Applications de la dimension finie — Corrigé

Exercice: Polynômes de Chebyshev

On rappelle que dans le deuxième DS, vous avez montré que pour chaque $n \in \mathbb{N}$, il existe un unique polynôme $T_n \in \mathbb{R}_n[X]$, tel que

$$\forall x \in \mathbb{R}$$
 $T_n(\cos x) = \cos nx$

 T_n est appelé le n-ème polynôme de Chebyshev de première espèce. Et vous avez montré qu'il vérifie l'équation différentielle

$$\forall x \in \mathbb{R}$$
 $(1 - x^2)T_n''(x) - xT_n'(x) + n^2T_n(x) = 0$

Autrement dit, $T_n \in \text{Ker } f_{-n^2}$. Ceci sera utilisé dans la question **4**.

1 Le fait que f est linéaire ne pose aucune difficulté : on utilise simplement le fait que la dérivation est linéaire dans $\mathbb{R}[X]$, et la distributivité de la multiplication sur l'addition.

Il reste à vérifier que f est un endomorphisme de $\mathbb{R}_N[X]$. Soit $P \in \mathbb{R}_N[X]$; on a

$$det P' \leqslant N-1 \qquad deg P'' \leqslant N-2$$

donc

$$deg(1-X^2)P'' \leqslant N \qquad degXP' \leqslant N$$

et finalement

$$\deg f(P) \leq N$$

f est un endomorphisme de $\mathbb{R}_{N}[X]$.

2 On note $\mathscr{B} = (X^k)_{0 \le k \le N}$ la base canonique de $\mathbb{R}_N[X]$. Les images des vecteurs de \mathscr{B} par f engendrent Im f. Par calcul, on voit que

$$\forall k \in [[0; N]] \qquad f(X^k) = \begin{cases} 0 & \text{si } k = 0 \\ -X & \text{si } k = 1 \\ -k^2 X^k + k(k-1) X^{k-2} & \text{si } k \geq 2 \end{cases}$$

Ainsi,

$$\forall k \in [[1; N]] \qquad \deg f(X^k) = k$$

La famille $(f(X^k))_{1 \le k \le N}$ est donc libre, parce qu'elle est étagée en degrés. De plus, elle engendre Im f parce que f(1) = 0 et

$$\operatorname{Im} f = \operatorname{Vect} (f(X^{k}))_{0 \le k \le N} = \operatorname{Vect} (f(X^{k}))_{1 \le k \le N}$$

Une base de
$$\operatorname{Im} f$$
 est $(f(X^k))_{1 \leqslant k \leqslant N}$ et le rang de f est N .

D'après le théorème du rang,

$$\dim \operatorname{Ker} f = \dim \mathbb{R}_{N}[X] - \operatorname{rg} f = 1$$

Comme $1 \in \text{Ker } f$, il engendre un sous-espace de dimension 1 de Ker f. Donc

Une base de Ker
$$f$$
 est (1).

 $\boxed{\mathbf{3}}$ Soit $\lambda \in \mathbb{R} \setminus A$. C'est-à-dire que

$$\forall k \in [[0; N]] \qquad \lambda \neq -k^2$$

ou encore

$$\forall k \in [[0; N]] \qquad \lambda + k^2 \neq 0$$

À l'aide des calculs faits à la question précédente,

$$\forall k \in [[0; \mathbf{N}]] \qquad f_{\lambda}(\mathbf{X}^k) = f(\mathbf{X}^k) - \lambda \mathbf{X}^k = \begin{cases} & -\lambda & \text{si } k = 0 \\ & -(\lambda + 1)\mathbf{X} & \text{si } k = 1 \\ & -(k^2 + \lambda)\mathbf{X}^k + k(k - 1)\mathbf{X}^{k - 2} & \text{si } k \geqslant 2 \end{cases}$$

En particulier,

$$\forall k \in [[0; N]] \quad \deg f_{\lambda}(X^k) = k$$

La famille $(f_{\lambda}(X^k))_{0 \leqslant k \leqslant N}$ est donc libre. D'après le cours, f_{λ} est injective (elle transforme une base en famille libre). Comme f_{λ} est un endomorphisme de $\mathbb{R}_N[X]$, c'est une bijection (théorème du rang).

$$f_{\lambda}$$
 est un automorphisme de $\mathbb{R}_{\mathrm{N}}[\mathrm{X}]$.

Soit $\lambda \in A$, non nul. Il existe $n \in \mathbb{N}^*$ tel que $\lambda = -n^2$. En reprenant les calculs précédents,

$$\forall k \in [[\,0\,;\,\mathrm{N}\,]] \setminus \{n\} \qquad \deg f_\lambda(\mathrm{X}^k) = k$$

et

$$\deg f_{\lambda}(\mathbf{X}^n) \leqslant n-1$$

On en déduit que $(f_{\lambda}(\mathbf{X}^k))_{\substack{0 \leqslant k \leqslant \mathbf{N} \\ k \neq n}}$ est libre. Comme cette famille est dans $\mathrm{Im}\, f_{\lambda}$ et contient \mathbf{N} vecteurs,

$$\dim \operatorname{Im} f_{\lambda} \geqslant \operatorname{N}$$

D'autre part, on a vu dans le DS2 que $T_n \in \text{Ker } f_\lambda$ et $T_n \neq 0$. Donc

$$\dim \operatorname{Ker} f_{\lambda} \geqslant 1$$

D'après le théorème du rang,

 $\dim \operatorname{Ker} f_{\lambda} + \dim \operatorname{Im} f_{\lambda} = N + 1$

donc

$$\dim \operatorname{Ker} f_{\lambda} = 1$$

$$\dim \operatorname{Ker} f_{\lambda} = 1$$
 et $\dim \operatorname{Im} f_{\lambda} = N$

En particulier, Ker f_{λ} est de dimension 1, contient T_n donc

$$\ker f_{\lambda} = \operatorname{Vect} T_n$$

5 On définit

$$g: \ \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$
$$P \longmapsto (1 - X^2)P'' - XP'$$

Soit $\lambda \in \mathbb{R}$,

$$\forall P \in \mathbb{R}[X] \qquad (P \text{ est solution de } (\mathbf{E}_{\lambda}) \text{ sur } \mathbb{R}) \Longleftrightarrow (\forall x \in \mathbb{R} \quad (1 - x^2) P''(x) - x P'(x) - \lambda P(x) = 0)$$

$$\iff (1 - X^2) P'' - X P' - \lambda P = 0$$

$$\iff (g - \lambda)(P) = 0$$

Remarquer que la deuxième équivalence vient du fait que ℝ est infini, ce qui permet d'identifier polynômes et fonctions polynomiales. Le problème est donc de trouver $Ker(g - \lambda)$.

• Supposons que

$$\forall n \in \mathbb{N}$$
 $\lambda \neq -n^2$

Soit $P \in \operatorname{Ker}(g - \lambda)$. On prend $N \in \mathbb{N}$ tel que deg $P \leq N$. De cette manière, $P \in \mathbb{R}_N[X]$. D'après la question $\mathbf{3}$, $g - \lambda$ est injective sur $\mathbb{R}_N[X]$. Donc P = 0, ce qui prouve $\operatorname{Ker}(g - \lambda) = \{0\}$: la seule solution polynomiale de (\mathbf{E}_{λ}) sur \mathbb{R} est la fonction nulle.

Réciproquement, on suppose qu'il existe n∈ N tel que λ = -n². On sait déjà que T_n est solution de (E_{-n²}) sur ℝ. Voyons quelles sont les autres solutions.
Soit P∈ Ker(g – λ). Soit N∈ N tel que degP ≤ N et n ≤ N, de manière à avoir T_n, P∈ R_N[X]. D'après la question 4,

$$\operatorname{Ker}(g - \lambda) \cap \mathbb{R}_{\mathbb{N}}[X] = \operatorname{Vect} T_n$$

Donc P est proportionnel à T_n . Ceci prouve que $Ker(g - \lambda) = Vect T_n$.

Conclusion : (E_{λ}) a des solutions polynomiales **non nulles** si, et seulement si, $\lambda \in \{-n^2 \mid n \in \mathbb{N}\}$. Dans ce cas, l'ensemble des solutions polynomiales de (E_{λ}) est $\text{Vect} T_n$.

Problème: Le lemme de Hochschildt

Première partie

 $\boxed{\textbf{I.1}}$ On note x_1, \ldots, x_k les k éléments, distincts deux-à-deux, de X. Une fonction f est entièrement déterminée par ses valeurs en ces points. Ceci nous amène à définir

$$\forall j \in [[1; k]] \qquad f_j \colon X \longrightarrow \mathbb{C}$$

$$x \longmapsto \begin{cases} 0 & \text{si } x \neq x_j \\ 1 & \text{si } x = x_j \end{cases}$$

Soit $f \in \mathbb{C}^{X}$. On définit la fonction $g = \sum\limits_{j=1}^{k} f(x_{j})f_{j}$ et on a alors

$$\forall i \in [[1; k]]$$
 $g(x_i) = \sum_{j=1}^k f(x_j) \underbrace{f_j(x_i)}_{=0 \text{ si } x_i \neq x_i} = f(x_i) \underbrace{f_i(x_i)}_{=1} = f(x_i)$

donc

$$\forall x \in X$$
 $f(x) = g(x)$ c'est-à-dire que $f = g$

Ceci montre que $(f_1, ..., f_k)$ engendre \mathbb{C}^X .

Montrons que cette famille est libre : soient $a_1, ..., a_k$ des complexes tels que

$$\sum_{j=1}^{k} a_j f_j = 0$$

Ceci veut dire que

$$\forall x \in \mathbf{X} \qquad \sum_{j=1}^{k} a_j \, f_j(x) = 0$$

En évaluant en $x_1, ..., x_k$, on obtient que $a_1, ..., a_k$ sont nuls. Donc $(f_1, ..., f_k)$ est libre.

Si X est fini de cardinal k, \mathbb{C}^{X} est de dimension k.

I.2 On note φ l'application donnée dans l'énoncé. La linéarité de φ est évidente. Et si $f \in \text{Ker} \varphi$, cela signifie que f est nulle sur Supp V. Mais f est aussi nulle sur $X_0 = X \setminus \text{Supp V}$ donc f est nulle sur X : f est la fonction nulle.

φ est une application linéaire injective.

I.3.a Observons que, d'après la question I.2, Supp V ne peut pas être vide puisque

$$0 < \dim V \leq \dim \mathbb{C}^{\operatorname{Supp} V} = |\operatorname{Supp} V|$$

On prend donc $x_1 \in \text{Supp V}$ et on considère la forme linéaire φ définie par

$$\forall v \in V \qquad \varphi(v) = v(x_1)$$

 φ n'est pas nulle, puisque $x_1 \in \text{Supp V}$. D'après le cours, il existe $a_1 \in V$ tel que $a_1(x_1) = 1$ et $\text{Ker } \varphi \oplus \text{Vect } a_1 = V$. On prend une base $(a_2, ..., a_p)$ de $\text{Ker } \varphi$; alors $(a_1, a_2, ..., a_p)$ est une base de V et l'on a

$$\forall j \in [[1; p]]$$
 $a_j(x) = \delta_{1,j}$

I.3.b Soit k < p un entier non nul. On suppose avoir trouvé $x_1, ..., x_k \in X$ et une base $(u_1, ..., u_p)$ de V, tels que

$$\forall i \in [[1; k]] \quad \forall j \in [[1; p]] \quad u_j(x_i) = \delta_{i,j}$$

La fonction u_{k+1} n'est pas nulle. Donc il existe $x_{k+1} \in X$ tel que $u_{k+1}(x_{k+1}) \neq 0$. On pose alors $v_{k+1} = \frac{u_{k+1}}{u_{k+1}(x_{k+1})}$ de sorte que

$$\forall i \in [[1; k+1]] \qquad \nu_{k+1}(x_i) = \delta_{i,k+1} \tag{1}$$

Ensuite, on définit

$$\forall j \in [[1; p]] \setminus \{k+1\}$$
 $v_j = u_j - u_j(x_{k+1}) v_{k+1}$

On observe déjà que la famille $(v_1,...,v_p)$ est obtenue à partir de $(u_1,...,u_p)$ par des opérations élémentaires : elle est donc libre et c'est une base de c.

De plus, par construction, on a

$$\forall i \in [[1; k]] \quad \forall j \in [[1; p]] \setminus \{k+1\} \qquad \nu_j(x_i) = \underbrace{u_j(x_i)}_{=\delta_{i,j}} - u_j(x_{k+1}) \underbrace{\nu_{k+1}(x_i)}_{=0} = \delta_{i,j}$$
 (2)

et
$$\forall j \in [[1; p]] \setminus \{k+1\}$$
 $v_j(x_{k+1}) = u_j(x_{k+1}) - u_j(x_{k+1}) \underbrace{v_{k+1}(x_{k+1})}_{=1} = 0$ (3)

Les relations (1), (2) et (3) peuvent être résumées en

$$\forall i \in [[1;k]] \quad \forall j \in [[1;p]] \qquad v_j(x_i) = \delta_{i,j}$$

I.3.c Si $f \in V$, il peut se décomposer dans la base $(w_1, ..., w_p)$ construite précédemment : il existe $\lambda_1, ..., \lambda_p \in \mathbb{C}$, tels que $f = \sum_{j=1}^p \lambda_j v_j$. Par suite,

$$\forall i \in [[1; p]] \qquad f(x_i) = \sum_{j=1}^p \lambda_j \underbrace{v_j(x_i)}_{=\delta_{i,j}} = \lambda_i$$

Donc

$$\forall f \in V \qquad f = \sum_{j=1}^{p} f(x_j) \, \nu_j$$

Deuxième partie

II.1 Soit $g \in V$; c'est une combinaison linéaire finie de translatées de f donc il existe $n \in \mathbb{N}^*$, des réels a_1, \ldots, a_n et des complexes $\lambda_1, \ldots, \lambda_n$ tels que

$$\forall x \in \mathbb{R} \qquad g(x) = \sum_{k=1}^{n} \lambda_k \tau_{a_k}(f)(x) = \sum_{k=1}^{n} \lambda_k f(a_k + x)$$

Donc g est dérivable, puisque c'est une somme de fonctions dérivables.

De plus, si $a \in \mathbb{R}$, on a

$$\forall x \in \mathbb{R} \qquad \tau_a(g)(x) = g(a+x) = \sum_{k=1}^n \lambda_k f(a_k + a + x) = \sum_{k=1}^n \lambda_k \tau_{a_k + a}(f)(x)$$

donc $\tau_a(g)$ est aussi dans V.

Si $g \in V$, alors g est dérivable est toutes ses translatées sont dans V.

 \blacksquare D'après la question **I.3.c**, il existe $x_1, \dots, x_p \in \mathbb{R}$ et une base (v_1, \dots, v_p) de V, tels que

$$\forall i, j \in [[1; p]]$$
 $v_j(x_i) = \delta_{i,j}$

Soient $g \in V$ et $a, b \in \mathbb{R}$. D'après la question **II.1**, $\tau_a(g)$ est dans V; et d'après la question **I.3.d**,

$$\tau_a(g) = \sum_{k=1}^p \tau_a(g)(x_k) v_k = \sum_{k=1}^p g(a + x_k) v_k$$

donc

$$g(a+b) = \tau_a(g)(b) = \sum_{k=1}^{p} g(a+x_k) v_k(b)$$

$$\forall g \in V \quad \forall a, b \in \mathbb{R} \qquad g(a+b) = \sum_{k=1}^{p} g(a+x_k) v_k(b)$$

II.3 Soit $g \in V$. On sait déjà que g est dérivable, d'après la question II.1. Montrons que $g' \in V$. Soient a et h deux réels, avec $h \neq 0$. D'après la question II.2,

$$g(a+h) = g(h+a) = \sum_{k=1}^{p} g(x_k + h) v_k(a)$$

et

$$g(a) = g(0+a) = \sum_{k=1}^{p} g(x_k) v_k(a)$$

donc

$$\frac{g(a+h) - g(a)}{h} = \sum_{k=1}^{p} \frac{g(x_k + h) - g(x_k)}{h} v_k(a)$$

Or,

$$\forall k \in [[1; p]]$$
 $\lim_{h \to 0} \frac{g(x_k + h) - g(x_k)}{h} = g'(x_k)$

donc

$$g'(a) = \sum_{k=1}^{p} g'(x_k) v_k(a)$$

Autrement dit,

$$g' = \sum_{k=1}^{p} g'(x_k) v_k \in \text{Vect}(v_1, \dots, v_p) = V$$

Si g est dans V, sa dérivée est aussi dans V.

Et par une récurrence immédiate,

Si g est dans V, elle est infiniment dérivable.

II.4 En particulier, f est dans V, elle est infiniment dérivable et toutes ses dérivées sont dans V. Comme V est de dimension p, la famille $(f, f', ..., f^{(p)})$ est liée puisqu'elle contient p+1 vecteurs. Donc il existe des complexes $a_0, ..., a_p$ tels que

$$\sum_{k=0}^{p} a_k f^{(k)} = 0$$

f est solution d'une équation différentielle linéaire à coefficients constants.