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Clique vs Independent Set Problem

Question: Clique-Stable Set separation
Does there exists a polynomial P, such that for all graph G on n
vertices, there exists a family of cuts that separates all the cliques
and the stable sets (=a Clique-Stable separator) of size P(n)?
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Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (≈1974)
If the edges of G can be partitioned into k edge-disjoint complete
bipartite graphs, then χ ≤ k + 1.
In other words: χ ≤ bp + 1.

Remark
True on complete graphs (Graham-Pollak theorem, 1971).

Counter-example

Huang & Sudakov, 2010: There exists G such that χ ≥ bp6/5.

New question: Polynomial Alon-Saks-Seymour conjecture
Does there exists P such that for all G , χ ≤ P(bp).
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3-Compatible Coloring Problem

3-Compatible Coloring Problem (3-CCP)
Input: An edge coloring fE of the complete graph on n vertices
with 3 colors {A,B,C}.
Question: Is there a coloring of the vertices with the same three
colors, such that no edge has the same color as both its
extremities?
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2-list covering for 3-Compatible Coloring Problem

{A,C}

{A,B}

{A,B}

2-list covering for 3-Compatible Coloring Problem (3-CCP)
Assign to each vertex a list of size 2 compatible with a solution.
Build a family F of such objects that covers all the solutions, i.e.
for all solution, there is 2-list assignment in F which is compatible
with the solution.

Goal: have a polynomial family.
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The stubborn problem

⇒?

G A1

A2

A3

A4

The stubborn problem
Input: A graph G = (V ,E ) together with a list assignment
L : V → P({A1,A2,A3,A4}).
Question: Can V be partionned into four sets A1, . . . ,A4 such
that A4 is a clique, both A1 and A2 are stable sets, there is no
edge between A1 and A3, and each vertex v belongs to Ai only if
Ai ∈ L(v)?
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2-list covering for the stubborn problem
Assign to each vertex a list of size 2 compatible with a maximal
solution.
Build a family F of such objects that covers all the maximal
solutions, i.e. for all maximal solution, there is 2-list assignment in
F which is compatible with the solution.
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Overview

Examples
There is a polynomial CS-separator on random graphs and on
H-free graphs with H split.

Equivalence theorem I
The following are equivalent:

For all graph G , there is a polynomial CS-separator.
There is a polynomial P such that for all graph G , χ ≤ P(bp).
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Second theorem

Equivalence theorem II
The following are equivalent:

1 For all graph G and all list assignment
L : V → P({A1,A2,A3,A4}), there is a polynomial 2-list
covering for the stubborn problem on (G ,L).

2 For all n and all edge-coloring f : E (Kn)→ {A,B,C}, there is
a polynomial 2-list covering for 3-CCP on (Kn, f ).

3 For all graph G , there is a polynomial CS-separator.
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G

Lemma
(2⇒ 3) : Polynomial 2-list covering for 3-CCP for all G ⇒
Polynomial CS-separator for all G .
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Lemma
(3⇒ 1) : Polynomial CS-separator for all G ⇒ Polynomial 2-list
covering for the stubborn problem for all G .
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then there are p2 cuts that separate all the cliques and the union
of two stables.
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G

constraint {A3, A4}

constr.{A2, A3} if A3 ∈ L(v)

A3 /∈ L(v)

constr.{A1, A2} otherwise

Lemma
(3⇒ 1) : Polynomial CS-separator for all G ⇒ Polynomial 2-list
covering for the stubborn problem for all G .
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Prospects

Solve one problem and deduce the others!
Study the Clique-Stable separation on perfect graphs thanks
to structure theorem.
Study which graph operations preserves the property of
polynomial Clique-Stable separation.
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Merci! Avez-vous des questions?
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