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Abstract
In the context of self-stabilization, a silent algorithm guarantees that the communication registers
(a.k.a register) of every node do not change once the algorithm has stabilized. At the end of the 90’s,
Dolev et al. [Acta Inf. ’99] showed that, for finding the centers of a graph, for electing a leader, or
for constructing a spanning tree, every silent deterministic algorithm must use a memory of Ω(log n)
bits per register in n-node networks. Similarly, Korman et al. [Dist. Comp. ’07] proved, using the
notion of proof-labeling-scheme, that, for constructing a minimum-weight spanning tree (MST),
every silent algorithm must use a memory of Ω(log2 n) bits per register. It follows that requiring the
algorithm to be silent has a cost in terms of memory space, while, in the context of self-stabilization,
where every node constantly checks the states of its neighbors, the silence property can be of limited
practical interest. In fact, it is known that relaxing this requirement results in algorithms with
smaller space-complexity.

In this paper, we are aiming at measuring how much gain in terms of memory can be expected
by using arbitrary deterministic self-stabilizing algorithms, not necessarily silent. To our knowledge,
the only known lower bound on the memory requirement for deterministic general algorithms, also
established at the end of the 90’s, is due to Beauquier et al. [PODC ’99] who proved that registers of
constant size are not sufficient for leader election algorithms. We improve this result by establishing
the lower bound Ω(log log n) bits per register for deterministic self-stabilizing algorithms solving
(∆ + 1)-coloring, leader election or constructing a spanning tree in networks of maximum degree ∆.
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1 Introduction

Self-stabilization is a suitable paradigm for asynchronous distributed systems subject to
transient failures. The occurrence of failures can bring the system into arbitrary configurations.
A self-stabilizing algorithm guarantees a return to a correct behavior in finite time, without
external intervention. The legality of the configuration is a notion that depends on the
problem considered. For instance, for the problem of (∆ + 1)-coloration of the nodes, a
configuration is legal if every node has a color in [1, . . . , ∆ + 1] different from the color of
each of its neighbors.
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37:2 Memory Lower Bounds for Self-Stabilization

In the state model, the processes have two types of memory. The immutable memory
is used to store the identity of the node, its ports numbers, and the code of the algorithm.
By definition the immutable memory is fault free. On the other hand, the mutable memory
is the memory used to store variables, this memory is not fault free. In fact, each node
has only one register and the register of each node is composed by the mutable memory.
Recall that in this model, each node uses its register to communicate the values of its own
variables to its neighbors. As a result, only mutable memory (a.k.a register) is considered
for computing memory complexity a.k.a space complexity of a self-stabilizing protocol, and
immutable memory is not. Note that a node can use to compute the information of its
immutable memory, such as its identity.

Indeed, small space-complexity is desirable for several reasons. One reason is for reducing
the overhead due to link congestion [1] (note that the nodes carry on exchanging information,
even after stabilization, and even when no fault occurs). Another reason is that mixing
variable replication with self-stabilization can be desirable [8], but replication is possible only
if the overall memory occupied by these variables is small.

In this paper, we establish a lower bound of Ω(log log n) bits space memory for the register
of each node for the leader election problem, the (∆ + 1)-coloration of the nodes (denoted
by coloring problem), and the spanning tree construction. Note that we consider a network
where each node v ∈ V has a distinct identity, denoted by ID(v) ∈ {1, . . . , nc} for some
constant c > 1. This significantly improves the only lower bound [2] known so far, from Ω(1)
to Ω(log log n). Moreover, our lower bound invalidates the folklore conjecture stating that
the aforementioned problems might be solvable using only O(log∗ n) bits by register. More
importantly, our lower bound implies that the upper bound O(log ∆+log log n) bits of register
per node in [6] for the coloring problem and spanning tree construction is space optimal.

In the context of self-stabilization, a silent algorithm guarantees that the register of
every node does not change once the algorithm has stabilized. The memory efficiency in the
context of silent self-stabilizing algorithms is well studied. Firstly, Dolev and al. [7], at the
end of the 90’s, proved that finding the centers of a graph, leader election, and spanning
tree construction require a memory of Ω(log n) bits per register whenever the algorithm is
requested to be silent. On the other hand, the design of silent algorithms is based on a
mechanism known as proof-labeling-scheme (PLS) [10], and space lower bounds for PLSs
imply space lower bounds for silent self-stabilizing algorithms. A typical example is the
Ω(log2 n)-bit lower bound on the size of every PLS for minimum-weight spanning trees
(MST) [9] , which implies the same bound for constructing an MST in a silent manner [4].
It follows that requiring the algorithm to be silent has a cost in terms of memory space,
while, in the context of self-stabilization, where every node constantly checks the states of
its neighbors, the silence property can be of no practical interest. In fact, it is known that
relaxing this requirement results in algorithms with smaller space-complexity [5, 6].

2 Lower bounds

2.1 Main theorem
I Theorem 1. Let c > 1. Every self-stabilizing deterministic algorithm under the fair
distributed scheduler solving (∆ + 1)-coloring, leader election, or spanning tree construction
in n-node graphs where every node has a unique identities in [1, nc] requires Ω(log log n) bits
of memory per register at each node.

The proof is to be found in the full version [3]. The core of the proof is the following. It is
known that problems such as coloring, leader election and spanning tree construction require
identities to break symmetry under a distributed scheduler. In other words, no algorithm
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can solve such problems in anonymous networks. In essence, we show that an algorithm in
a network with identities but in which the size of each register is too small does not have
more power than an algorithm running in an anonymous network. More specifically, let A

be an algorithm in a network with identities, and let us assume that A uses o(log log n) bits
by register. Observe that even if the network has identities, and even if these identities are
used by the algorithm, their size is not taken into account in the space complexity of the
algorithm, as identities are not stored in register, but in the immutable memory. However,
the nodes cannot write their identities in the register, which is too small, and the identities
have to be transferred between nodes in a series of smaller pieces of information. We show
that, with only o(log log n) bits node register, there exist graphs and identity assignments to
the nodes of these graphs such that the algorithm A has the same behavior as an algorithm
in the anonymous version of these graphs. It follows that A cannot solve coloring problem,
leader election and spanning tree construction.

Observe that it is usually assumed that any coloring algorithm must compute a color
variable cv ∈ [1, . . . , ∆ + 1] at each node v. It follows that such coloring algorithms require
registers of size Ω(log ∆) bits. Similarly, it is usually assumed that any algorithm constructing
a spanning tree computes a port number pv ∈ [1, . . . , ∆] at each node v ∈ V . Hence, such
algorithms require registers of size Ω(log ∆) bits. Consequently, the deterministic self-
stabilizing algorithms for coloring and for spanning tree construction in [6] are space-optimal.
Indeed, these algorithms use O(log ∆ + log log n) bits of memory at each node.
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