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Abstract

In this paper we propose a study of the 3-adapted list coloring problem
[7] by 2-list colorings. First we prove that this problem is equivalent to the
problem of separation of the cliques and the stable sets. This problem is
deeply linked with a problem of communication complexity introduced by
Yannanakis [13]. Hence we show that these problems are also equivalent
with a polynomial bound for an oriented Alon-Saks-Seymour conjecture.
Finally we look at the case where a color is a matching, and solve some
particular cases.

1 De�nitions

Let k be an integer. We denote by [k] the set of integers between 0 and k − 1.
Let G = (V,E) be a graph. An edge uv ∈ E links its two endpoints u and v.
The neighbourhood N(x) of x is the set of vertices y such that xy ∈ E. The
subgraph induced by X ⊆ V is the graph (X,E′) where E′ = E ∩ (X ×X). A
clique of G is a complete induced subgraph of G. A stable set is an induced
subgraph without edges. Observe that the intersection of a clique and a stable
set is at most one vertex. A vertex-coloring (resp. edge-coloring) of G with
k colors is a function fV (resp. fE) from V (resp. E) to [k]. In an edge-
colored graph, an α1...αk-clique is an induced subgraph where the edges are
only colored by α1...αk. A vertex-coloring fV of G is fE-proper i� for each edge
uv of E, fV (u) 6= fE(uv) or fV (v) 6= fE(uv). The k-Adapted-List-Coloring
Problem was de�ned by Hell and Zhu in [7], and then studied in [1] and [9]
consists in a proper coloring of the vertices.
k-Adapted-List-Coloring Problem (k-ALCP)
Input: An edge coloring fE of the complete graph on n vertices with k colors.
Question: Is there an fE-proper coloring?
This problem has applications to matrix partitions of graphs, full constraint
satisfaction problems and trigraph homomorphisms [3], [4], [2], [6]. It is known
to be NP-complete if k ≥ 4 and it is known to be polynomial if k ≤ 2 [7]. The
question remains open for k = 3. We focus our attention on this last case. The
majority color of x ∈ V is the color which appears the most often for the edges
touching x (in case of ties, we arbitrarily cut them ). A vertex has an l-constraint
if it can be colored by at most l colors. An l-list coloring is a coloring where
each vertex has an l-constraint. An l-list coloring is compatible with a solution
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fV if for each vertex x, fV (x) is in the l-constraint of x. A set of l-list colorings
is compatible with a solution if one of the l-list coloring is compatible with the
solution. A partition problem is l-list colored for a function f is there exists f(n)
l-list colorings compatible with all the solutions. A partition problem is said
polynomially l-list colored if there exists a polynomial Q such that the partition
problem is l-list colored for Q.

Observation 1 Given a polynomial number of 2-list colorings, it is possible to
decide in polynomial time if they are compatible with a solution.

Theorem 1 REF? There exists an algorithm in time O(nlogn) which solves the
3-ALCP.

Proof: We give the proof for self completeness. This algorithm consists in
testing nlog(n) 2-list colorings which contains all the solutions. Consider the
vertex x, without loss of generality we can assume that the majority color of x
is 0. If there is a solution in which x is colored by 0 then all its 0-neighbours
cannot have the color 0, hence all its 0-neighbours has 2-list constraints. And
the number of remaining vertices with 3 possible colors is at most 2n/3. It
is possible to make the same for the remaining vertices. Hence consider the
following algorithm, for each vertex x try to �nd a solution for which x is
colored by its majority color. If there is no such solution for all x, then all the
vertices have 2-list constraints. This algorithm is representable by a research-
tree of degree n+1 and depth log(n) in which each of the nlog(n) leaves is 2-list
colorings of the instance. �

2 Link with the Cliques-Stables separation con-

jecture

A cut is a pair (A,B) such that A ∪B = V and A ∩B = ∅. A cut separates a
clique C and a stable set S if C ⊆ A and S ⊆ B. A clique and a stable set can
be separated i� they do not intersect. Let C be the set of cliques and S be the
set of stable sets.

Conjecture 1 (Clique-Stable Set separation Conjecture) There is a polynomial
Q, such that for every graph G on n vertices, all pairs (C, S) ∈ CG × SG which
do not intersect are separated by Q(n) cuts.

To motivate this polynomial separation let us prove the conjecture for some
particular classes of graphs. For a class with a polynomial number of cliques
or stable sets, the conjecture is veri�ed. Hence a class of graphs with bounded
cliques or stable sets veri�es the conjecture. Claims 1, 2 and 3 give more in-
teresting examples of classes of graphs which verify the conjecture. The claw is
the graph with four vertices 1, 2, 3, 4 with the edges 12, 13 and 14.

Claim 1 For random graphs, the clique-stable set separation conjecture is ver-
i�ed.

Proof: In random graphs, maximum cliques and maximum stable sets are of size
log(n). Let (C, S) be a pair of a clique and a stable set which do not intersect.
Observe that there is at most 4n such pairs. Consider a random partition of
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the vertices into V1 and V2 of equal size, the probability that all the vertices
of C are in V1 is 1/2log(n) and the same holds for V2 and S. Hence C and
S are separated with probability 1/n2. Then, a pair (C, S) is separated by
1/n2 of all the partitions, hence by double counting there is a partition which
separates 1/n2 of all the pairs. When the separated pairs are deleted it remains
(1− 1/n2) · 4n pairs and the remaining pairs are still separate which probability
1/n2. Hence it possible to separate the pairs after k steps if (1−1/n2)k ·4n ≤ 1,
which means that 2n3 partitions separates all the pairs. �

Claim 2 For comparability graphs, the clique-stable set separation conjecture is
veri�ed.

Proof: A N is isomorph to the poset on four vertices {a, b, c, d} with arcs
{ab, cb, cd}. If a poset O contains a maximal antichain and a maximal chain
which do not intersect, then O contains a N in is Hass diagram (formed by
two consecutive of the chain and two vertices of the antichain). Now, let G be
comparability graph, and O the resulting poset. We subdivise every arc of the
Hass diagram of O, the resulting poset O′ contains no N in is Hass diagram.
Hence, we consider all the cuts formed by the neighbourhood and the non-
neighbourhood of each vertex in O′. Now, a clique C and a stable set S of G,
can be extended into a maximal chain and a maximal antichain in O′ which
intersect and then are separated by a choosen cut.

Claim 3 For claw-free graphs, the clique-stable set separation conjecture is ver-
i�ed.

Proof: Let x be a vertex of the graph. At most two of its neighbours are in
the same stable set. Indeed, otherwise there is a claw. Hence, the separation in
neighbourhood and non-neighbourhood of a vertex modulo at most two vertices
separates the cliques and the stable sets. More formally, for all x and all set X
of at most two neighbours of x, the cuts N(x) r X and (N(x) r X)c separate
C and S. Then n3 cuts separates cliques and stable sets. �

This problem is not so far from a problem of communication complexity
(see [10] for more details). A graph G is given to Alice and Bob. Alice and
Bob try to minimize the bits exchanged to determine if a clique and a stable
set intersect. Alice and Bob decide a protocol for this graph. Then a clique is
given to Alice and a stable set is given to Bob. They apply the protocol. The
goal is to minimize the communication between Alice and Bob ie the number of
exchanged bits. This problem was introduced by Yannakakis [13] which proposes
a deterministic algorithm which uses log2(n) bits. The best known lower bound
for non-deterministic algorithm is 6/5 · log(n) is given by [8] using a counter-
example to the Alon-Saks-Seymour conjecture.

The following of this section is devoted to the equivalence between the
Clique-Stables separation conjecture and the polynomial 2-list coloring of the
3-ALCP.

Observation 2 A solution of the 3-ALCP is a partition of the graph into
(X,Y, Z) such that the graph restricted to X (resp. Y , resp Z) has only color
01 (resp. 02, resp. 12).

Proof: Consider a solution of the 3-ALCP. Let X be (resp. Y , Z) the set
of vertices colored by 0 (resp. 1, 2) in the solution. There is no edge of color 0
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(resp. 1, 2) in the graph restricted to X (resp. Y , Z) since an edge cannot have
the color of its endpoints then X is a 12-clique. The reverse is also clearly true.
�
Hence the 3-ALCP is polynomially 2-list colored i� the problem of �nding such
a division into 3 cliques is polynomially 2-list colored because the solutions are
the same.
A graph G = (V,E) is split if V = V1 ∪ V2 and the subgraph induced by V1 is
a clique and the subgraph induced by V2 is a stable set. A graph with edges
colored by a and b is split if there is a partition of the vertices into a a-clique
and a b-clique.

Proposition 1 Let x be a vertex. Let A be the 0-neighbourhood of x. Let U be
a 12-clique of A. If U is not split then there is no solution where x is colored
by 0.

Proof: Assume that x is colored by 0. Then all the vertices of U are of color 1
or 2 because they are in the 0-neighbourhood of x. The vertices colored by 1
form a 2-clique and all the vertices colored by 2 form a 1-clique and the union
is U . Hence U is split. �
Observe that the same property holds for the 1 and the 2-neighbourhoods.
A vertex x is really 3-colorable if for each color a, esach bc-clique of the a-
neighbourhood of x is a split graph. If a vertex is not really 3-colorable then,
in a solution, it can be colored by at most 2 di�erent colors. A global solution
is necessarily a solution of the graph without x and x colored by one of the two
possible colors. Hence, given a 2-list coloring of the graph without x, there is a
natural 2-list coloring of the graph which is 2-list coloring of the graph without
x and the 2-constraint for x. Hence it is possible to assume that the graph has
only really 3-colorable vertices.

Theorem 2 The 3-ALCP is polynomially 2-list colored i� the clique-stable set
separation conjecture is veri�ed.

Proof: Assume that the 3-ALCP has a 2-list coloring and let us prove that it
is possible to separate all pairs of cliques and stable sets. Let G = (V,E) be a
graph. Consider a edge-colored graph with the same vertices as G where xy is
colored by 0 if xy ∈ E and colored by 1 otherwise. Let C be a clique and S a
stable set of G which do not intersect. Observe that the edges of C are colored
by 0, and those of S are colored by 1. Then the vertex-coloring 1 for the vertices
of C, 0 for those of S and 2 for the other vertices is a solution of the 3-ALCP.
By asumption, the 3-ALCP is polynomially 2-list colored. Hence there exists
a polynomial number of 2-list colorings which are compatible with all the solu-
tions. Consider a partition (X,Y, Z) compatible with this solution. The set X
(resp. Y , Z) is the set of vertices which can be colored by 01 (resp. 12, 02). The
vertices of Z cannot be in C, and those of Y cannot be in S. Then C ⊆ X ∪ Y
and S ⊆ X ∪ Z.
Since all the edges are of color 0 and 1, the graph restricted to X is split, be-
cause otherwise X cannot be colored properly. Given a graph, there is a linear
number of decompositions into a split graph. Then the number of possible de-
compositions of X is linear. Let (Uk, Vk)k be these decompositions. The pair
(C, S) is separated by one of the (Uk ∪ Y, Vk ∪ Z).
Then, the clique-stable set conjecture is veri�ed because of the polynomial num-
ber of 2-list colorings and the linear number of decomposition into split graphs.
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We will now prove the reverse of Theorem 2. The proof is based on two lemmas.
First the 3-ALCP is polynomially 2-list colored if a problem a little bit di�er-
ent is polynomially 2-list colored: a particular case of a 4-partition problem.
Next this new problem can be polynomially 2-list colored if the cliques-stable
set separation conjecture is veri�ed.
The 3-ALCP is polynomially 2-list colored i� there is a polynomial number of
2-list colorings (A,B,C) for which each vertex in A (resp. B, resp. C) can be
colored by 0 or 1 (resp. 0 or 2, resp. 1 or 2) which are compatible with all the
solutions of the 3-ALCP. Let us introduce the 4-Partition-2-Cliques Prob-
lem (4P2CP) and prove that if this problem has a 2-list coloring then it is also
true for the 3-ALCP. Let us de�ne the 4-Partition-2-Cliques Problem.
4-Partition-2-Cliques Problem (4P2CP)
Input: A complete graph on n vertices, edges-colored by 3 colors.
Question: Is there a partition of the vertices into a 0-clique, a 2-clique, a
12-clique and a 01-clique.

Lemma 1 If 4P2CP is polynomially 2-list colored, then the 3-ALCP is poly-
nomially 2-list colored.

Proof: We treat all the vertices which are not really 3-colorable as we explain
before. Let x be a vertex. Hence we can assume that x is really 3-colorable.
Our goal is to prove that the solutions of the 3-ALCP in which x is colored by 0
are polynomially 2-list colored. Since the same can be done if x is colored by 1
and 2 and a general solution is necessarily a solution of one of these forms, the
3-ALCP is polynomially 2-list colored because the union of three polynomial
2-list colorings is still a polynomial 2-list coloring.
Consider a solution in which x is colored by 0, all its 0-neighbours are not
colored by 0. Then for these vertices, there are 2-constraints. A 2-list coloring
for the remaining vertices with the 2-constraints for x and its 0-neighbours give
a 2-list coloring of the complete graph.
Consider the graph restricted to the 1-neigbours of x. Since x is really 3-
colorable, the 02-cliques are split graphs by Proposition 1. Let us prove that
if the 4P2CP is polynomially 2-list colored then the 3-ALCP is polynomially
2-list colored. The graph restricted to the 02-cliques has to be split. Hence the
02-clique of the solution is a union of a 0-clique and a 2-clique. Hence, a solution
of the 3-ALCP is also a solution for the 4P2CP where the 12-clique and the
01-clique are the same and the 02-clique is the union of the 0-clique and the
2-clique. If a vertex can be in at most two sets for the 4P42CP, it can be in at
most two sets for the 3-ALCP. Hence there is a polynomial 2-list coloring for the
3-ALCP restricted to the 1-neighbours of x. A global solution is necessarily
a solution in all subsets, then the union of the 2-constraints for 0, 1 and 2-
neighbourhood give all the possible solutionss. Hence if the 4P2CP problem is
polynomially 2-list colored, the 3-ALCP is polynomially 2-list colored. �

Lemma 2 If the clique-stable set separation conjecture is veri�ed, the 4P2CP
is polynomially 2-list colored.

Proof: Let G be an edge colored graph. We want to �nd a polynomial number of
2-list colorings which are compatible to all the solutions of the 4P2CP. Consider
a solution (U, V,W,X) of the 4P2CP where U is a 0-clique, V a 2-clique, W a
12-clique of and X of 01-clique. Construct an auxiliary graph H as follows. H
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has the same vertices as G and there is an edge xy in H i� xy is colored by 1
or 2 in G. Let C be the set U and S be the set V ∪W . Observe that (C, S)
is a pair of a clique and a stable set which do not intersect in H. Hence by
asumption there is a partition (A,B) which separates (C, S). The A contains U
and and subset of the X and B contains the V , W and a subet of the X. Hence
the vertices of A have 2-constraints but those of B have 3-constraints. Hence
the vertices of A can be at most in 2 sets of the partitions.
Consider the graph G restricted to B. Consider the following auxiliary graph
with vertices B where there is an edge xy i� xy is colored by 2 in G. The set V is
a clique and the set X is a stable set. By asumption there is a set (A′, B′) which
separates V from X. Hence the vertices of B has 2-constraints. Hence all the
vertices of the graph have 2-constraints. Since the clique-stable set separation
conjecture is satis�ed and we apply it a constant number of times, the 4P2CP
is polynomially 2-list colored. This achieves the proof of the lemma �
Lemma 1 and Lemma 2 conclude the proof of the theorem. �

3 Link with the oriented Alon-Saks-Seymour con-

jecture

Given a graph G, the chromatic number χ of G is the minimum number of colors
such that, two vertices connected by an edge do not have the same color. The
bipartite packing bp(G) of a graph G is the minimum number of edge disjoint
complete bipartite graphs needed to cover the edges of G. The Alon-Saks-
Seymour conjecture states the following.

Conjecture 2 (Alon, Saks, Seymour) If bp(G) ≤ k, then χ ≤ k + 1

The result is a well-known result for complete graphs, due to Graham and
Pollak [5]. Indeed, n− 1 edge-disjoint complete bipartite graphs are needed to
cover the edges of a complete graph on n vertices. An beautiful proof of this
theorem is due to Tverberg [12]. This conjecture was disproved by Huang and
Sudakov in [8] who prove that for some graphs χ ≥ k6/5 using a construction
using Razborov's graphs [11]. Nevertheless the existence of a polynomial bound
is still open. In the following we will use an oriented verion of the Alon-Saks-
Seymour conjecture.

Conjecture 3 (Oriented Alon-Saks-Seymour Conjecture) There exists a poly-
nomial P such that if G is a disjoint union of k complete oriented bipartite
graphs, then the chromatic number χ is at most P (k).

Theorem 3 The oriented Alon-Saks-Seymour conjecture is veri�ed i� the clique-
stable set separation conjecture is veri�ed.

Proof: Let us �rst prove the direct implication. Let G be a graph on n vertices.
We want to separate all pairs of cliques and stable sets which do not intersect.
Consider all the pairs (C, S) such that the clique C does not intersect the stable
set S. Construct an auxiliary graphH as follows. The vertices ofH are the pairs
(C, S) and there is an oriented edge between a pair (C, S) and a pair (C ′, S′) i�
there is a vertex x ∈ C ∩ S′. Observe that the number of vertices of this graph
is at most 4n. The bipartite packing of this graph is at most the number n of
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vertices of G. Indeed, let Hx be the graph H restricted to the edges for which
x ∈ C ∩ S′. Observe that the union of the graphs Hx for all x is the the graph
H because if (C, S)(C ′, S′) is an edge C ∩ S′ 6= ∅. In addition, the graph Hx

is a complete bipartite graph. Indeed, if there is an edge which starts in (C, S)
and if there is an edge which ends in (C ′, S′) then x ∈ C and x ∈ S′ and �nally
there is an oriented edge (C, S)(C ′, S′). The graphs Hx and Hy cannot share an
oriented edge because otherwise the intersection between a clique and a stable
set would be at least 2 which is impossible. Hence the bipartite packing of this
graph is at most n.
Since the oriented Alon-Saks-Seymour conjecture is veri�ed, χ(H) < P (n).
Consider a color of this polynomial coloring. Let A be the set of vertices of this
color. There is no edges between two vertices of A, then the union of all the
cliques of A do not intersect the union of the stable sets of A. Indeed, if they
intersect, there is a clique C which intersects a stable set S, hence there is an
edge which is impossible.
The union of the cliques and the union of the stable sets do not intersect, hence
it de�nes a cut which separates all the pairs of A. The same can be done for all
the colors. Then we can separate all the pairs (C, S) by a polynomial number
of cuts if the Alon-Saks-Seymour conjecture is veri�ed. This achieves the proof
of the �rst implication.
Let us now prove the reverse. If the clique-stable set separation conjecture is
veri�ed then the Alon-Saks-Seymour is veri�ed. Let G = (V,E) be an oriented
graph with bipartite packing k. Consider its bipartite incidence graph I where
the vertices are V ∪ V with an edge between x1 and y2 i� there is an edge xy
or yx in the oriented graph. The bipartite packing of this graph is less than
2k since the associated edges of (A,B) are covered by (A,B) and (B,A). Then
there is 2k oriented pairs of vertices (A,B) which cover the edges of the incidente
graph.
Construct an auxiliary graph H as follows. It has 2k vertices which are the
complete bipartite graphs. There is an edge between two pairs (A1, B1) and
(A2, B2) i� there is a vertex x ∈ A1 ∩A2. Hence the complete bipartite graphs
in which x appears at the left form a clique of H and the complete bipartite
graphs for which y appears at the right form a stable set in H. Indeed, it is quite
clear for the clique, and it is also true for the stable set because if y ∈ B1 ∩B2

and x ∈ A1 ∩A2 there is an edge covered twice which is impossible, then it is a
stable set.
In the incidence graph I, there is a non-edge between x and y i� they never
appear on the opposite sides of a same bipartite, ie if the clique associated
to x and the stable set associated to y do not intersect. Observe that the
incidence bipartite graph I is a subgraph of the bipartite graph of separation
between cliques and stable sets which do not intersect. By asumption there is a
polynomial number in k of cuts which separates all the pairs (C, S), hence which
separate this particular pairs of cliques and stable sets. If a cut separates a set
of cliques and stable sets, there is no edge in G between the vertices associated
to the cliques and the vertices associated to the stable sets of H. Assume that
there is an edge between two vertices x and y of the same color. Hence there are
the edges x1y2 and x2y1 in I and then the clique associated to x and the stable
set associated to y intersect, hence they cannot be separated by a cut. Hence
there is no edge. Hence, give to x the color of the partition which separates
x1x2 is a proper coloration of the vertices. Hence it is a proper coloring which
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achives the proof. �

4 One color is a matching

In this section, we will assume that a color is a perfect matching.
Partition-3-Colors-with-a-Matching (P4CM)
Input: A complete graph on V whose edge are colored by 4 colors {0, 1, 2}
where the edges colored 0 formed a matching.
Question: Is there a partition of V into 3 subsets V0, V1, V2 such that the graph
induced on Vi do not contain edge with color i for i = 0, 1, 2.
Observe that it is the easiest case of the 3-ALCP because if a vertex has a
0-degree equal to 0 then there is a global solution i� there is a global solution
with this vertex colored by 0. The 0-edges are denoted by xiyi and L = {xi}
and R = {yi}. Observe that it is possible to give the value 0 to xi or yi for
each pair and give color 0 to one of these two vertices decrease the constraints
on the other vertices. The left (resp. right) graph is the graph restricted to
the vertices of L (resp R). Our goal is to �nd some polynomial algorithm for
particular cases using 2-list coloring.
The �rst easy case is the case where the color between each pair (x,yi) and
(xj , yj) is a C4. Indeed color xi or yi with 0 does not change anything. Hence
there is a solution i� the left graph is 2-colorable which can be done in polyno-
mial time. To motivate the stydy of a little bit more complicated cases, let us
prove that the problem is NP -complete if there is 4 colors.

Lemma 3 The P4CM problem is NP-complete

Proof. Inspired from [7], we reduce this problem from 3-coloring of graphs: let
G be a graph, we construct an instance I of the P4CM problem equivalent to
the 3-colorability of G. In I, the edges with color 0 will form a matching.
First, we de�ne a 1-gadget attached on two given vertices x and y, it is drawn
in Figure 1. Using only colors 0,1 and 2, this gadget avoids x and y having
both color 1. Similarly, we de�ne a 2-gadget by exchanging colors 1 and 2 in
Figure 1. Now, every vertex x of G is replaced by a set Bx of d(x) vertices in I:

1

1 1

1

2

2

2

2

x y

Figure 1: A 1-gadget attached on vertices x and y, doted edges are colored 0.

for every neighbour z of x, Bx contains a vertex xz. For every edge xy of G, we
add a edge colored 0 between xy ans yx and a 1-gadget and a 2-gadget attached
on Bx and By. Finally, to every set Bx we add 3 attached sets B1

x, B
2
x and

B12
x as shown in Figure 3. This gives G′ an enhanced representation of G. To

obtain the �nal instance I, we take the disjoint union of G′ and G′′, a copy of
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x y

Bx

yx

1-gadget

2-gadget
2

11

xy

2

By

Figure 2: Two vertices x and y linked in G and there corresponding sets in I.
Edges between two sets stand for all possible edges between the two sets.

Bx 2

1 2

1

B12
x

B1
x

B2
x

Figure 3: A set Bx and B1
x, B

2
x and B12

x , its three attached sets.

G′, and replace all non-edges by edges with color 3 to achieve a complete graph
on V (G′) ∪ V (G′′).

Now, we prove that G is 3-colorable if, and only if, I is a YES-instance of
the P4CM problem. If G admits a 3-coloring c : V (G) −→ {0, 1, 2}, then, for
every set Bx of G′ or G′′, we give the color c(x) to every vertex of Bx. It is easy
now to extend the coloring to the other vertices of I (which are in the di�erent
gadgets) such that the coloring induced a partition into three sets V0, V1 and
V2 that satisfy the condition of the P4CM problem (the set V3 is empty).
Conversely, assume that I is a YES-instance of the P4CM problem. As there
is a complete bipartite with colored 3 edges between V (G′) and V (G′′), one of
this set do not intersect V3, assume that G′ does. So, we give color i to every
vertex of G′ ∩ Vi, for i = 0, 1, 2. For every set Bx of G′, the three attached
sets B1

x, B
2
x and B12

x avoid Bx to contain a vertex with color 1 and a vertex
with color 2. So, if Bx contains only vertices with color 0, we color x in G with
color 0. If Bx contains at least one vertex with color 1 (and then no vertex with
color 2), we color x in G with color 1. And conversely, if Bx contains at least
one vertex with color 2 (and then no vertex with color 1), we color x in G with
color 2. Eventually, because of the edges 0, the 1-gadgets and the 2-gadgets in
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I, we check that to adjacent vertices in G have not received the same color, and
provide a 3-coloring of G. �

Lemma 4 If the graph restricted to xi, yi, xj , yj consists in three matchings then
there is a polynomial algorithm to solve the problem.

Proof: Consider the left graph in which the edges of color 1 are edges and the
edges of color 2 are non-edges. If the left graph has a solution then all the
vertices of the left can be divided in two parts: one which is a clique and which
is colored by 2 in the solution and the other vertices form a stable set and which
can be colored by 1. If there is a solution then it is clearly of this form: it is a
split graph.
But there is not necessarily a solution on L, in a solution there are vertices of
L and R. But if we choose a vertex xi ∈ L and yj ∈ R, then the color of xiyj is
the complement of the color of xiyi. Hence xi and yj can have the same color
2 (resp. 1) i� there is an edge (resp. non-edge) in the left-graph.
If there is a solution it uses some left and some right vertices. Consider the
vertices colored by 1, then the restriction to the left graph on these vertices
there is two stables set which are the vertices restricted to L and to R and
between them there are all the edges. The same holds for the restriction to the
vertices colored by 2 by replacing edges by non-edges. Hence, there is a solution
i� there is a subdivision of the graph into two cliques which share no edges and
two stable sets totally linked by edges.
Hence we just have to prove that the partition of the graph into this form can
be decided in polynomial time. Let C1 and C2 be the cliques and S3 and S4 be
the stable sets. Let us prove that the problem is polynomially 2-list colored and
the partitions can be found in polynomial time. We can assume that each part
C1 ∪S3 and C2 ∪S4 do not have few vertices. Indeed if they have less than size
20 vertices, hence the graph without these vertices forms a split graph which
can be decided in polynomial time. For each set of 20 vertices we just have to
test if the graph without these vertices is split which takes a polynomial time.
The parts C1 ∪ S3 and C2 ∪ S4 have vertices. We can also assume that the
parts C1 ∪C2 are of big size, because otherwise, the graph is nearly a complete
bipartite graph and that S3 ∪ S4 is of big size, because otherwise the graph is
nearly the union of two cliques.
Hence we can assume that there is at least 10 vertices in C1, C2, S3, S4. For
each choice of 40 vertices, we just have to check if there is a solution with this
initial partition in polynomial time. But a vertex x can be added only in 2 of
the 4 parts. Indeed, for example, if a vertex can be added in C1 then it cannot
be added in C2 because all the vertices of C1 must be linked to x because x can
be added in 1. But if x can be added in 2 then there is no link between the
vertices of 1 and 2, the same kind of argument holds for S3 and S4. Then two
vertices can only be in two of the four sets of the partition.
Assume that a vertex y is in 1− 3. And let x be a vertex we choose to add in 1.
Then the xy is not in E then y cannot be in 1 ie y is in 3. And this gives other
constrains if y is in 2−4 and so on. Then if we treat all the con�icts and there is
no contradiction, let us prove that if there is a problem with a constraint latest
it is not because of x. Indeed, assume that it is because of x. Then we have a
problem with z in 1 or in 3. If it is in 1 then there is no edge xz and z was in
1−3 or 1−4, but it is not possible but we would have add this constraint when
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we treat x. Hence if there is no problem when we add x, there is no backtrack
and then the algorithm to solve the problem is polynomial. �
We will treat another particular case which is the following. Between a pair
(x1, y1) and (x2, y2) there is two edges of color 1 and two of color 2 and the two
edges intersect.

Proposition 2 If between a pair (x1, y1) and (x2, y2) there is two edges of color
1 and two of color 2 and the two edges intersect then there is a polynomial
algorithm to solve the problem.

Proof: There are two edges of color 1 and 2 between two pairs, (x1, y1) and
(x1, y2) are in 1 the two others are in 2. In this case we represent the graph on
2n vertices by a graph on n vertices (two vertices of the matching is contracted
into one vertex) and we put an oriented edge of color 1 between x and y if
(x1, y1) and (x1, y2) are in 1, we put an oriented edge of color 2 between x and y
if (x1, y1) and (x1, y2) are in 2. Hence we have a complete oriented tournament
of two colors 1 and 2.
If there is a solution just with the vertices of the left it means that we have a
1-clique and a 2-clique which can be linked by anything. But in our solution we
can have vertices of the left part and of the right part. If we choose a vertex
and decide to put the 0 color on the vertex at the right instead of the vertex
at the left, it does not change the color of its in-neighbourhood but it change
the colors of its out-neighbourhood. Indeed, if the arrow yx arrive on x then it
means that both edges y1x1 and y1x2 have the same color and the same holds
for the vertex y2. Hence, change x1 into x2 has no impact on the color of the
edges which arrive on x but it change the color of the edges which leaves x.
Hence, we search a partition of the vertices into four 4 parts: two 1-cliques (1-3)
and two 2-cliques (2-4). The edges from 1 to 2 and from 3 to 4 are of color 1
and the edges from 2 to 1 and 4 to 3 are of color 2.
In a tournament there is a dominating set of size at most log(n). Hence there
is a set of size log(n) such that there is an edge from any vertex to one of these
vertices. Whatever the color of this edge, this edge forbids one of the four sets
for each vertex. Then we just have to try all the 4log(n) initial positions for this
dominating set. And all the other vertices can be added in at most 3 of the 4
parts.
Let x be a vertex with a big out-neighbourhood of color 1 and 2 and which
can be in 12 − 3. Then if we add x to 1 the blue out neighbours of color blue
cannot be in 1 or 2. The same holds for the neighbours of color red if we put
x in 2. Hence in each case we loose an high number of vertex then we have a
logarithmic depth. If we restrict to the the graph 12-3, if we take a vertex with
a big incoming degree of one color and out degree of the other color, then we
can delete one new part. Hence we can assume that the graph restricted to the
vertices of 12− 3 is nearly monochromatic. (for example, at most 1/100 of the
edges are of color 2).
The max clique in 12-3 of one of the color is at most 3. In 12-3 there are the
two 1-cliques and one 2-clique. If there is a 4-clique of color two, then there
is a vertex of out-degree at least 2. This vertex cannot be in the 1-clique on
the same side of the 2-clique. Indeed assume that this vertex is this 1-clique.
Because all the edges from this 1-clique to its associate 2-clique are of color 1,
hence the two neighbours are not in the 2-clique. Hence 2 of the 3 vertices are
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on the same 1-clique which is impossible. Hence we just have to guess the 3
vertices of the particular color for 1− 2− 3, 2− 3− 4 and so on and try to glue
the conclusion to conclude. �
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