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Clique vs Independent Set Problem

Do the clique and the stable intersect?
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Clique vs Independent Set Problem

Motivation: Yannakakis, 1991
Slack matrix for STAB(G) in perfect graphs.

Existing bound

There is a Clique-Stable separator of size n'°&".

Does there exists a polynomial P, such that for all graph G on n
vertices, there exists a Clique-Stable separator of size P(n)?
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Graham-Pollak theorem, 1971: bp(K,) = n — 1.
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Graham-Pollak theorem, 1971: bp(K,) = n — 1.

Alon-Saks-Seymour conjecture (~1974)

If the edges of G can be partitioned into k edge-disjoint complete
bipartite graphs, then y < k + 1.
In other words: x < bp + 1.
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Huang & Sudakov, 2010: There exists G such that y > bp®/®.
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Graham-Pollak theorem, 1971: bp(K,) = n — 1.

Alon-Saks-Seymour conjecture (~1974)

If the edges of G can be partitioned into k edge-disjoint complete
bipartite graphs, then y < k + 1.
In other words: x < bp + 1.

| \

Counter-example

Huang & Sudakov, 2010: There exists G such that y > bp®/®.

Question: Polynomial Alon-Saks-Seymour conjecture

Does there exists P such that for all G, x < P(bp).
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List-M partition problems

0 « 0 =«
* 0 % %
0 * * =x
* % % 1

Matrix M for the stubborn problem.

:

Classification P or NP-complete for small matrices, k < 3.
Classification for k = 4 except for the stubborn problem.

Q%‘ 8}

Feder & Hell: Dichotomy theorem?
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Existing bound

The stubborn problem can be solved in time O(n'°8") via
decomposition into O(n'°8") instances of 2-SAT.

| A

Question

Decomposing the problem into a polynomial number of 2-SAT
instances?

Complexity result
Cygan et al, 2010: The stubborn problem is polynomially solvable.
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3-COMPATIBLE COLORING PROBLEM

3-CoMPATIBLE COLORING PROBLEM (3-CCP)

Input: An edge coloring fg of the complete graph on n vertices
with 3 colors {A, B, C}.

Question: [s there a coloring of the vertices with the same three
colors, such that no edge has the same color as both its
extremities?
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Tree: degree n+ 1, height Clogn — O(n'°8") leaves J
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Overview

Equivalence theorem

The following are equivalent:
@ There is a polynomial P such that for all graph G, x < P(bp).
@ For all graph G, there is a polynomial CS-separator.

© For all graph G and all list assignment
L:V — P({A1, Az, A3, As}), there is a polynomial 2-list
covering for the stubborn problem on (G, £).

Q For all n and all edge-coloring f : E(K,) — {A, B, C}, there is
a polynomial 2-list covering for 3-CCP on (K, ).

v
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(2 = 3) : Polynomial 2-list covering for 3-CCP for all G =
Polynomial CS-separator for all G.
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(3= 1) : Polynomial CS-separator for all G = Polynomial 2-list
covering for the stubborn problem for all G.
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If there are p cuts that separate all the cliques and the stable sets,
then there are p? cuts that separate all the cliques and the union
of two stables.
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(3= 1) : Polynomial CS-separator for all G = Polynomial 2-list
covering for the stubborn problem for all G.
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constr.{As, Az} if Az € L(v)
constr.{A1, A2} otherwise
G
<
Asg ¢ E(v) constraint {As, As}

(3= 1) : Polynomial CS-separator for all G = Polynomial 2-list
covering for the stubborn problem for all G.
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On particular classes

Random graphs
There is a polynomial Clique-Stable separator on random graphs.

Let H be a union of a clique and a stable set (=split graph). Then
there is a polynomial Clique-Stable separator for H-free graphs.

Remark: These classes of graphs contain claw-free graphs and
comparability graphs.
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@ Solve one problem and deduce the others!
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@ Study the Clique-Stable separation on perfect graphs thanks
to structure theorem.
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Prospects

@ Solve one problem and deduce the others!

@ Study the Clique-Stable separation on perfect graphs thanks
to structure theorem.

@ Study which graph operations preserves the property of
polynomial Clique-Stable separation.

19/21



Prospects
oce

Thank you for listening!
Do you have any questions?
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