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Clique vs Independent Set Problem

Question: Clique-Stable Set separation

Does there exists a polynomial P, such that for all graph G on n
vertices, there exists a family of cuts that separates all the cliques
and the stable sets (=a Clique-Stable separator) of size P(n)?
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Bipartite packing bp(G)
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Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (~1974)

If the edges of G can be partitioned into k edge-disjoint complete
bipartite graphs, then y < k + 1.
In other words: x < bp — 1.

True on complete graphs (Graham-Pollak theorem, 1971).
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Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (~1974)

If the edges of G can be partitioned into k edge-disjoint complete
bipartite graphs, then y < k + 1.
In other words: x < bp — 1.

True on complete graphs (Graham-Pollak theorem, 1971).
Counter-example
Huang & Sudakov, 2010: There exists G such that y > bp®/®.
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Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (~1974)

If the edges of G can be partitioned into k edge-disjoint complete
bipartite graphs, then y < k + 1.
In other words: x < bp — 1.

True on complete graphs (Graham-Pollak theorem, 1971).

Counter-example
Huang & Sudakov, 2010: There exists G such that y > bp®/3.

New question: Polynomial Alon-Saks-Seymour conjecture

Does there exists P such that for all G, x < P(bp).
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3-COMPATIBLE COLORING PROBLEM

3-COMPATIBLE COLORING PROBLEM (3-CCP)

Input: An edge coloring fg of the complete graph on n vertices
with 3 colors {A, B, C}.

Question: [s there a coloring of the vertices with the same three
colors, such that no edge has the same color as both its
extremities?
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2-list covering for 3-COMPATIBLE COLORING PROBLEM

2-list covering for 3-COMPATIBLE COLORING PROBLEM (3-CCP)

Assign to each vertex a list of size 2 compatible with a solution.
Build a family of such objects that covers all the solutions, i.e. for
all solution, there is 2-list assignment in my family which is
compatible with the solution.

Goal: have a polynomial family.
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The stubborn problem

Input: A graph G = (V, E) together with a list assignment
L:V—> P({Al,A2, As, A4})

Question: Can V be partionned into four sets Ay, ..., A4 such
that Az is a clique, both A; and A are stable sets, there is no
edge between A; and As, and each vertex v belongs to A; only if
A € E(v)'?
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@ Solve one problem and deduce the others!
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@ Solve one problem and deduce the others!

@ Study the Clique-Stable separation on perfect graphs thanks
to structure theorem.
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Prospects

@ Solve one problem and deduce the others!

@ Study the Clique-Stable separation on perfect graphs thanks
to structure theorem.

@ Study which graph operations preserves the property of
polynomial Clique-Stable separation.
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