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Clique vs Independent Set Problem

Motivation: Yannakakis, 1991
Slack matrix for STAB(G) in perfect graphs.

Existing bound
There is a Clique-Stable separator of size nlog n.

Question
Does there exists a polynomial P, such that for all graph G on n
vertices, there exists a Clique-Stable separator of size P(n)?
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Alon-Saks-Seymour conjecture

Motivation
Graham-Pollak theorem, 1971: bp(Kn) = n − 1.

Alon-Saks-Seymour conjecture (≈1974)
If the edges of G can be partitioned into k edge-disjoint complete
bipartite graphs, then χ ≤ k + 1.
In other words: χ ≤ bp + 1.

Counter-example

Huang & Sudakov, 2010: There exists G such that χ ≥ bp6/5.

Question: Polynomial Alon-Saks-Seymour conjecture
Does there exists P such that for all G , χ ≤ P(bp).
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List-M partition problems
0 ∗ 0 ∗
∗ 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ 1


Matrix M for the stubborn problem.

⇒?

G A1

A2

A3

A4

Feder & Hell: Dichotomy theorem?
Classification P or NP-complete for small matrices, k ≤ 3.
Classification for k = 4 except for the stubborn problem.
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Existing bound
The stubborn problem can be solved in time O(nlog n) via
decomposition into O(nlog n) instances of 2-SAT.

Question
Decomposing the problem into a polynomial number of 2-SAT
instances?

Complexity result
Cygan et al, 2010: The stubborn problem is polynomially solvable.
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3-Compatible Coloring Problem

3-Compatible Coloring Problem (3-CCP)
Input: An edge coloring fE of the complete graph on n vertices
with 3 colors {A,B,C}.
Question: Is there a coloring of the vertices with the same three
colors, such that no edge has the same color as both its
extremities?
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x

constraint {B,C}

Tree: degree n + 1, height C log n → O(nlog n) leaves
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Overview

Equivalence theorem
The following are equivalent:

1 There is a polynomial P such that for all graph G , χ ≤ P(bp).
2 For all graph G , there is a polynomial CS-separator.
3 For all graph G and all list assignment
L : V → P({A1,A2,A3,A4}), there is a polynomial 2-list
covering for the stubborn problem on (G ,L).

4 For all n and all edge-coloring f : E (Kn)→ {A,B,C}, there is
a polynomial 2-list covering for 3-CCP on (Kn, f ).
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G

Lemma
(2⇒ 3) : Polynomial 2-list covering for 3-CCP for all G ⇒
Polynomial CS-separator for all G .
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Lemma
(3⇒ 1) : Polynomial CS-separator for all G ⇒ Polynomial 2-list
covering for the stubborn problem for all G .
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Observation
If there are p cuts that separate all the cliques and the stable sets,
then there are p2 cuts that separate all the cliques and the union
of two stables.
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A1

A2

A3

A4

G

constraint {A3, A4}

constr.{A2, A3} if A3 ∈ L(v)

A3 /∈ L(v)

constr.{A1, A2} otherwise

Lemma
(3⇒ 1) : Polynomial CS-separator for all G ⇒ Polynomial 2-list
covering for the stubborn problem for all G .
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On particular classes

Random graphs
There is a polynomial Clique-Stable separator on random graphs.

Split-free
Let H be a union of a clique and a stable set (=split graph). Then
there is a polynomial Clique-Stable separator for H-free graphs.

Remark: These classes of graphs contain claw-free graphs and
comparability graphs.
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Prospects

Solve one problem and deduce the others!
Study the Clique-Stable separation on perfect graphs thanks
to structure theorem.
Study which graph operations preserves the property of
polynomial Clique-Stable separation.
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Thank you for listening!
Do you have any questions?
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