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pl: p2:
do do
x <— opl y <— op2
y <— op2 x <— opl
fxy fxy

Two examples of monadic sequencing in Haskell.

= Monads represent computational effects.
= Monads have an algebraic flavour (category theory).

= Centre (algebraically): elements that commute with all others.

Intuition: If opl or op2 is central, p1 and p2 should be equivalent.

Question

What is centrality for monads?



Background: Premonoidal categories

[Power and Robinson, 1997]: premonoidal categories as model of effects.
Tensor ® is not a bifunctor.

=

= A premonoidal category P has a centre Z(P);
= ® is a bifunctor in Z(P);
= Z(P) is a monoidal category.

Link with Monads

The Kleisli category of a strong monad is a premonoidal category.



Strong monads

Correspondence:

= Effects <+ monads;

= pairing <> monoidal structure ®.

Strong monad: combines the two with a strength 7.

™xy: XQ@TY = T(X®Y).
Operationally:

Input:  (x, M)
Output: do y+ M ; return (x,y)



Examples on Set

Writer monad
= Monoid M with centre Z(M).
= Monad — (M x —): Set — Set.
= Centre — (Z(M) x —): Set — Set.

Powerset monad

= Commutative.

= Centre — itself.

Link with Lawvere theories

= Lawvere theory T with centre Z(T).
= Monad — induced by T.

= Centre — induced by Z(T).



Central cone

Central cone of T at fixed X:

Commutative monad T :
A pair (Z,v: Z— T X) such that
2oy —2TY  rxery — T L T(XeTY)
//TYJ J TT
TXOTY T(X® V)
. J J o
T(X®Y)

T(TX®Y) = TAX®Y) 7

TTX®
Txen) —= [0

commutes for every objects X and Y. commutes for every object Y.
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Central cone

Commutative monad T Central cone of T at fixed X:
A pair (Z,v: Z— T X) such that

X then Y/ Xthen Y

Y then X Y then X

commutes for every objects X and Y. commutes for every object Y.

. . . def
If the universal central cone at X exists, write ZX = Z.



Main Result: Centralisability

Theorem

Equivalent conditions for a strong monad to be centralisable:

1. Existence of all universal central cones.
2. Existence of a monad Z s.t. Cz = Z(Cy).
3. Left adjoint C — C7 corestricts to a left adjoint C — Z(Cr).
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Main Result: Centralisability

Theorem

Equivalent conditions for a strong monad to be centralisable:

1. Existence of all universal central cones.
2. Existence of a monad Z s.t. Cz = Z(Cy).
3. Left adjoint C — C7 corestricts to a left adjoint C — Z(Cr).

Corollaries
(1) All strong monads on Set, DCPO, Top, Vect, ... are centralisable.
(2) A commutative monad is its own centre.

(3) If C closed and total, every strong monad on it admits a centre.

All strong monads centralisable? No, but only artificial counterexamples!



Central Submonad

Theorem

Given a submonad S with ¢: & < 7T, equivalent conditions:

1. 1x is a central cone for all X;

2. there exists a canonical embedding Cs — Z(C7).
When the centre Z exists, also equivalent to:

3. S is a submonad of Z.

Definition: S — central submonad if it satisfies 1, 2 or 3.

Remark: the centre is the universal central submonad.



Computational Interpretation

’ Language ‘ Model ‘
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Computational Interpretation

’ Language ‘ Model ‘
Simply-typed A-calculus (STAC) | Cartesian Closed Category (CCC)
Moggi's metalanguage CCC with strong monad T
CSC CCC with central submonad S — T

CSC (Central Submonad Calculus):

Simply-typed A-calculus;
+ new types: SX and T X;
+ terms for monadic computation (a la Moggi);

+ equational rules, such as:

[ dor x< 'M; do y<+ N; P
=doy y<+ N, doy x+< /M, P:TC



Completeness and Internal Language

Completeness

Y

Folklore: STACs 1R CCGCs

Internal Language

Completeness

Y

Theorem: CSCs 2 CSC-models

Internal Language



Conclusion

What we have done:

= notion of centre for strong monads;
= equivalent conditions for a strong monad to have a centre;
= equivalent conditions for a submonad to be central;

= computational interpretation: completeness and internal language.

Thank youl!

More details: https://arxiv.org/abs/2207.09190;
and my PhD thesis, available before September 2024.
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