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Do the clique and the stable intersect?
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Clique vs Independent Set Problem

Question: Clique-Stable Set separation

Does there exists a polynomial P, such that for all graph G on n
vertices, there exists a family of cuts that separates all the cliques
and the stable sets (=a Clique-Stable separator) of size P(n)?
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Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (~1974)

If the edges of G can be partitioned into k edge-disjoint complete
bipartite graphs, then y < k + 1.
In other words: x < bp + 1.

True on complete graphs (Graham-Pollak theorem, 1971).
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Alon-Saks-Seymour conjecture (~1974)

If the edges of G can be partitioned into k edge-disjoint complete
bipartite graphs, then y < k + 1.
In other words: x < bp + 1.

True on complete graphs (Graham-Pollak theorem, 1971).

Counter-example
Huang & Sudakov, 2010: There exists G such that y > bp®/®.

New question: Polynomial Alon-Saks-Seymour conjecture

Does there exists P such that for all G, x < P(bp).
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3-CoMPATIBLE COLORING PROBLEM (3-CCP)

Input: An edge coloring fg of the complete graph on n vertices
with 3 colors {A, B, C}.

Question: [s there a coloring of the vertices with the same three
colors, such that no edge has the same color as both its
extremities?
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{4, B}

O
{4, B} {4, C}

2-list covering for 3-CoOMPATIBLE COLORING PROBLEM (3-CCP)

Assign to each vertex a list of size 2 compatible with a solution.
Build a family F of such objects that covers all the solutions, i.e.
for all solution, there is 2-list assignment in F which is compatible
with the solution.

Goal: have a polynomial family.
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Input: A graph G = (V, E) together with a list assignment
L:V — P({Al,Az, A3, A4})

Question: Can V be partionned into four sets Aj, ..., A4 such
that A4 is a clique, both A; and Ay are stable sets, there is no
edge between A; and As, and each vertex v belongs to A; only if
A; € E(v)'?
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2-list covering for the stubborn problem

Assign to each vertex a list of size 2 compatible with a maximal
solution.

Build a family F of such objects that covers all the maximal
solutions, i.e. for all maximal solution, there is 2-list assignment in
JF which is compatible with the solution.
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Overview

There is a polynomial CS-separator on random graphs and on
H-free graphs with H split.

V.

Equivalence theorem |

The following are equivalent:

@ For all graph G, there is a polynomial CS-separator.
@ There is a polynomial P such that for all graph G, x < P(bp).
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Second theorem

Equivalence theorem Il

The following are equivalent:
@ For all graph G and all list assignment
L:V — P({A1, Az, A3, As}), there is a polynomial 2-list
covering for the stubborn problem on (G, £).
@ For all n and all edge-coloring f : E(K,) — {A, B, C}, there is
a polynomial 2-list covering for 3-CCP on (K, f).

© For all graph G, there is a polynomial CS-separator.
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(3= 1) : Polynomial CS-separator for all G = Polynomial 2-list
covering for the stubborn problem for all G.
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then there are p? cuts that separate all the cliques and the union
of two stables.
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(3= 1) : Polynomial CS-separator for all G = Polynomial 2-list
covering for the stubborn problem for all G.
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constr.{As, Az} if Az € L(v)
constr.{A1, A2} otherwise
G
<
Asg ¢ E(v) constraint {As, As}

(3= 1) : Polynomial CS-separator for all G = Polynomial 2-list
covering for the stubborn problem for all G.
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Prospects

@ Solve one problem and deduce the others!

@ Study the Clique-Stable separation on perfect graphs thanks
to structure theorem.

@ Study which graph operations preserves the property of
polynomial Clique-Stable separation.
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Merci! Avez-vous des questions?
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