 : Q and Γ 2 ⊢ t2 : Q, if t1 ⊥ t2 then Jt1K

∗Jt2K = 0JΓ 2K,JΓ 1K; which is
central in proving that the interpretation of values is well-defined as isometries.

The most challenging unitaries to interpret are the unitary pattern-matchings,
constructed through the use of basis terms and values (but not general terms).
Another key role is played by the ONBQ and ONBval

Q predicates: they can be
understood as determining suitable ONBs of the corresponding types. The de-
notational significance of these predicates is that they give us a resolution of the
identity at type Q, as made precise by the following proposition.

Proposition 1. Let Γ 1 ⊢ v1 : Q, . . . ,Γ n ⊢ vn : Q be well-formed values. If
ONBval

Q {v1, . . . ,vn}, then idJQK =
∑n

i=1 JviK ◦ JviK
∗
.

Pattern-matching is then interpreted by J⊩ {. . . |bi 7→ vi . . .}K ≜
∑

iJviK ◦ JbiK
∗,

and the previous proposition ensures it is unitary. Finally, we can show that the
interpretation of all pure quantum terms is well-defined as isometries.

Theorem 1. If Γ ⊢ t : Q, then JtK ∈ Isometry(JΓ K, JQK).

Moreover, any canonical symmetric monoidal isomorphism can be repre-
sented by the unitaries of our language. The canonical symmetric monoidal
isomorphisms are simply those that can be defined using the structure of a
symmetric monoidal category only, i.e. isomorphisms that are given by: left and
right unitors, symmetric swaps, associators, closed under composition and tensor
products. We use this result later for quantum configurations.

Proposition 2. Let Q1 and Q2 be two pure types, and let f : JQ1K → JQ2K
be a canonical symmetric monoidal isomorphism. Then, there exists a unitary
⊩ u : U(Q1,Q2) such that JuK = f .

2.4 Equational Theory

We now describe the equational theory of the pure quantum subsystem. Given
two pure quantum terms t1 and t2, we write Γ ⊢ t1 = t2 : Q to indicate that
t1 equals t2 as terms of type Q in context Γ . As usual if Γ ⊢ t1 = t2 : Q, the
rules imply that Γ ⊢ t1 : Q and Γ ⊢ t2 : Q. We now explain some of the more

11

interesting rules in greater detail. The rules of the equational theory are divided
into four groups. The first one is concerned with the usual rules for reflexivity,
symmetry and transitivity. Secondly, we provide rules to handle linear algebraic
identities, such as exchanging sums and the linearity of injections and unitaries;
this also contains the rule Γ ⊢

∑1
i=1 1·t = t : Q. A small excerpt is found below.

Γ ⊢
∑

iαi ·
(∑

jβi,j · tj
)
: Q

Γ ⊢
∑

iαi ·
(∑

jβi,j · tj
)
=

∑
j

(∑
iαiβi,j

)
· tj : Q

⊩ u : U(Q1,Q2) Γ ⊢
∑

iαi · ti : Q1

Γ ⊢ u (
∑

iαi · ti) =
∑

iαi · (u ti) : Q2

Congruence rules comprise the third group, e.g., Γ ⊢ S t1 = S t2 : qnat
given that Γ ⊢ t1 = t2 : qnat. Last but not least are the computational rules,
which, read left to right, can be seen as providing an operational semantics.
The most important rule and our version of β-reduction, is the rule for unitary
pattern-matching applied to a basis term.

· ⊢ b′ : Q1 ⊩ { | b1 7→ v1 . . . | bn 7→ vn } : U(Q1,Q2) s(bj) = b′

· ⊢ { | b1 7→ v1 . . . | bn 7→ vn } b′ = s(vj) : Q2

The formation conditions on unitary pattern-matching ensure that ONBQ1
({bi}i).

With the latter, and given · ⊢ b′ : Q1, there exists a unique substitution s and a
unique bj such that s(bj) = b′. The resulting term of the rule is then the same
substitution applied to the corresponding output vj . Such substitutions were
first defined in [17], and can be deduced via an inference system.

Proposition 3. Given · ⊢ t : Q, there is a unique value v s.t. · ⊢ t = v : Q.

This proposition shows that pure terms have a unique normal form. It is crucial
for the proof of the completeness theorem, and comes in handy in the rest of the
paper, especially to define the reduction system for the main calculus (§3).

Theorem 2 (Completeness). · ⊢ t1 = t2 : Q iff J· ⊢ t1 : QK = J· ⊢ t2 : QK.

3 Combining Classical and Quantum Control
This section lays down the syntax and semantics of the main calculus, which

combines the quantum control fragment with a classically controlled layer, a
variant of a call-by-value linear lambda-calculus. The subsystem which we pre-
sented in the previous section is designed to represent pure quantum information
and computation, whereas in this section, we are concerned with mixed quan-
tum information and computation. Our denotational approach towards this uses
von Neumann algebras, which provide an appropriate mathematical setting to
achieve this treatment. Operationally, this is achieved by adapting the config-
urations (also called closures) (|ψ⟩ , ℓ,M) from an effectful quantum lambda-
calculus, e.g., [5,20], by replacing the quantum state |ψ⟩ with a pure term t,
replacing the linking function ℓ with a unitary u that can be described via our
syntax and which represents a suitable permutation, and finally by defining suit-
able formation conditions for the configuration.

12

(Vars) x, y, z
(Types) A,B ::= I | A+ B | A⊗ B | !A | A⊸ B | Nat | B(Q)
(Terms) L,M,N ::= ∗ | x | inl(M) | inr(N) | caseL of {inl(x)→M, inr(y)→N}

| M ⊗N | let x⊗ y = M in N | lift(M) | force(M)
| λx.M | M N
| zero | succ(M) | matchLwith {zero→M, succ(x)→N}
| pure(t) | meas(M) | B(u)(M)
| let B(z) = M in N | let B(x⊗ y) = M in N

(Values) V,W ::= ∗ | x | inl(V) | inr(W) | V ⊗W | lift(M) | λx.M
| zero | succ(V)

Fig. 7: Syntax of the classically controlled system.
3.1 Syntax and Typing Rules

The types of the main calculus, ranged over by capital Latin letters (e.g.,
A,B) are given in Figure 7. All types except Nat and B(Q) are standard in a
system for a classical call-by-value linear lambda-calculus. Nat is a ground type
representing classical natural numbers and B(Q) is the type that represents
mixed state quantum computation on the Hilbert space determined by the type
Q. As we see later, this type plays an important role by introducing quantum
and probabilistic effects into the system. The modality B is inspired from the de-
notational model, where B(H) represents the von Neumann algebra of bounded
operators on the Hilbert space H.

Terms (and values) of the calculus are described in Figure 7. The term pure(t)
models the preparation of a pure quantum state represented by the quantum
term t. Measurement is modelled by the term meas(M). The term B(u)(M)
represents the application of the unitary u to a term M . Additionally, we have
two syntactic constructs to model the isomorphism between the types B(Q1 ⊗
Q2) and B(Q1) ⊗ B(Q2): the term let B(z) = M in N allows one to construct
a term of type B(Q1 ⊗Q2) from a term of type B(Q1) ⊗ B(Q2) and the term
let B(x⊗y) =M in N deals with the opposite direction. This isomorphism arises
because the functor B(·) used in the denotational model is strict monoidal. Both
constructs are necessary to allow the language to manipulate composed quantum
systems and also terms possibly representing entangled states.

Typing contexts (ranged over by symbols ∆,Σ1, Σ2) are finite sequences ∆ ≜
x1 : A1, . . . , xn : An mapping variables to types. We use the notation !∆ for
contexts of the form x1 : !A1, . . . , xn : !An. Typing judgements have the form
∆ ⊢M : A and follow a linear typing discipline to deal with quantum data. The
typing rules are given in Figure 8 where, as usual, Σ1, Σ2 denotes the disjoint
union of Σ1 and Σ2. Classical bits correspond to the type bit ≜ I + I and mixed
state qubits have type qbit ≜ B(qbit). The rule for the term pure(t) introduces
a state t from the quantum control fragment as a term of type B(Q) into the
main calculus. The typing rule for measurement maps a term M of quantum
type B(Q) to a term meas(M) of classical type Q, where the type Q is defined
inductively on the structure of the pure quantum type Q:

I ≜ I, Q1 ⊗Q2 ≜ Q1 ⊗Q2, Q1 ⊕Q2 ≜ Q1 +Q2, qnat ≜ Nat.

13

!∆,Σ1 ⊢ L : A + B !∆,Σ2, x : A ⊢ M : C !∆,Σ2, y : B ⊢ N : C

!∆,Σ1, Σ2 ⊢ caseL of {inl(x)→M, inr(y)→N} : C

∆,x : A ⊢ M : B

∆ ⊢ λx.M : A⊸ B

!∆,Σ1 ⊢ M : A⊸ B !∆,Σ2 ⊢ N : A

!∆,Σ1, Σ2 ⊢ M N : B

!∆,Σ1 ⊢ L : Nat !∆,Σ2 ⊢ M : A !∆,Σ2, x : Nat ⊢ N : A

!∆,Σ1, Σ2 ⊢ matchLwith {zero→M, succ(x)→N} : A

· ⊢ t : Q

!∆ ⊢ pure(t) : B(Q)

∆ ⊢ M : B(Q)

∆ ⊢ meas(M) : Q

⊩ u : U(Q1,Q2) !∆,Σ1 ⊢ M : B(Q1)

!∆,Σ1 ⊢ B(u)(M) : B(Q2)

!∆,Σ1 ⊢ M : B(Q1)⊗ B(Q2) !∆,Σ2, z : B(Q1 ⊗Q2) ⊢ N : A

!∆,Σ1, Σ2 ⊢ let B(z) = M in N : A

!∆,Σ1 ⊢ M : B(Q1 ⊗Q2) !∆,Σ2, x : B(Q1), y : B(Q2) ⊢ N : A

!∆,Σ1, Σ2 ⊢ let B(x⊗ y) = M in N : A

Fig. 8: Typing rules for terms (excerpt).
This gives the classical analogue of the type Q, e.g., qbit = bit. For a quantum
basis term b of type Q, b (defined below) denotes its translation to a classical
value of type Q, which we use to represent measurement outcomes.

∗ ≜ ∗, b1 ⊗ b2 ≜ b1 ⊗ b2, inl b ≜ inl(b), 0 ≜ zero, S b ≜ succ(b).

3.2 Operational Semantics

Quantum configurations. We lay down the operational semantics of the calculus
using an adaptation of the notion of a quantum configuration.

Definition 1 (Quantum Configuration). Let Conf be the set of quantum
configurations C ≜ (t, uσ,M), where:

– t ∈ Terms represents a pure quantum state;
– uσ ∈ Unitaries represents a symmetric monoidal isomorphism;
– M ∈ Terms is a term from the main calculus.

In the above definition, we can think of the quantum term t as representing
a quantum state, because the quantum control fragment ensures that t can be
rewritten (in its equational theory) to a unique quantum value (Proposition 3).
Next, uσ permutes the components of t so that they appear in the same order as
variables that represent them in M . We slightly abuse terminology and refer to
uσ as a permutation, but it is meant to be understood as a canonical symmetric
monoidal isomorphism (see Proposition 2). If we fix the domain and codomain
of uσ, then the essential data is given by a choice of permutation σ and this
makes it easier to understand how each unitary acts on the coordinates, and the
contextual rules formulation becomes precise. Note that, thanks to Proposition
2, the pure quantum syntax is expressive enough to represent all the monoidal
permutations that we need in the sequel.
Example 5. Consider the quantum configuration (t, uid, x⊗ y), where we have
t ≜ ∗ ⊗ (1/

√
2 · |0⟩ ⊗ |0⟩+ 1/

√
2 · |1⟩ ⊗ |1⟩) and uid ≜ {| ∗ ⊗ w ⊗ z 7→ w ⊗ z}

14

is a unitary with type ⊩ uid : U(I ⊗ qbit ⊗ qbit,qbit ⊗ qbit). It conveys the
information that the variable x in x ⊗ y keeps track of the first qubit in t and
that the variable y keeps track of the second one. Whereas in the configuration
(t, uswap, x ⊗ y) with uswap ≜ {| ∗ ⊗ w ⊗ z 7→ z ⊗ w}, the variable x keeps
track of the second qubit and y of the first one. Note that, due to quantum en-
tanglement, the term t cannot be decomposed into a non-trivial tensor product,
and the variables x and y should be thought of as identifying qubit components
of t, instead of storing quantum data themselves.

A quantum configuration V = (v, uσ, V), when both the quantum term v
and term V are values, is called a value configuration. For example, (|0⟩ , uid, x)
is a value configuration. A quantum configuration SV = (v, uσ,M), where v is
a quantum value, is a semi-value configuration. We write VConf (resp. SVConf)
for the set of (resp. semi-)value configurations. The reason we introduce semi-
value configurations, is because they allow us to define our operational semantics
for the main calculus modulo equality of the pure quantum terms t (analogous
to the quantum lambda-calculus). We already proved that values v are normal
forms for the pure terms (Proposition 3), so this makes them a natural choice.

Definition 2. A quantum configuration (t, uσ,M) is well-formed with type A,
written as (t, uσ,M) : A if the following judgments can be derived:
– · ⊢ t : Q1 ⊗ · · · ⊗Qn;
– · ⊩ uσ : U(Q1 ⊗ · · · ⊗Qn,Q

′
1 ⊗ · · · ⊗Q′

m);
– x1 : B(Q′

1), . . . , xm : B(Q′
m) ⊢M : A.

We write WFX(A) for the set of well-formed configurations in X with type
A, where X ∈ {Conf, VConf, SVConf}.
Example 6. The configuration ((1/

√
2 · |00⟩ + 1/

√
2 · |11⟩) ⊗ |0⟩, uid, x ⊗ y)

with:
– · ⊢ (1/

√
2 · |00⟩ + 1/

√
2 · |11⟩)⊗ |0⟩ : qbit3;

– · ⊩ uid : U(qbit3,qbit3);
– x : B(qbit2), y : qbit ⊢ x⊗ y : B(qbit2)⊗ qbit.

In this configuration, uid is just the identity, x points to the Bell state in t
whereas y points to |0⟩. We have n = 3,m = 2, with Q1 = Q2 = Q3 = qbit,
Q′

1 = qbit2 and Q′
2 = qbit. The configuration is well-formed.

The above example highlights the need for m and n (from Definition 2) to
be different values. The intuition behind this difference is that the unitary uσ
partitions the n quantum types into m blocks, where each block is represented by
a variable in M . Furthermore, in situations where we wish to combine two such
blocks which are not next to each other in the tensor expression of the n types,
we allow the possibility of permuting these blocks and merging them so that
now two blocks that were initially represented by two variables are represented
by one. This is formally expressed in the reduction rules we define next. The
role of uσ in a well-formed configuration is illustrated in Figure 9. The small-
step reduction · →· · ⊆ Conf × [0, 1] × Conf is the relation defined by the rules
of Figure 10: the reduction C →p C′ holds when the quantum configuration C
reduces to C′ with probability p ∈ [0, 1].

15

uσ

Q1

Q2

Q3

...
...

...
...

...
...

...
...

Qn−2

Qn−1

Qn

t M : A

x1 : B(Q2 ⊗ Q3)

x2 : B(Q1)

xm−1 : B(Qn−1 ⊗ Qn)

xm : B(Qn−2)

Fig. 9: Graphical representation of a
well-formed quantum configuration.

The reduction rules along with the
unitaries required to state them are
given in Figure 10. {bij}i,j stand for
basis terms and s in the reduction
rule for meas(x) corresponds to the
position of bi in the tensor product
appearing in the quantum term. All
sums are finite. The unitary uσgather

appearing in the reduction rule for the
term let B(z) = x⊗y in N merges two
consecutive variables into one block,
so that now a single variable can rep-
resent it. Similarly, in the reduction

rule for the term let B(x ⊗ y) = z in N , the unitary uσdivide
partitions a block

into two, so that two variables can represent them. The two rules are symmetric
as expected, since these terms only allow switching between types B(Q1 ⊗Q2)
and B(Q1)⊗ B(Q2). The last rule of Figure 10 is a contextual rule which holds
for any evaluation context E. Evaluation contexts are defined by the following
grammar:

E := [.] | E ⊗N | V ⊗ E | let x⊗ y = E in N | inl(E) | inr(E)
| caseE of {inl(x)→M, inr(y)→N} | force(E) | succ(E) | EN
| V E | meas(E) | B(u)(E) | let B(z) = E in N | let B(x⊗ y) = E in N

One of the premises of the contextual rule states that if σ is a permutation
which does not act on the same set of indices as σ1, σ2, then we can form a “union”
of these permutations by composing an extension of the two. For a permutation
σ : S → S, we can define its extension σext : S ⊔ S′ → S ⊔ S′ by σext(s) ≜ σ(s),
if s ∈ S, σext(s′) ≜ s′, if s′ ∈ S′. We now introduce the reduction relation we
use to define the operational semantics.

Definition 3. The reduction relation ·⇝· · ⊆ SVConf×[0, 1]×SVConf is defined
in the following way: we write (v, uσ,M)⇝p (v′, uσ′ ,M ′) whenever

· ⊢ v = t : Q (t, uσ,M) →p (t′, uσ′ ,M ′) · ⊢ t′ = v′ : Q′

(v, uσ,M)⇝p (v′, uσ′ ,M ′)

The intuition behind the above definition is that it allows us to reason modulo
equality of the pure terms t, as a consequence of Proposition 3.

3.3 Main properties

We show that well-formedness is preserved by the reduction relation ·⇝· ·.

Theorem 3 (Subject Reduction). For a configuration C1 ∈ WFSVConf(A), if
C1 ⇝p C2 for some probability p ∈ [0, 1], then C2 ∈ WFSVConf(A).

Next, we show that progress and strong normalisation hold. More specifically,
a well-formed semi-value configuration C is either a value configuration or it
reduces to a finite number of semi-value configurations with total probability 1,
i.e. if we have not reached a normal form then the probability to be stuck is 0.

16

uσgather

...
...

...

...
...

...

...
...

...

...
...

...

x1 x1

x

x ⊗ y

y

xn xn

uσgather ≜ {| x1 ⊗ · · · ⊗ x ⊗ y ⊗ · · · ⊗ xn

7→ x1 ⊗ · · · ⊗ (x ⊗ y) ⊗ · · · ⊗ xn}

uσs

...
...

...

x1 xs

xs x1

xn xn

uσs ≜ {| x1 ⊗ · · · ⊗ xs ⊗ · · · ⊗ xn

7→ xs ⊗ x1 ⊗ · · · ⊗ xn}

uσswap

x y

y x

uσswap ≜ {| x ⊗ y 7→ y ⊗ x}

uσdivide

...
...

...

...
...

...

...
...

...

...
...

...

x1 x1

x⊗ y

x

y

xn xn

uσdivide ≜ {| x1 ⊗ · · · ⊗ (x ⊗ y) ⊗ · · · ⊗ xn

7→ x1 ⊗ · · · ⊗ x ⊗ y ⊗ · · · ⊗ xn}

(t, uσ, case inl(V) of {inl(x)→M, inr(y)→N}) →1 (t, uσ,M [V/x])

(t, uσ, case inr(V) of {inl(x)→M, inr(y)→N}) →1 (t, uσ, N [V/y])

(t, uσ, let x⊗ y = V ⊗W in M) →1 (t, uσ,M [V/x,W/y])

(t, uσ, force(lift(M))) →1 (t, uσ,M)

(t, uσ, (λx.M)V) →1 (t, uσ,M [V/x])

(t, uσ,match zerowith {zero→M, succ(x)→N}) →1 (t, uσ,M)

(t, uσ,match succ(V)with {zero→M, succ(x)→N}) →1 (t, uσ, N [V/x])

(t, uσ, pure(t′)) →1 (t⊗ t′, uσswap ◦ (uσ ⊗ uid), x)

(Σipi·Σjαij ·b′ij ⊗ · · · ⊗ bi ⊗ · · · , uσs ,meas(x)) →|pk|2 (Σjαkj ·b′kj ⊗ · · · , uid, bk)

(t, uσ,B(u)(z)) →1 ((u∗
σ ◦ (u⊗ id) ◦ uσ) t, uσ, z)

(t, uσ, let B(z) = x⊗ y in N) →1 (t, uσgather ◦ uσ, N)

(t, uσ, let B(x⊗ y) = z in N) →1 (t, uσdivide ◦ uσ, N)

(t1, uσext
1

,M1) →p (t2, uσext
2

,M2) dom(σ) ∩ (dom(σ1) ∪ dom(σ2)) = ∅

(t1, uσext◦σext
1

, E[M1]) →p (t2, uσext◦σext
2

, E[M2])

Fig. 10: Reduction rules and their unitary permutations.
Theorem 4 (Progress). If C ∈ WFSVConf(A), then either C ∈ VConf, or there
exists Ci ∈ WFSVConf(A) such that C ⇝pi

Ci. Moreover, if {Ci}i∈I is the set of all
such distinct (not α-equivalent) configurations, then I is finite, and

∑
i pi = 1.

Theorem 5 (Strong Normalisation). For a configuration C ∈ WFSVConf(A),
there is no infinite sequence of reductions C ⇝p0

C1 ⇝p1
C2 ⇝p2

· · · .

17

3.4 Illustrating Example: Quantum Walk Search

Given a graph with some marked vertices, a quantum walk search is the
quantum analogue of a random walk [4], which looks for these marked vertices.
Each node in the graph represents the state of two quantum registers. A condition
on the application of a coin operator on the first register decides the direction in
which a walker should take the next step. A step in this direction is represented
by the application of a unitary on the second register. After a given number of
steps, measurement is performed on the second register to reveal whether the
walker has arrived on a marked node. Here, we present a k-step quantum walk
on a cycle with 10 nodes for simplicity in our language. Representing the second
register with qubits, in this case, would require 4 qubits, whereas we represent
the state of the second register with a single qnat. In the unitary CNOTqnat
below, we use some (hopefully obvious) syntactic sugar with the expressions
involving n in order to avoid writing all the cases; the letter n here should not
be seen as a variable.

|0⟩ |1⟩

|2⟩

|3⟩

|4⟩

|5⟩|6⟩

|7⟩

|8⟩

|9⟩
u1 ≜

| |2n⟩ 7→

∣∣2n+1
〉
, n ≤ 4

|
∣∣2n+1

〉
7→ |2n⟩ , n ≤ 4

|
∣∣y+10

〉
7→

∣∣y+10
〉

 u2 ≜

| |0⟩ 7→ |9⟩
|
∣∣2n+2

〉
7→

∣∣2n+1
〉
, n ≤ 3

|
∣∣2n+1

〉
7→

∣∣2n+2
〉
, n ≤ 3

| |9⟩ 7→ |0⟩
|
∣∣y+10

〉
7→

∣∣y+10
〉

CNOTqnat : U(qbit ⊗ qnat,qbit ⊗ qnat)
CNOTqnat ≜ qif x then x⊗ u1 else x⊗ u2

We define the unitary S corresponding to one step of the walk as S ≜
CNOTqnat ◦ (Had ⊗ Id). Finally, the k-step walk can be represented in our
language as follows, where Sk represents k compositions of S with itself:

walk : (B(qbit ⊗ qnat)⊸ qbit ⊗Nat)

walk ≜ λz.let B(x1 ⊗ x2) = B(Sk)(z) in x1 ⊗ meas(x2)

3.5 Denotational Semantics: Soundness and Adequacy

In this section we describe the denotational semantics of the main calculus.
Figure 11 succinctly describes the interaction between the pure fragment and the
mixed fragment. We present the functor which facilitates the main contribution
of the paper, i.e combining quantum and classical control.

The B functor. In order to model the interaction between the pure quantum

Set NMIU NCPSU⊥ ⊥
Iℓ∞

FN

Unitary Isometry

B B

I

Fig. 11: Categorical relations.

subsystem and the main calculus, we define
the functor B : Isometry → NCPSU, map-
ping a Hilbert space H to B(H). For an isom-
etry f : H1 → H2, the map (f∗ ◦ (−) ◦ f) is
an NCPSU morphism B(H2) → B(H1), so
by defining B(f) ≜ (f∗ ◦ (−) ◦ f)op, we get
that B(f) : B(H1) → B(H2) in NCPSU. We
remark that this functor restricts to a functor

B : Unitary → NMIU and we show that the functor B : Isometry → NCPSU
is strict monoidal.

18

J!∆ ⊢ pure(t) : B(Q)K ≜ BJtK ◦ ⋄!∆
q
∆ ⊢ meas(M) : Q

y
≜ mQ ◦ J∆ ⊢ M : B(Q)K

J∆ ⊢ B(u)(M) : B(Q2)K ≜ BJuK ◦ J∆ ⊢ M : B(Q1)K

Fig. 12: Interpretation of typing judgements (an excerpt).
Interpretation of Types. We interpret types as von Neumann algebras. The types
corresponding to a linear call-by-value lambda-calculus are interpreted in the
standard way: JIK ≜ C, JA+ BK ≜ JAK ⊕ JBK, JA⊗ BK ≜ JAK ⊗ JBK, J!AK ≜!JAK
and JA⊸ BK ≜ JAK ⊸ JBK. The type for natural numbers is interpreted as
the commutative von Neumann algebra ℓ∞(N), i.e JNatK ≜ ℓ∞(N). Finally, the
interpretation of the type B(Q) uses the B functor that allows us to incorporate
pure quantum primitives into our semantics, i.e JB(Q)K ≜ BJQK.

Interpretation of Typing judgements. A typing judgment of the form ∆ ⊢M : A
is interpreted as a morphism J∆ ⊢M : AK : J∆K → JAK in NCPSU and we often
abbreviate this by writing JMK. An excerpt of the interpretation is defined in
Figure 12.

Theorem 6. For every pure quantum type Q, there exist a set X, an NMIU
isomorphism αQ :

q
Q

y ∼= ℓ∞(X), and an isometric isomorphism βQ : JQK ∼=
ℓ2(X). Moreover, ∀b ∈ Basis Terms, ∃x ∈ X s.t. βQ(JbK) = αQ(

q
b
y
) = |x⟩.

Using the above theorem, measurement is interpreted as the mapmQ : B(JQK) →q
Q

y
defined as mQ ≜ αop

Q
◦mop

X ◦ B(βQ).

Interpretation of Configurations. A well-formed configuration (t, uσ,M) with
· ⊢ t : Q, ⊩ uσ : (Q,Q′

1 ⊗ · · ·⊗Q′
m), and x1 : B(Q′

1), . . . , xm : B(Q′
m) ⊢M : A is

interpreted as the NCPSU morphism

J(t, uσ,M) : AK ≜

C B(JuσtK)−−−−−→
B(Q′

1 ⊗ · · ·⊗Q′
m)

q
B(Q′

1)⊗ · · · ⊗ B(Q′
m)

JMK−−−→ A

.
We can now show that our semantic interpretation is sound with respect to

single-step reduction.

Theorem 7 (Soundness). For C ∈ WFSVConf(A), if C /∈ VConf, then

JC : AK =
∑

C⇝pC′

pJC′ : AK,

where the sum ranges over all possible reducts C ⇝p C′.

Next, we can show that our interpretation is sound in a big-step sense as
well, which follows easily using the previous result and strong normalisation.

19

Theorem 8 (Strong Adequacy). For C ∈ WFSVConf(A),

JCK =
∑

V∈VConf
P (C →∗ V)JVK,

where P (C →∗ V) indicates the overall probability that C reduces to V.

This implies that, for any well-formed configuration C, its interpretation JCK
is an NCPU map (i.e., it is not merely subunital) and therefore it corresponds
to a quantum channel in the Heisenberg picture of quantum mechanics.

4 Conclusion and Perspectives
We described a programming language which has support for both pure

state quantum computation and mixed state quantum computation. We be-
gan by describing the pure quantum subsystem (§2), for which we introduced an
equational theory and proved its completeness w.r.t. the denotational semantics
(§2.4). Then, we described the main calculus (§3.1) which uses a new adapta-
tion of quantum configurations (§3.2), which we used to define the operational
semantics of the language. Here, the interaction between the pure quantum sub-
system and the main calculus becomes apparent. We showed that our denota-
tional semantics (§3.5) has a clear and appropriate interpretation as channels in
the Heisenberg picture of quantum mechanics and we showed it is sound and
adequate with respect to the operational semantics (§3.5).

Although our language has support for Nat, an inductive type, an obvious
extension would be to include more general inductive types. Additionally, sup-
port for higher-order pure quantum computation is another feature that would
be interesting to add in a future work.

Another matter that could be tackled as future work is recursion. In the
pure system, adding general recursion is an open and difficult problem [13, Sec-
tion 5.2]. In the main calculus, our denotational model supports recursion for
first-order quantum functions [16,12]. However, our model does not support gen-
eral recursion when quantum lambda abstractions are involved. There are other
denotational models that support general recursion and quantum lambda ab-
stractions, but they do not support types like qnat that correspond to ℓ2(N),
instead they support recursive types that intuitively correspond to infinite clas-
sical combinations of spaces involving finite-dimensional Hilbert spaces, which
is not the same as ℓ2(N). A model for quantum lambda abstractions, qnat and
general recursion is an open problem to the best of our knowledge.

Acknowledgements
The authors would like to thank Benoît Valiron for helpful comments and

discussions. Louis Lemonnier’s research was funded by the Engineering and Phys-
ical Sciences Research Council (EPSRC) under project EP/X025551/1 “Rubber
DUQ: Flexible Dynamic Universal Quantum programming”. This work is also
supported by the HORIZON 2020 project NEASQC, by the Inria associate team
TC(Pro)3, by the PEPR integrated project EPiQ ANR-22-PETQ-0007, and by
the HQI initiative ANR-22-PNCQ-0002.

20

References
1. Andrés-Martínez, P.: Unbounded loops in quantum programs: categories

and weak-while loops. Ph.D. thesis, Laboratory for Foundations of Com-
puter Science, School of Informatics, University of Edinburgh (2022).
https://doi.org/https://doi.org/10.48550/arXiv.2212.05371

2. Arrighi, P., Dowek, G.: Lineal: A linear-algebraic lambda-calculus. Log. Methods
Comput. Sci. 13(1) (2017). https://doi.org/10.23638/LMCS-13(1:8)2017, https:
//doi.org/10.23638/LMCS-13(1:8)2017

3. Chardonnet, K.: Towards a Curry-Howard Correspondence for Quantum Computa-
tion. (Vers une correspondance de Curry-Howard pour le calcul quantique). Ph.D.
thesis, Université Paris-Saclay, France (2023), https://tel.archives-ouvertes.
fr/tel-03959403

4. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Expo-
nential algorithmic speedup by a quantum walk. In: Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing. pp. 59–68 (2003)

5. Cho, K., Westerbaan, A.: Von Neumann Algebras form
a Model for the Quantum Lambda Calculus (2016).
https://doi.org/https://doi.org/10.48550/arXiv.1603.02133

6. Clairambault, P., de Visme, M.: Full abstraction for the quantum lambda-
calculus. Proc. ACM Program. Lang. 4(POPL), 63:1–63:28 (2020).
https://doi.org/10.1145/3371131, https://doi.org/10.1145/3371131

7. Clairambault, P., de Visme, M., Winskel, G.: Game semantics
for quantum programming. PACMPL 3(POPL), 32:1–32:29 (2019).
https://doi.org/10.1145/3290345

8. Díaz-Caro, A., Malherbe, O.: Semimodules and the (syntactically-
)linear lambda calculus. CoRR abs/2205.02142 (2022).
https://doi.org/10.48550/ARXIV.2205.02142, https://doi.org/10.48550/
arXiv.2205.02142

9. Díaz-Caro, A., Guillermo, M., Miquel, A., Valiron, B.: Realiz-
ability in the unitary sphere. In: LICS 2019. IEEE (jun 2019).
https://doi.org/10.1109/lics.2019.8785834, https://doi.org/10.1109%2Flics.
2019.8785834

10. Díaz-Caro, A., Malherbe, O.: Quantum control in the unitary sphere: Lambda-
s1 and its categorical model. Logical Methods in Computer Science Volume 18,
Issue 3 (2022). https://doi.org/10.46298/lmcs-18(3:32)2022, https://doi.org/
10.46298%2Flmcs-18%283%3A32%292022

11. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a
scalable quantum programming language. In: Proceedings of the 34th ACM SIG-
PLAN conference on Programming language design and implementation. pp. 333–
342 (2013)

12. Jia, X., Kornell, A., Lindenhovius, B., Mislove, M.W., Zamdzhiev, V.: Semantics
for variational quantum programming. In: POPL 2022. vol. 6, pp. 1–31. ACM
(2022). https://doi.org/10.1145/3498687

13. Lemonnier, L.: The Semantics of Effects : Centrality, Quantum Control and Re-
versible Recursion. Theses, Université Paris-Saclay (Jun 2024), https://theses.
hal.science/tel-04625771

14. Pagani, M., Selinger, P., Valiron, B.: Applying quantitative semantics to
higher-order quantum computing. In: POPL 2014. pp. 647–658. ACM (2014).
https://doi.org/10.1145/2535838.2535879

https://doi.org/https://doi.org/10.48550/arXiv.2212.05371
https://doi.org/10.23638/LMCS-13(1:8)2017
https://doi.org/10.23638/LMCS-13(1:8)2017
https://doi.org/10.23638/LMCS-13(1:8)2017
https://tel.archives-ouvertes.fr/tel-03959403
https://tel.archives-ouvertes.fr/tel-03959403
https://doi.org/https://doi.org/10.48550/arXiv.1603.02133
https://doi.org/10.1145/3371131
https://doi.org/10.1145/3371131
https://doi.org/10.1145/3290345
https://doi.org/10.48550/ARXIV.2205.02142
https://doi.org/10.48550/arXiv.2205.02142
https://doi.org/10.48550/arXiv.2205.02142
https://doi.org/10.1109/lics.2019.8785834
https://doi.org/10.1109%2Flics.2019.8785834
https://doi.org/10.1109%2Flics.2019.8785834
https://doi.org/10.46298/lmcs-18(3:32)2022
https://doi.org/10.46298%2Flmcs-18%283%3A32%292022
https://doi.org/10.46298%2Flmcs-18%283%3A32%292022
https://doi.org/10.1145/3498687
https://theses.hal.science/tel-04625771
https://theses.hal.science/tel-04625771
https://doi.org/10.1145/2535838.2535879

21

15. Paykin, J., Rand, R., Zdancewic, S.: Qwire: a core language for quantum circuits.
ACM SIGPLAN Notices 52(1), 846–858 (2017)

16. Péchoux, R., Perdrix, S., Rennela, M., Zamdzhiev, V.: Quantum programming
with inductive datatypes: Causality and affine type theory. In: FoSSaCS 2020.
Lecture Notes in Computer Science, vol. 12077, pp. 562–581. Springer (2020).
https://doi.org/10.1007/978-3-030-45231-5_29

17. Sabry, A., Valiron, B., Vizzotto, J.K.: From symmetric pattern-matching to quan-
tum control. In: FoSSaCS 2018). Lecture Notes in Computer Science, vol. 10803,
pp. 348–364. Springer (2018). https://doi.org/10.1007/978-3-319-89366-2_19

18. Selinger, P.: Towards a quantum programming language. Math-
ematical Structures in Computer Science 14(4), 527–586 (2004).
https://doi.org/https://doi.org/10.1017/S0960129504004256

19. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classi-
cal control. Mathematical Structures in Computer Science 16(3), 527–552 (2006).
https://doi.org/10.1017/S0960129506005238

20. Selinger, P., Valiron, B., et al.: Quantum lambda calculus. Semantic techniques in
quantum computation pp. 135–172 (2009)

21. Tsukada, T., Asada, K.: Enriched presheaf model of quantum FPC. Proc. ACM
Program. Lang. 8(POPL), 362–392 (2024). https://doi.org/10.1145/3632855,
https://doi.org/10.1145/3632855

22. Valiron, B.: Semantics of quantum programming languages: Classical control, quan-
tum control. Journal of Logical and Algebraic Methods in Programming 128
(2022). https://doi.org/https://doi.org/10.1016/j.jlamp.2022.100790

23. de Visme, M.: Quantum Game Semantics. (Sémantique des Jeux Quantique). Ph.D.
thesis, University of Lyon, France (2020), https://tel.archives-ouvertes.fr/
tel-03045844

24. Voichick, F., Li, L., Rand, R., Hicks, M.: Qunity: A unified language for quantum
and classical computing. Proc. ACM Program. Lang. 7(POPL), 921–951 (2023).
https://doi.org/10.1145/3571225, https://doi.org/10.1145/3571225

https://doi.org/10.1007/978-3-030-45231-5_29
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1145/3632855
https://doi.org/10.1145/3632855
https://doi.org/https://doi.org/10.1016/j.jlamp.2022.100790
https://tel.archives-ouvertes.fr/tel-03045844
https://tel.archives-ouvertes.fr/tel-03045844
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225

	Combining quantum and classical control: syntax, semantics and adequacy

