Central Submonads and Notions of Computation: Soundness, Completeness and Internal Languages

Titouan Carette, Louis Lemonnier, Vladimir Zamdzhiev

LICS'23. Boston, MA. June, 29th 2023

Motivation

Two examples of monadic sequencing in Haskell.

- Monads represent computational effects.
- Monads have an algebraic flavour (category theory).
- Centre (algebraically): elements that commute with all others.
- Intuition: If op1 or op2 is central, p1 and p2 should be equivalent.

Question

What is centrality for monads?

1

Background: Premonoidal categories

[Power and Robinson, 1997]: premonoidal categories as model of effects. Tensor \otimes is not a bifunctor.

- A premonoidal category \mathcal{P} has a centre $Z(\mathcal{P})$;
- \otimes is a bifunctor in $Z(\mathcal{P})$;
- $Z(\mathcal{P})$ is a monoidal category.

Link with Monads

The Kleisli category of a strong monad is a premonoidal category.

Strong monads

Correspondence:

- Effects ↔ monads;
- $\bullet \ \ \mathsf{pairing} \ \leftrightarrow \ \mathsf{monoidal} \ \mathsf{structure} \ \otimes.$

Strong monad: combines the two with a strength τ .

$$\tau_{X,Y}: X \otimes \mathcal{T}Y \to \mathcal{T}(X \otimes Y).$$

Operationally:

Input: $\langle x, M \rangle$

Output: do $y \leftarrow M$; return $\langle x, y \rangle$

3

Examples on Set

Writer monad

- Monoid M with centre Z(M).
- Monad $(M \times -)$: **Set** \rightarrow **Set**.
- Centre $-(Z(M) \times -): \mathbf{Set} \to \mathbf{Set}.$

Powerset monad

- Commutative.
- Centre itself.

Link with Lawvere theories

- Lawvere theory T with centre Z(T).
- Monad induced by T.
- Centre induced by $Z(\mathbf{T})$.

Central cone

Commutative monad T:

Central cone of T at **fixed** X: A pair $(Z, \iota: Z \to TX)$ such that

commutes for every objects X and Y. commutes for every object Y.

Central cone

Commutative monad T:

commutes for every objects X and Y.

Central cone of \mathcal{T} at **fixed** X: A pair $(Z, \iota \colon Z \to \mathcal{T}X)$ such that

commutes for every object Y.

Central cone

Commutative monad T:

Central cone of T at **fixed** X: A pair $(Z, \iota: Z \to TX)$ such that

commutes for every objects X and Y. commutes for every object Y.

If the universal central cone at X exists, write $\mathcal{Z}X \stackrel{\text{def}}{=} Z$.

Theorem

Equivalent conditions for a strong monad to be centralisable:

- 1. Existence of all universal central cones.
- 2. Existence of a monad \mathcal{Z} s.t. $\mathbf{C}_{\mathcal{Z}} \cong Z(\mathbf{C}_{\mathcal{T}})$.
- 3. Left adjoint $\mathbf{C} \to \mathbf{C}_{\mathcal{T}}$ corestricts to a left adjoint $\mathbf{C} \to Z(\mathbf{C}_{\mathcal{T}})$.

Theorem

Equivalent conditions for a strong monad to be centralisable:

- 1. Existence of all universal central cones.
- 2. Existence of a monad \mathcal{Z} s.t. $\mathbf{C}_{\mathcal{Z}} \cong Z(\mathbf{C}_{\mathcal{T}})$.
- 3. Left adjoint $C \to C_T$ corestricts to a left adjoint $C \to Z(C_T)$.

Corollaries

(1) All strong monads on $\mathbf{Set}, \mathbf{DCPO}, \mathbf{Top}, \mathbf{Vect}, \dots$ are centralisable.

6

Theorem

Equivalent conditions for a strong monad to be centralisable:

- 1. Existence of all universal central cones.
- 2. Existence of a monad \mathcal{Z} s.t. $\mathbf{C}_{\mathcal{Z}} \cong Z(\mathbf{C}_{\mathcal{T}})$.
- 3. Left adjoint $C \to C_T$ corestricts to a left adjoint $C \to Z(C_T)$.

Corollaries

- (1) All strong monads on **Set**, **DCPO**, **Top**, **Vect**, . . . are centralisable.
- (2) A commutative monad is its own centre.

Theorem

Equivalent conditions for a strong monad to be centralisable:

- 1. Existence of all universal central cones.
- 2. Existence of a monad \mathcal{Z} s.t. $\mathbf{C}_{\mathcal{Z}} \cong Z(\mathbf{C}_{\mathcal{T}})$.
- 3. Left adjoint $C \to C_T$ corestricts to a left adjoint $C \to Z(C_T)$.

Corollaries

- (1) All strong monads on $\mathbf{Set}, \mathbf{DCPO}, \mathbf{Top}, \mathbf{Vect}, \dots$ are centralisable.
- (2) A commutative monad is its own centre.
- (3) If **C** closed and total, every strong monad on it admits a centre.

Theorem

Equivalent conditions for a strong monad to be centralisable:

- 1. Existence of all universal central cones.
- 2. Existence of a monad \mathcal{Z} s.t. $\mathbf{C}_{\mathcal{Z}} \cong Z(\mathbf{C}_{\mathcal{T}})$.
- 3. Left adjoint $\mathbf{C} \to \mathbf{C}_{\mathcal{T}}$ corestricts to a left adjoint $\mathbf{C} \to Z(\mathbf{C}_{\mathcal{T}})$.

Corollaries

- (1) All strong monads on $\mathbf{Set}, \mathbf{DCPO}, \mathbf{Top}, \mathbf{Vect}, \dots$ are centralisable.
- (2) A commutative monad is its own centre.
- (3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable?

Theorem

Equivalent conditions for a strong monad to be centralisable:

- 1. Existence of all universal central cones.
- 2. Existence of a monad \mathcal{Z} s.t. $\mathbf{C}_{\mathcal{Z}} \cong Z(\mathbf{C}_{\mathcal{T}})$.
- 3. Left adjoint $C \to C_T$ corestricts to a left adjoint $C \to Z(C_T)$.

Corollaries

- (1) All strong monads on **Set**, **DCPO**, **Top**, **Vect**, . . . are centralisable.
- (2) A commutative monad is its own centre.
- (3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable? No, but only artificial counterexamples!

Central Submonad

Theorem

Given a submonad \mathcal{S} with $\iota \colon \mathcal{S} \hookrightarrow \mathcal{T}$, equivalent conditions:

- 1. ι_X is a central cone for all X;
- 2. there exists a canonical embedding $\mathbf{C}_{\mathcal{S}} \hookrightarrow Z(\mathbf{C}_{\mathcal{T}})$.

When the centre \mathcal{Z} exists, also equivalent to:

3. S is a submonad of Z.

Definition: S – *central* submonad if it satisfies 1, 2 or 3.

Remark: the centre is the universal central submonad.

Computational Interpretation

Language	Model
Simply-typed λ -calculus (ST λ C)	Cartesian Closed Category (CCC)
Moggi's metalanguage	CCC with strong monad ${\mathcal T}$
???	CCC with central submonad $\mathcal{S} \hookrightarrow \mathcal{T}$

Computational Interpretation

Language	Model
Simply-typed λ -calculus (ST λ C)	Cartesian Closed Category (CCC)
Moggi's metalanguage	CCC with strong monad ${\cal T}$
CSC	CCC with central submonad $\mathcal{S} \hookrightarrow \mathcal{T}$

CSC (Central Submonad Calculus):

Simply-typed λ -calculus;

- + new types: SX and TX;
- + terms for monadic computation (à la Moggi);
- + equational rules, such as:

$$\Gamma \vdash do_{\mathcal{T}} x \leftarrow \iota M; \ do_{\mathcal{T}} y \leftarrow N; \ P$$

$$= do_{\mathcal{T}} y \leftarrow N; \ do_{\mathcal{T}} x \leftarrow \iota M; \ P : \mathcal{T}C$$

Completeness and Internal Language

Conclusion

What we have done:

- notion of centre for strong monads;
- equivalent conditions for a strong monad to have a centre;
- equivalent conditions for a submonad to be central;
- computational interpretation: completeness and internal language.

Thank you!

More details: https://arxiv.org/abs/2207.09190; and my PhD thesis, available before September 2024.

Power, J. and Robinson, E. P. (1997).

Premonoidal categories and notions of computation.

Math. Struct. Comput. Sci., 7:453-468.