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Abstract

In this paper we propose a study of the 3-adapted list coloring problem [11] by 2-list colorings.
First we prove that this problem is equivalent to the problem of separation of the cliques and the
stable sets. This problem is deeply linked with a problem of communication complexity introduced
by Yannanakis [18]. Hence we show that these problems are also equivalent with a polynomial bound
for an oriented Alon-Saks-Seymour conjecture.

1 Definitions
Let k be an integer. We denote by [k] the set of integers between 0 and k−1. Let G = (V,E) be a graph.
An edge uv ∈ E links its two endpoints u and v. The neighbourhood N(x) of x is the set of vertices y
such that xy ∈ E. The non-neighbourhood NC(x) of x is the complementary of the neighbourhood N(x).
If the graph is oriented, N+(x) (resp. N−(x)) denote the incoming (resp. outcoming) neighborhood of
x, that is the set of vertices y such that yx ∈ E (resp. (xy ∈ E)). The subgraph induced by X ⊆ V
denoted by G[X] is the graph (X,E′) where E′ = E ∩ (X × X). A clique of G is a complete induced
subgraph of G. A stable set is an induced subgraph without edges. Observe that the intersection of a
clique and a stable set is at most one vertex. A vertex-coloring (resp. edge-coloring) of G with k colors
is a function fV (resp. fE) from V (resp. E) to [k]. In an edge-colored graph, an α1...αk-clique is an
induced subgraph where the edges are only colored by α1...αk. A vertex-coloring fV of G is fE-proper iff
for each edge uv of E, fV (u) 6= fE(uv) or fV (v) 6= fE(uv) (at least one extremity is colored differently
form the edge). The k-Adapted-List-Coloring Problem was defined by Hell and Zhu in [11], and
then studied in [3] and [13] consists in a proper coloring of the vertices.
k-Adapted-List-Coloring Problem (k-ALCP)
Input: An edge coloring fE of the complete graph on n vertices with k colors.
Question: Is there an fE-proper coloring?
This problem has applications to matrix partitions of graphs, full constraint satisfaction problems and
trigraph homomorphisms [5], [6], [4], [10]. It is known to be NP-complete if k ≥ 4 and it is known to be
polynomial if k ≤ 3 [11]. The question of the case k = 3 was open for years and was solved recently by
Cygan and al. [2]. We focus our attention on the case k = 3. The majority color of x ∈ V is the color
which appears the most often for the edges touching x (in case of ties, we arbitrarily cut them ). The
following definitions are illustrated on Figure 1: a vertex has an l-constraint if it can be colored by at
most l colors. An l-list coloring is a coloring where each vertex has an l-constraint. An l-list coloring
is compatible with a solution fV if for each vertex x, fV (x) is in the l-constraint of x. A set of l-list
colorings is compatible with a solution if one of the l-list coloring is compatible with the solution. A
partition problem is l-list colored for a function f is there exists f(n) l-list colorings compatible with all
the solutions. A partition problem is said polynomially l-list colored if there exists a polynomial Q such
that the partition problem is l-list colored for Q. In other words, there exists a polynomial family F of
l-list colorings such that for any solution s, we can find in F a l-list coloring which is compatible with s.

Observation 1. Given a polynomial number of 2-list colorings, it is possible to decide in polynomial
time if they are compatible with a solution.

Indeed, each 2-list coloring can be translated into an instance of 2-SAT.
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(a) An instance of 3-ALCP

{0, 1}

{0, 2}

{0, 2}
(b) A solution to the instance (ver-
tex coloring) together with a compati-
ble 2-list coloring: each vertex has a 2-
constraint.

{0, 2}

{0, 1}

{1, 2}
(c) Another solution to the instance with
a compatible 2-list coloring. This 2-list
coloring together with the previous one
form a family that is compatible with all
the solutions.

Figure 1: Illustration of definitions. Color correspondence: 0=red ; 1=green ; 2=blue.

Theorem 1. [7] There exists an algorithm in time O(nlogn) which solves the 3-ALCP. This algorithm
gives O(nlogn) 2-list colorings which are compatible with all the solutions.

Proof. We give the proof for self completeness. This algorithm consists in testing nlog(n) 2-list colorings
which contains all the solutions. Consider the vertex x, without loss of generality we can assume that
the majority color of x is 0. If there is a solution in which x is colored by 0 then all its 0-neighbours
cannot have the color 0, hence all its 0-neighbours has 2-list constraints. And the number of remaining
vertices with 3 possible colors is at most 2n/3 (recall that the graph is complete). It is possible to make
the same for the remaining vertices. Hence consider the following algorithm, for each vertex x try to find
a solution for which x is colored by its majority color. If there is no such solution for all x, then all the
vertices have 2-list constraints. This algorithm is representable by a research-tree of degree n + 1 (one
child for the case where no vertex can be colored by its majority color, and one child for each vertex that
can be first chosen to be colored by its majority color) and depth log(n) (we remove 1/3 of the vertices
at each node) in which each of the nlog(n) leaves is a 2-list coloring of the instance.

2 Link with the Cliques-Stables separation conjecture
A cut is a pair (A,B) such that A ∪ B = V and A ∩ B = ∅. A cut separates a clique C and a stable
set S if C ⊆ A and S ⊆ B. A clique and a stable set can be separated iff they do not intersect. Let CG
be the set of cliques and SG be the set of stable sets. We say that a family F of cuts separates all the
cliques and the stable sets if for all (C, S) ∈ CG ×SG which do not intersect, there exists a cut in F that
separates C and S.

Conjecture 1. (Clique-Stable Set separation Conjecture) There is a polynomial Q, such that for every
graph G on n vertices, there exists a family of Q(n) cuts that separates all the cliques and the stable sets.

Proposition 1. To prove the Clique-Stable Set separation Conjecture, one only need a polynomial family
that separates all the maximal (in sense of inclusion) cliques from the maximal stable sets that do not
intersect.

Consequently, in the following, we will only focus on separating the maximal cliques from the maximal
stable sets.

Proof. Assume F is a polynomial family that separates all the maximal cliques from the maximal stable
sets that do not intersect. Add to F the following cuts, for all x ∈ V :

• Put x and N(x) on the left hand-side, and the remaining vertices on the right hand-side (call it
Cut1,x).

• Put N(x) on the left and side, and x and the remaning vertices on the right hand side (call it
Cut2,x).

Note that these additional cuts are in linear number. Now, let (C, S) be a pair of clique and stable
set. Grow up C and S by adding vertices to get a maximal clique C ′ and a maximal stable set S′. Either
C ′ and S′ do not intersect, and in this case there is a cut in F that separate C ′ from S′, thus C from S;
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or C ′ and S′ intersect in x (recall that the intersection of a clique and a stable set can be at most one
vertex): if x ∈ C, then Cut1,x separates C from S, otherwise Cut2,x does.

To motivate this polynomial separation let us prove the conjecture for some particular classes of
graphs. For a class with a polynomial number of cliques or stable sets, the conjecture is verified. Hence
a class of graphs with bounded cliques or stable sets verifies the conjecture. Claims 1, 2 give more
interesting examples of classes of graphs which verify the conjecture.

2.1 Example: random graphs
Claim 1. For random graphs, the clique-stable set conjecture is verified.

The claim is detailed by the following propositions:

Proposition 2. Let a(n) (denoted by a in the following) be a function of n such that 2 ≤ a(n)� log n.
The random graph G(n, p) with p = 1− n−2/a = 1− 2−2 logn/a has:

• independent number α = a− a log a

log n
+ 1 + o(1)

• clique number ω = 2 ln 2 · 22 logn/a ·
(

log n− 2 log n

a
− log log n

)
+O(22 logn/a) +O(log n).

Moreover, for all ε > 0, there exists a family of O(n6+ε) cuts (more precisely O(n5+2/a+ε) if a is a
constant, and O(n5+ε) if a(n)→n∞ ∞) that separates all the clique and the stable sets.

Observation 2. If a is a constant, then the previous formulas give:

• α = a+ 1 + o(1)

• ω = 2 ln 2 · n2/a
(
a− 2

a
log n− log log n

)
+O(log n).

Proof. Let p′ = 1 − p, b = 1/p and b′ = 1/p′. The independence number and clique number of G(n, p)
are given by the following formulas, depending on p (see [1]):

ω = 2 logb(n)− 2 logb logb n+ 2 logb(e/2) + 1 + o(1)
α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

Now
1

log b′
=

a

2 log n
, thus:

α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

= a− a log a

log n
+ 1 + o(1)

Moreover,

1

log b
=

− ln 2

−2−2 logn/a +O(2−4 logn/a)

= ln 2 · 22 logn/a · (1 +O(2−2 logn/a)))

Thus,

− log log b = log ln 2 +
2 log n

a
+O(2−2 logn/a))

Consequently:

−2 logb logb n = −2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a)) · (log log n− log log b)

= −2 ln 2 · 22 logn/a · (log log n+ log ln 2 +
2 log n

a
) +O(log n)
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Hence:

w = 2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log log n− log ln 2 + log(e/2)) +O(log n)

= 2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log log n) +O(22 logn/a) +O(log n)

Now, let x = 1 − p = 2−2 logn/a. Draw a random partition (V1, V2) where each vertex is put in V1
independently from the others with probabilty x. Let (C, S) be a pair of clique and stable set of the
graph. There are at most 4n such pairs. The probability that S ⊆ V1 and C ⊆ V2 is xα(1− x)ω. Let us
show that xα ≥ n−(2+2/a+ε′) and (1− x)ω ≥ n−(2+ε′) for all ε′ > 0.

On one hand,

xα ≥ n−(2+2/a+ε) ⇔ α log x ≥ −(2 + 2/a+ ε′) log n

⇔ 2 log n+
2 log n

a
+ o(log n) ≤ (2 + 2/a+ ε′) log n

which is true if n is large enough.

Note that for a→n∞ ∞, we even have 2 log n+
2 log n

a
+ o(log n) ≤ (2 + ε′) log n for n large enough,

which implies xα ≥ n−(2+ε′).
On the other hand, log(1− x) = log b, thus, using the previous approximations:

(1− x)ω ≥ n−(2+ε) ⇔ ω log(1− x) ≥ −(2 + ε′) log n

⇔
(

2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log log n) +O(22 logn/a) +O(log n)

)
·
(−2−2 logn/a

ln 2
+O(2−4 logn/a)

)
≥ −(2 + ε′) log n

⇔ 2(log n− 2 log n

a
− log log n) +O(1) +O(2−2 logn/a log n) ≤ (2 + ε′) log n

which is true if n is large enough.
This leads us to xα(1− x)ω ≥ n−(5+2ε′) = n−(5+ε) for ε′ = ε/2. Thus (C, S) is separated by at least

n−(5+ε) of all the partition. By double counting, there exists a partition that separates at least n−(5+ε)
of all the pairs. We delete these separated pairs, and it remains at most (1 − 1/n5+ε) · 4n pairs. The
same probability for a pair (C, S) to be cut by a random partition still holds, hence we can iterate the
process k times until (1− 1/n5+ε)k · 4n ≤ 1. This is satisfied by k = 2n6+ε which is a polynomial in n.
If a →n∞ ∞, we can do the same and get k = 2n5+ε. As a conclusion, we have a polynomial family of
random cuts that separates all the clique and the stable sets.

However, this does not cover the classic configuration where p = 1/2 and α ≈ 2 log n. Thus we need
the following:

Proposition 3. Let a(n) = 2c log n (denoted by a in the following) where 0 ≤ c ≤ 1 is a constant. The
random graph G(n, p) with p = 1− 2−c has:

• independent number α = 2c log(n)− 2c log logn+ 2c(log(e/2)− log c) + 1 + o(1)

• clique number ω = 2c′ log n− 2c′ log log n+ o(log log n) where 1/c′ = log(1− 2−1/c).

Moreover, for all ε > 0, there exists a family of O(n5) cuts that separates all the clique and the stable
sets.

Proof. Let p′ = 1− p, b = 1/p and b′ = 1/p′. We proceed the same way as in the previous proposition.
The independence number and clique number of G(n, p) are given by the following formulas, depending
on p (see [1]):

ω = 2 logb(n)− 2 logb logb n+ 2 logb(e/2) + 1 + o(1)
α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)
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Now
1

log b′
= c, thus:

α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

= 2c log(n)− 2c log log n+ 2c(log(e/2)− log c) + 1 + o(1)

Moreover, log b = log(1− 2−1/c) = 1/c′, thus, similarly to α, we get:

w = 2c′ log(n)− 2c′ log log n+ 2c′(log(e/2)− log c′) + 1 + o(1)

The same reasonning as previously with the same x = 1−p′ gives a probability xα(1−x)ω ≥ n−4 for
a given pair (C, S) to be separated by a random non-uniform cut (V1, V2), so there is a family of O(n5)
cuts that separate all the clique and the stable sets (see the proof of Proposition 2 for details).

2.2 Example: H-free graph with H split graph
A geometric generalization of the clique-stable set conjecture was studied by Lovasz in [15]. The question
is to know if the stable set polytope of a graph is the projection of a polytope in higher dimension, with
a polynomial number or facets. He claims that if the answer to this question is positive, then there is a
polynomial number of cuts that separates all the cliques and the stable sets. Moreover, he claims that
this is true for several subclasses of perfect graphs, such as comparability graphs and their complements,
chordal graphs and their complements, and t-perfect graphs which are a generalization of series-parallel
graphs. Let us generalize the result for comparability graphs, with a much larger class.

A graph G = (V,E) is split if V = V1 ∪ V2 and the subgraph induced by V1 is a clique and the
subgraph induced by V2 is a stable set. Let H be a split graph. We denote by CH the class of graph
with no induced H. For example, if H the graph with four vertices 1, 2, 3, 4 with the edges 12, 13 and
14, then CH is the class of claw-free graphs. Let φ(H) = max(|V1|, |V2|).
Claim 2. Let H be a fixed split graph. Then the clique-stable set conjecture is verified on CH .

Before going to the proof, we need a few additional definitions regarding transversality and Vapnik-
Chervonenkis dimension. Let G = (V,E) be a hypergraph.

Definition 1. The transversality τ is the minimum cardinality of a set of vertices intersecting every
hyperedges.

Definition 2. The extended transversality τ∗ is an extended formulation of the transversality : it is a
solution to the following linear programming: min Σx∈V w(x) subject to

• for all x ∈ V , 0 ≤ w(x) ≤ 1.

• for all e ∈ E, Σx∈ew(x) ≥ 1.

Definition 3. A set T of hyperedges forms a complete Venn diagramm is for all T ′ ⊆ T , there exists
a vertex v such that for all e ∈ T ′, v ∈ e and for all e /∈ T ′, v /∈ e. In other words, for all subset T ′ of
hyperedges, there exists a vertex in the intersection of all hyperedges in T ′, and in no other hyperedge.

Definition 4. The Vapnik-Chervonenkis dimension (VC-dimension for short) of G is the maximum
size of a complete Venn diagramm in G.

Proof of claim 2. Let t be a constant depending only on H, to be defined later. Let G = (V,E) ∈ CH be
a H-free graph, and let F be the following family of cuts: for all subset {x1, . . . , xr} of at most t vertices
which is a clique (resp. a stable set), take U = ∩1≤i≤rN(xi) (resp. U = ∩1≤i≤rNC(xi)). Add (U, V \U)
to F . Then F has size O(nt), which is polynomial in n. Let (C, S) be a pair of maximal clique and
stable set. Let us show that (C, S) is separated by F .

Let us build an oriented graph B with vertices C∪S as shown on Figure 2(b). For all x ∈ C, y ∈ S, put
an oriented edge xy if xy ∈ E, and put an oriented edge yx otherwise. From the hyperplane separation
theorem applied to the cone of positive vectors on one side, and the convex hull of the columns of the
adjacency matrix of B on the other side, we can derive the following lemma:
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C
S

(a) A clique C and a stable S in G.

C
S

(b) Graph B build from C and S. Edges in G are
replaced by forward edges (blue edges on the draw-
ing), and non-edges are replaced by backward edges
(yellow edges on the drawing).

C
S

(c) Hypergraph B′ where hyperedges are built from
the non-neighbourhood of vertices from S.

Figure 2: Illustration of proof of Claim 2.

Lemma 1. For all oriented graph (V,E), there exists a weight function w : V → [0, 1] such that w(V ) = 1
and for all vertex x, w(N+(x)) ≥ w(N−(x)).

Corollary 1. In B, there exists either:

(i) a weight function w : C → R+ such that w(C) = 2 and for all vertex x ∈ S,w(N+(x)) ≥ 1.

or (ii) a weight function w : S → R+ such that w(S) = 2 and for all vertex x ∈ C,w(N+(x)) ≥ 1.

Proof. Take w : V → [0, 1] as in Lemma 1. Then w(V ) = 1 so either w(C) > 0 or w(S) > 0.
Assume w(C) > 0 (the other case is handled symetrically). Take a new weight function defined by
w′(x) = 2w(x)/w(C) if x ∈ C, and 0 otherwise. Then for all x ∈ S, on one hand w′(N+(x)) ≥ w′(N−(x))
by extension of the property of w, and on the other hand, N+(x) ∪ N−(x) = C by construction of B.
Thus w′(N+(x)) ≥ w′(C)/2 = 1 since w′(C) = 2.

In the following, let assume we are in case (i). Case (ii) is handled symetrically by switching C (resp.
neighbourhood) and S (resp. non-neighborhood).

Let us now build B′ an hypergraph with vertices C ∪ S and for all x ∈ S, build the hyperedge
C\NG(x), that is the complementary in C of the neighbors of x in the original graph G. This construction
is illustrated on Figure 2(c).

Lemma 2. The hypergraph B′ has extended transversality τ∗ ≤ 2.
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Proof. Let w be the weight function given by Corollary 1. Then for all hyperedge h built from the
non-neighborhood of x ∈ S, we have: ∑

y∈h
w(y) = w(N+(x)) ≥ 1.

Moreover, changing w(y) in 1 in case w(y) > 1 will not change the inequality above, and will give us
a function with values in [0, 1]. Thus w satisfies the constraints of the extended transversality, and
w(V ) = w(C) ≤ 2.

Let ϕ = φ(H). Recall that φ(H) = max(|V1|, |V2|) where V1 is the clique and V2 is the stable set
composing H.

Lemma 3. B′ has VC-dimension bounded by 2ϕ− 1.

Proof. Suppose we have a complete Venn diagramm D of size 2ϕ in B′. Let s1, . . . sϕ, t1, . . . , tϕ be the
hyperedges composing D. In the following, we will abuse notation by calling si (resp. ti) both the
hyperedge and the vertex of S whose non-neighborhood is precisely the hyperedge si (resp. ti). We
denote by y1, . . . , yϕ′ the vertices of V2 (with ϕ′ ≤ ϕ). Let x ∈ V1 and let {yi1 , . . . , yik} be the set
of its neighbors in V2. Since D is a complete Venn diagramm in B′, there exists x′ ∈ C such that x′
is in the intersection of the hyperedges si1 , . . . , sik , and in no other hyperedge. This means that, in
G[C ∪ {s1, . . . , sϕ}], x′ has exactly the same neighborhood in S as x in V2. If there is no two vertices
x1, x2 ∈ V1 with the same neighborhood in V2, the above statement iterated on the other vertices of V1
proves that there is an induced H in G[C ∪ S], thus in G, which is absurd.

Now assume x1, . . . , xr ∈ V1 have the same neighborhood {yi1 , . . . , yik} in V2. Let δj = {si1 , . . . , sik}∪
{tj} for all 1 ≤ j ≤ r. Then there exists x′j ∈ C such that x′j is exactly in the intersection of all hyperedges
in δj , and in no other hyperedge. Thus, in G[C ∪ {s1, . . . , sϕ}], x′1, . . . , x′r have the same neighborhood
{si1 , . . . , sik}, just as x1, . . . , xr in V1. In the same way as before, we find an induced H in G[C ∪ S],
which is absurd.

Observation 3. In fact, the VC-dimension of B′ is bounded by ϕ + logϕ. Indeed, we need only
t1, . . . , tlogϕ in addition to s1, . . . , sϕ: if x1, . . . , xr ∈ V1 have the same neighborhood in V2 with r ≤ ϕ,
we need r different subsets of {t1, . . . , tϕ}, which is already possible with t1, . . . tlogϕ.

The following bound [9] links the transversality with VC-dimension and extended transversality.

Lemma 4. Every hypergraph H with VC-dimension d satisfies

τ(H) ≤ 16dτ∗(H) log(dτ∗(H)).

Applying this lemma to B′, we obtain

τ(B′) ≤ 16dτ∗(B′) log(dτ∗(B′)) ≤ 32ϕ(log(ϕ) + 1).

Let us now define t = 32ϕ(log(ϕ)+1) (recall that t was part of the construction of the family F of cuts
in the beginning of the proof). As a consequence, τ is bounded by t which depends only onH. There must
be x1, . . . , xt ∈ C such that each hyperedge of B′ contains at least one xi. Let us consider a particular
cut of the family F that is the one built from the subset x1, . . . xt. Then C ⊆ U = ∩1≤i≤tNG(xi) as C
is a clique. Moreover, since C is a maximal clique, each y ∈ S leads to a non-empty hyperedge in B′,
which has to include one xi. Thus y /∈ U , so this cut separates C from S.

!!! DEF G[X], τ, τ∗, VC-dim, diagramme de Venn complet!! !!! Dire qu’on ne regarde que les cliques
max /stable max car on peut gÃ c©rer les autres avec un nombre linaire (2n) de coupes en mettant pour
chaque point tout son voisinage d’un cotÃ c©, tout son non-voisinge de l’autre, et en choisissant pour lui
de quel cotÃ c© on le mets.!!!
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2.3 Examples (ancienne version)
To motivate this polynomial separation let us prove the conjecture for some particular classes of graphs.
For a class with a polynomial number of cliques or stable sets, the conjecture is verified. Hence a class
of graphs with bounded cliques or stable sets verifies the conjecture. Claims 3, 4 and 5 give more
interesting examples of classes of graphs which verify the conjecture. The claw is the graph with four
vertices 1, 2, 3, 4 with the edges 12, 13 and 14.

Claim 3. For random graphs, the clique-stable set separation conjecture is verified.

Proof: In random graphs, maximum cliques and maximum stable sets are of size 2log(n). Let (C, S)
be a pair of a clique and a stable set which do not intersect. Observe that there is at most 4n such
pairs. Consider a random partition of the vertices into V1 and V2 of equal size, the probability that all
the vertices of C are in V1 is 1/22log(n) and the same holds for V2 and S. Hence C and S are separated
with probability 1/n4. Then, a pair (C, S) is separated by 1/n4 of all the partitions, hence by double
counting there is a partition which separates 1/n4 of all the pairs. When the separated pairs are deleted
it remains (1− 1/n4) · 4n pairs and the remaining pairs are still separate which probability 1/n2. Hence
it possible to separate the pairs after k steps if (1 − 1/n4)k · 4n ≤ 1, which means that 2n5 partitions
separates all the pairs. �

Claim 4. For comparability graphs, the clique-stable set separation conjecture is verified.

Proof: A N is isomorph to the poset on four vertices {a, b, c, d} with arcs {ab, cb, cd}. If a poset O
contains a maximal antichain and a maximal chain which do not intersect, then O contains a N in is
Hass diagram (formed by two consecutive of the chain and two vertices of the antichain). Now, let G
be comparability graph, and O the resulting poset. We subdivise every arc of the Hass diagram of O,
the resulting poset O′ contains no N in is Hass diagram. Hence, we consider all the cuts formed by the
neighbourhood and the non-neighbourhood of each vertex in O′. Now, a clique C and a stable set S of
G, can be extended into a maximal chain and a maximal antichain in O′ which intersect and then are
separated by a choosen cut.

Claim 5. For claw-free graphs, the clique-stable set separation conjecture is verified.

Proof: Let x be a vertex of the graph. At most two of its neighbours are in the same stable set.
Indeed, otherwise there is a claw. Hence, the separation in neighbourhood and non-neighbourhood of a
vertex modulo at most two vertices separates the cliques and the stable sets. More formally, for all x
and all set X of at most two neighbours of x, the cuts N(x) r X and (N(x) r X)c separate C and S.
Then n3 cuts separates cliques and stable sets. �

2.4 Equivalence with the polynomial 2-list coloring of 3-ALCP
The following of this section is devoted to the equivalence between the Clique-Stables separation conjec-
ture and the polynomial 2-list coloring of the 3-ALCP.

Recall that a graph G = (V,E) is split if V = V1 ∪ V2 and the subgraph induced by V1 is a clique
and the subgraph induced by V2 is a stable set. A graph with edges colored by a and b is split if there
is a partition of the vertices into a a-clique and a b-clique.

Proposition 4. Let x be a vertex. Let A be the 0-neighbourhood of x. Let U be a 12-clique of A. If U
is not split then there is no solution where x is colored by 0.

Proof. Assume that x is colored by 0. Then all the vertices of U are of color 1 or 2 because they are
in the 0-neighbourhood of x. The vertices colored by 1 form a 2-clique and all the vertices colored by 2
form a 1-clique and the union is U . Hence U is split. �
Observe that the same property holds for the 1 and the 2-neighbourhoods. A vertex x is really 3-colorable
if for each color a, each bc-clique of the a-neighbourhood of x is a split graph. If a vertex is not really 3-
colorable then, in a solution, it can be colored by at most 2 different colors. Hence, given a 2-list coloring
of the graph without x, there is a natural 2-list coloring of the whole graph by adding the 2-constraint
on x. Hence it is possible to assume that the graph has only really 3-colorable vertices.
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C

SV \ (C ∪ S)

X

Z

Y

{0, 1}

{0, 2}

{1, 2}⇒

Figure 3: Illustration of proof of lemma 5. On the left hand-side, G is separated in 3 parts: C, S, and the
remaining vertices. Each possible configuration of edge- and vertex-colouring are represented. On the
right-hand-side, (X,Y, Z) is a 2-list coloring compatible with the solution. X (resp. Y , Z) has constraint
{0, 1} (resp. {1, 2}, {0, 2}). Color correspondence: 0=red ; 1=green ; 2=blue.

Let us state the main result of this section. For this, we define two functions and we prove that these
two functions are polynomially equivalent. We denote by |G| the number of vertices of the graph.

f1(n) = max
|G|=n

min
F

(|F| : F set of 2-list colorings compatible with all the solutions)

f2(n) = max
|G|=n

min
F

(|F| : F family of cuts which separates all the cliques and the stable sets)

Theorem 2. The functions f1 and f2 are polynomially equivalent.

Corollary 2. The Clique-Stable set separation conjecture is verified iff there exits a polynomial number
of 2-list coloring compatible with all the solutions of an instance of 3-ALCP.

We start the proof of Theorem 2 by the following lemma:

Lemma 5. f2(n) ≤ nf1(n).

Proof. Let G = (V,E) be a graph with n vertices. Consider the graph F obtained from G by coloring its
edges by 0, and replacing all missing edges by 1-colored edges (formally, H is an edge-colored graph with
the same vertices as G where xy is colored by 0 if xy ∈ E and colored by 1 otherwise.) By assumption,
we have a set F of f1(n) 2-list coloring that is compatible with all solutions of 3-ALCP. The idea is
the following: from a pair (C, S) of clique and stable set of G which do not intersect, we find a natural
solution of 3-ALCP on H. Hence we have a 2-list coloring in F which is compatible with this particular
solution. We build from this about n cuts that depend only on the previous 2-list coloring, and among
which there is for sure a cut that separates C and S. Let C be a clique and S a stable set of G which
do not intersect. Observe that the edges of C are colored by 0, and those of S are colored by 1. Then
the vertex-coloring 1 for the vertices of C, 0 for those of S and 2 for the other vertices is a solution of
the 3-ALCP. Left-hand side of Figure 2.4 illustrates the situation.
There is a 2-list coloring (X,Y, Z) in F which is compatible with this solution. The set X (resp. Y , Z) is
the set of vertices which have the constraint {0, 1} (resp. {1, 2}, {0, 2}). The vertices of C cannot be in
Z, and those of S cannot be in Y (see right hand-side of Figure 2.4). Then C ⊆ X ∪ Y and S ⊆ X ∪ Z.
Since all the edges are of color 0 and 1, and X can be colored properly, the graph restricted to X is split
(put all the 0-colored vertices on one side, and the 1-colored vertices on the other side to get a 1-clique
and a 0-clique). Given a graph, there is a linear number of decompositions into a split graph [5]. Then
the number of possible decompositions of X is linear. Let (Uk, Vk)k be these decompositions. The pair
(C, S) is separated by one of the (Uk ∪ Y, Vk ∪ Z). Then f2(n) is bounded by a polynomial function of
f1(n).

Before the next lemma, we need the following observation about the union of two cliques:

Observation 4. If there are p cuts that separate all the clique from the stable sets, then there are p2 cuts
that separates all the C∪C ′ (where C and C ′ are cliques) from the stable sets. Indeed, if (V1, V2) separates
C from S and (V ′1 , V

′
2) separates C ′ from S, then the new cut (V1∪V ′1 , V2∩V ′2) satisfies C ∪C ′ ⊆ V1∪V ′1

and S ⊆ V2 ∩ V ′2 .
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Lemma 6. f1 ≤ O(f62 (n)).

Proof. Let G be an instance of 3-ALCP, and x a vertex of G. Let us build a set of 2-list colorings of
size polynomial in f2 that is compatible with all the solutions where x is given color 0. The same can
be done for the other colors. As seen before, we can assume that x is really 3-colorable, otherwise there
is a natural 2-constraint on it. First of all, give the constraint {1, 2} to the 0-neighbourhood of x. Let
U be the graph obtained from the 1-neighbourhood of x by removing 0-colored edges. There is a family
of f22 (|U |) cuts that separates all the union of two cliques and the stable sets in U (see Obs 4). For all
cut (V1, V2) in this family, give to V2 the constraint {1, 2}. We iterate this process to get the constraints
on V1: let V be the graph obtained from V1 by keeping only the 2-colored edges. There is a family of
f2(|V |) cuts that separates all the clique and the stable sets in V . For all cut (V3, V4), give to V3 the
constraint {0, 1} and to V4 the constraint {0, 2}. This gives us f22 (|U |)f2(|V |) 2-list colorings on the
1-neighbourhood of x. Do the same for the 2-neighbourhood and get O(f62 (n)) 2-list colorings.

Take a solution of the 3-ALCP on G and assume x is colored by 0. Let us show that one of the
2-list colorings we built is compatible with this solution. Figure ?? illustrates the construction. First
of all, the 0-neighbourhood can not by colored by 0, because x already is, so they are colored 1 or 2.
Consider the 1-neighbourhood N1(x) of x: the 1-colored vertices in N1(x) form a 02-clique, thus it is a
split graph (recall that x is really 3-colorable). Then it is the union of a 0-clique A and a 2-clique B. Call
C (resp. D) the 12-clique (resp. 01-clique) formed by the 0-colored (resp. 2-colored) vertices of N1(x).
(A,B,C,D) is thus a partition of N1(x). Remove the 0-colored edges to obtain the graph U . Then A
is a stable set, B and C are cliques. Then there exists a cut (V1, V2) with B ∪ C ⊆ V1 and A ⊆ V2. V2
is compatible with the constraint {1, 2} because it is formed by A and a part D′ of D. Let V be the
graph obtained from V1 by keeping only the 2-colored edges. Then B is a clique and D′′ = D \ D′ is
a stable set, so there is a cut (V3, V4) that separates B from D′′. V3 is compatible with the constraint
{0, 1} because it is the union of B and a part of C. V4 is compatible with the constraint {0, 2} because
it is the union of D′′ and a part of C. We can check the same for the 2-neighbourhood of x.

Proof of theorem 2. Lemma 5 and Lemma 6 conclude the proof of the theorem.

3 Link with the oriented Alon-Saks-Seymour conjecture
Given a graph G, the chromatic number χ of G is the minimum number of colors such that, two vertices
connected by an edge do not have the same color. The bipartite packing bp(G) of a graph G is the
minimum number of edge disjoint complete bipartite graphs needed to cover the edges of G. The Alon-
Saks-Seymour conjecture states the following.

Conjecture 2. (Alon, Saks, Seymour) If bp(G) ≤ k, then χ ≤ k + 1

The result is a well-known result for complete graphs, due to Graham and Pollak [8]. Indeed, n− 1
edge-disjoint complete bipartite graphs are needed to cover the edges of a complete graph on n vertices.
A beautiful proof of this theorem is due to Tverberg [17]. This conjecture was disproved by Huang and
Sudakov in [12] who prove that for some graphs χ ≥ k6/5 using a construction based on Razborov’s
graphs [16]. Nevertheless the existence of a polynomial bound is still open. In the following we will use
an oriented version of the Alon-Saks-Seymour conjecture.

Conjecture 3. (Oriented Alon-Saks-Seymour Conjecture) There exists a polynomial P such that if G
is a disjoint union of k complete oriented bipartite graphs, then the chromatic number χ is at most P (k).

Theorem 3. The oriented Alon-Saks-Seymour conjecture is verified iff the Clique-Stable set separation
conjecture is verified.

Lemma 7. If the oriented Alon-Saks-Seymour conjecture is verified, then the Clique-Stable set separation
conjecture is verified.

Proof. Let G be a graph on n vertices. We want to separate all pairs of cliques and stable sets which
do not intersect. Consider all the pairs (C, S) such that the clique C does not intersect the stable set
S. Construct an auxiliary graph H as follows. The vertices of H are the pairs (C, S) and there is an
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constraint {1, 2}
0-neighbourhood

2-neighbourhood

1-neighbourhood

1-colored vertices

0-colored vertices
2-colored vertices

A B

CD

(a) Vertex x, its 0-neighbourhood subject to the constraint {1, 2}, and its 1-neighbourhood separated in different parts.

1-neighbourhood

1-colored vertices

0-colored vertices
2-colored vertices

A B

CD

U

V2

V1

constraint {1, 2}

(b) Graph U built from the 1-neighbourhood by remov-
ing 0-edges. There is a partition in (V1, V2) separating
A from B ∪ C, shown by the purple line. V2 is subject
to the 2-constraint {1, 2}.

1-neighbourhood

A B

C
D

V

V2
V3

D′′

V4

constraint {0, 1}

constraint {0, 2}

(c) Graph V built from V1 by removing 1-edges. There
is a partition in (V3, V4) separating B from D′′, shown
by the purple line. V3 is subject to the 2-constraint
{0, 1} and V4 is subject to the 2-constraint {0, 2}.

Figure 4: Illustration of proof of lemma 6. Color correspondence: 0=red ; 1=green ; 2=blue.
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oriented edge between a pair (C, S) and a pair (C ′, S′) iff there is a vertex x ∈ C ∩ S′. Observe that
the number of vertices of this graph is at most 4n. The bipartite packing of this graph is at most the
number n of vertices of G. Indeed, let Hx be the graph H restricted to the edges for which x ∈ C ∩ S′.
Observe that the union of the graphs Hx for all x is the the graph H because if (C, S)(C ′, S′) is an edge
C ∩ S′ 6= ∅. In addition, the graph Hx is a complete bipartite graph. Indeed, if there is an edge which
starts in (C, S) and if there is an edge which ends in (C ′, S′) then x ∈ C and x ∈ S′ and finally there is
an oriented edge (C, S)(C ′, S′). The graphs Hx and Hy cannot share an oriented edge because otherwise
the intersection between a clique and a stable set would be at least 2 which is impossible. Hence the
bipartite packing of this graph is at most n.
If the oriented Alon-Saks-Seymour conjecture is verified, χ(H) < P (n). Consider a color of this polyno-
mial coloring. Let A be the set of vertices of this color. There is no edges between two vertices of A,
then the union of all the first components (cliques) of the vertices of A do not intersect the union of all
the second components (stable sets) of A. Indeed, if they intersect, there is a clique C which intersects
a stable set S, hence there is an edge which is impossible.
The union of the cliques and the union of the stable sets do not intersect, hence it defines a cut which
separates all the pairs of A. The same can be done for all the colors. Then we can separate all the pairs
(C, S) by χ(H) cuts, which is a polynomial in n if the Alon-Saks-Seymour conjecture is verified. This
achieves the proof of the first implication.

Lemma 8. If the Clique-Stable set separation conjecture is verified, then the oriented Alon-Saks-Seymour
conjecture is verified.

Proof. Let G = (V,E) be an oriented graph with bipartite packing k. Construct an auxiliary graph H
as follows. It has k vertices which are the oriented complete bipartite graphs that cover the edges of G.
There is an edge between two pairs (A1, B1) and (A2, B2) iff there is a vertex x ∈ A1 ∩ A2. Hence the
complete bipartite graphs in which x appears at the left form a clique of H (say the clique Cx associated
to x) and the complete bipartite graphs for which y appears at the right form a stable set in H (say the
stable set Sy associated to x) . Indeed, it is quite clear for the clique, and it is also true for the stable
set because if y ∈ B1 ∩ B2 and x ∈ A1 ∩ A2 there is an edge covered twice which is impossible, then it
is a stable set. Note that a clique or a stable set associated to a vertex can be empty, but this does not
trigger any problem.
For each vertex x, consider a cut Cutx that separates Cx and Sx. By asumption there is a polynomial
number in k of cuts which separates all the pairs (C, S), hence which separate this particular pairs of
cliques and stable sets. We color each vertex x by the color Cutx. This coloring is proper: assume there
is an edge from x to y, and that x and y are given the same color. Then there exists a bipartite (A,B)
that cover the edge xy, hence (A,B) is in the clique associated to x and in the stable set associated to
y, which means they intersect: the cut Cutx can not separate in the same time Cy from Sy, because it
would then separate Cx from Sy. This is impossible. Then we have a coloring with at most as many
colors as cuts needed to separate all the clique and the stable sets, which is a polynomial in k.

Corollary 3. The oriented Alon-Saks-Seymour conjecture is equivalent to the Clique-Stable set sepa-
ration conjecture. Moreover, they are also equivalent to having a polynomial number of 2-list coloring
which are compatible with all the solutions of an instance of 3-ALCP.

4 Relations between the t-biclique covering numbers

5 Cliques-Stables separation conjecture and Communication com-
plexity

Yannakakis introduced in [18] the following communication complexity problem, called CL− IS: given
a publicly known graph Γ on n vertices, Alice and Bob can agree on a protocol, then a clique is given
to Alice and a stable set is given to Bob. They don’t know which clique or which stable set was given
to the other one, and their goal is to decide whether the clique and the stable set intersect or not, by
minimizing the number of bits exchanged. This can be formalize by a function f : X × Y → {0, 1},
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where X is the set of cliques and Y the set of stable sets. Note that the intersection of a clique and a
stable set is at most one vertex. In the deterministic version, Alice and Bob send alternatively messages
one to each other, and the minimization is on D(f), the number of bits exchanged between them. In
the non-deterministic version, for b ∈ {0, 1}, an all powerful prover sends a certificate of size N b(f) in
order to convince both Alice and Bob that the result is b. Then, Alice and Bob can exchange one final
bit, saying whether they agree or disagree with the certificate. The aim is to minimize N b(f).

In this particular setting, a certificate proving that f(x, y) = 1 is just the name of a vertex in the
intersection of the clique and the stable set. Thus N1(f) ≤ dlog2(n)e. Convincing Alice and Bob
that the result is 0 is much more complicated. If we have a family of m cuts that separate all the
cliques and the stable sets, then a certificate for f(x, y) = 0 can be a cut that separates x and y. Thus
N0(f) ≤ dlog2(m)e.

It is known in therory of communication complexity that, for general f , N b(f) =
⌈
log2 C

b(f)
⌉
where

Cb(f) is the minimum number of monochromatic combinatorial rectangles needed to cover the b-inputs
of the communication matrix M of f , with Mx,y = f(x, y). One can observe that a monochromatic
combinatorial rectangle that cover some 0-inputs of M is precisely a cut that separates the cliques and
the stable sets involved in the rectangle. Thus finding the minimum N0(f) is equivalent to finding the
minimum number of cuts needed to separate all the cliques and the stable sets.

The existing bounds for CL− IS are ([18], [14]):

2 log2m ≤ D(f) ≤ O(log2
2(n)).

Moreover, Huand and Sudakov improved in [12] the trivial lower bound N0(f) ≥ log2 n thanks to
a counterexample to the Alon-Saks-Seyour conjecture: for CL-IS, there exists an infinite collection of
graphs such that

N0(f) ≥ 6/5 log(n)−O(1).
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