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Abstract

In this paper we propose a study of the 3-adapted list coloring problem [16] by 2-list
colorings. First we prove that this problem is equivalent to the problem of separation of the
cliques and the stable sets. This problem is deeply linked with a problem of communication
complexity introduced by Yannanakis [27]. Hence we show that these problems are also
equivalent with a polynomial bound for an oriented Alon-Saks-Seymour conjecture.

1 Introduction

Yannakakis introduced in [27] the following communication complexity problem, called CL−IS:
given a publicly known graph Γ on n vertices, Alice and Bob agree on a protocol, then Alice is
given a clique and Bob is given a stable set. They do not know which clique or which stable
set was given to the other one, and their goal is to decide whether the clique and the stable set
intersect or not, by minimizing the worst-case number of exchanged bits. The intersection can
be formalized by a function f : X × Y → {0, 1}, where X is the set of cliques and Y the set
of stable sets. Note that the intersection of a clique and a stable set is at most one vertex. In
the deterministic version, Alice and Bob send alternatively messages one to each other, and the
minimization is on D(f), the number of bits exchanged between them. In the non-deterministic
version, for b ∈ {0, 1}, an all powerful prover sends a certificate of size N b(f) in order to convince
both Alice and Bob that the result is b. Then, Alice and Bob exchange one final bit, saying
whether they agree or disagree with the certificate. The aim is to minimize N b(f).

In this particular setting, a certificate proving that f(x, y) = 1 is just the name of a vertex
in the intersection of the clique and the stable set. Such a certificate has clearly a logarithmic
size. Thus N1(f) ≤ dlog2(n)e. Convincing Alice and Bob that the result is 0 is much more
complicated. If we have a family of m cuts that separate all the cliques and the stable sets,
then a certificate for f(x, y) = 0 can be a cut that separates x and y. Thus N0(f) ≤ dlog2(m)e.
Hence if there is a polynomial number of cuts separating all the cliques and the stable sets (such
a set of cuts is called a CS-separator), one can ensure that the non-deterministic certificate has
size O(log n).

It is known in therory of communication complexity [20] that, for general f , N b(f) =⌈
log2C

b(f)
⌉
where Cb(f) is the minimum number of monochromatic combinatorial rectangles

needed to cover the b-inputs of the communication matrix M of f , with Mx,y = f(x, y). One
can observe that a monochromatic combinatorial rectangle that cover some 0-inputs of M is
precisely a cut that separates the cliques and the stable sets involved in the rectangle. Thus
finding the minimum N0(f) is equivalent to finding the minimum number of cuts needed to
separate all the cliques and the stable sets.
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The existing bounds for CL− IS are ([27], [20]):

log2 n ≤ N0(f) ≤ D(f) ≤ O(log2(n)).

There is a O(log n) certificate for the CL− IS problem if and only if there is a CS-separator
of polynomial size. The existence of such a separator is called in the following clique-stable set
separation problem. A geometric generalization of the clique-stable set conjecture was studied
by Lovász in [21]. He wanted to determine if the stable set polytope of a graph is the projection
of a polytope in higher dimension, with a polynomial number or facets. He proved that if the
answer to this question is positive, then there is a polynomial number of cuts that separates all
the cliques and the stable sets. Moreover, he proved it for several subclasses of perfect graphs,
such as comparability graphs and their complements, chordal graphs and their complements,
and t-perfect graphs which are a generalization of series-parallel graphs. The general question
on stable set polytope has recently been answered negatively by Fiorini et al. [10].

We prove that there is a polynomial CS-separator for two main classes of graphs: random
graphs and split-free graphs. The proof for the first result uses random cuts. For the second
one, we use VC-dimension to bound the complexity. Note that these two classes of graphs go in
different direction since split-free graphs are, in sense of VC-dimension, really structured graphs
which is the opposite of random graphs.

Alon and Haviv [1] observed that this problem is deeply linked with another conjecture
known as the Alon-Saks-Seymour conjecture [14] which states that if a graph can be covered
with k edge-disjoint complete bipartite graphs, then its chromatic number is at most k + 1. It
is inspired from the Graham Pollak theorem [12] and has interested several authors ([24],[11]).
Huang and Sudakov found in [17] a counterexample to the Alon-Saks-Seyour conjecture, twenty
years after its statement. Actually they proved that there are some graphs for which at least
O(k6/5) colors are necessary. And they remark that it implies, for CL− IS that there exists an
infinite collection of graphs such that:

N0(f) ≥ 6/5 log(n)−O(1)

which improves the trivial (and only known) lower bound N0(f) ≥ log2 n. In communication
complexity it is a long standing open problem to prove a O(log2 n) lower bound for the CL− IS
problem.

Given a graph G, the bipartite packing, denoted by bp, is the minimum number of edge-
disjoint complete bipartites needed to partition the edges of the graph. We denote by bpk the
minimum number of complete bipartites needed to cover the edges of the graph such that each
edge is covered at most k times. In this article we prove that there is a polynomial gap for the
chromatic number on bp if and only if there is a polynomial gap for the chromatic number on bpk
where k is a constant. In particular, it gives that a polynomial gap for the Alon-Saks-Seymour
conjecture is equivalent to N0(f) = O(log n) (using result of [17]). This question was left as
open in [17]. We also give another direct proof of the equivalence between the oriented version
of the Alon Saks Seymour conjecture and N0(f) = O(log n).

Surprisingly, we also find some link between the Alon-Saks-Seymour conjecture and some
constraint satisfaction problem. The complexity of so-called list-M partition problems has been
widely studied in the last decades (see [25] for an overview). M stands for a fixed k × k
symmetric matrix filled with 0, 1 and ∗. The input is a graph G = (V,E) together with a list
assignment L : V → P({A1, . . . , Ak}) and the question is to know whether the vertices of G can
be partionned into k sets A1, . . . , Ak respecting on one hand the list assignments, namely v can
be put in Ai only if Ai ∈ L(v), and on the other hand the relationships described in M , that is
to say: if Mi,i = 0 (resp. Mi,i = 1), then Ai is a stable set (resp. a clique), with no restriction if
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
0 ∗ 0 ∗
∗ 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ 1


Figure 1: Matrix M for the stubborn problem.

Mi,i = ∗; and if Mi,j = 0 (resp. Mi,j = 1), then Ai and Aj are completely non-adjacent (resp.
completely adjacent), with no restrictions if Mi,j = ∗.

Feder et al. ([7], [9]) showed a quasi-dichotomy theorem: we can classify those list-M partition
problems between NP-complete and quasipolynomial time solvable (i.e. time O(nc logn), where c
is a constant). Moreover, many investigations have been made about small matrices M (k ≤ 4)
to get a dichotomy theorem, meaning a classification of the list-M partition problems between
polynomial time solvable and NP-complete. Cameron et al. [4] reached such a dichotomy for
k ≤ 4, except for one special case (and its complement) then called the stubborn problem (see Fig.
1 for the corresponding matrix), which remained only quasi-polynomial time solvable. Cygan et
al. [5] closed the question by finding a polynomial time algorithm solving the stubborn problem.
More precisely, they find a polynomial algorithm for 3-Compatible Coloring, which was
introduced in [6] and said to be no easier than the stubborn problem. 3-Compatible Coloring
has also been introduced and studied in [19] under the name Adapted List Coloring, and
was shown to be a model for some strong scheduling problem.

These two problems under study are defined in the following way:
3-Compatible Coloring Problem (3-CCP)
Input: An edge coloring fE of the complete graph on n vertices with 3 colors {A,B,C}.
Question: Is there a coloring of the vertices with the same three colors, such that no edge
has the same color as both its extremities?

Stubborn Problem
Input: A graph G = (V,E) together with a list assignment L : V → P({A1, A2, A3, A4}).
Question: Can V be partionned into four sets A1, . . . , A4 such that A4 is a clique, both A1

and A2 are stable sets, there is no edge between A1 and A3, and each vertex v belongs to Ai
only if Ai ∈ L(v)?

A 2-list assignment is an assignment of at most two sets X, Y , to each vertex, meaning
that this vertex can belong either to X or to Y in the partition. Links we highlight between
the clique-stable set conjecture and both these problems are not concerned with the existence
of a solution, but with covering all the solutions of 3-CCP and of the stubborn problem with
a polynomial family of 2-list assignments. We show that the existence of such a polynomial
covering family for the stubborn problem (under some small restrictions on the solutions) is
equivalent to the existence of such a polynomial covering family for 3-CCP, which in turn is
equivalent to the existence of a polynomial CS-separator.

We may observe that the existence of a polynomial family of 2-list assignments that cover
all the edges does not imply the polynomial solvability of the problem: indeed, such a family
may not be computable in polynomial time.

2 Definitions

Let G = (V,E) be a graph and k be an integer. An edge uv ∈ E links its two endpoints u and
v. The neighborhood N(x) of x is the set of vertices y such that xy ∈ E. The non-neighborhood
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NC(x) of x is V \N(x). For oriented graphs, N+(x) (resp. N−(x)) denote the outcoming (resp.
incoming) neighborhood of x, i.e. the set of vertices y such that xy ∈ E (resp. (yx ∈ E)).
The subgraph induced by X ⊆ V denoted by G[X] is the graph with vertex set X and edge set
E∩(X×X). A clique of G is a complete induced subgraph. A stable set is an induced subgraph
with no edge. Note that a clique and a stable set intersect on at most one vertex. Two subsets of
vertices X,Y ⊆ V are completely adjacent if for all x ∈ X, y ∈ Y , xy ∈ E. They are completely
non-adjacent if there are no edge between them. A graph G = (V,E) is split if V = V1 ∪V2 and
the subgraph induced by V1 is a clique and the subgraph induced by V2 is a stable set.

A graph G is bipartite if we can partition V into (U,W ) such that both U and W are stable
sets. Moreover, G is complete if U and W are completely adjacent. An oriented bipartite is a
bipartite graph together with an edge orientation such that all the edges go from U to W .

A vertex-coloring (resp. edge-coloring) of G with a set Col of k colors is a function fV
(resp. fE) from V (resp. E) to Col. For edge-colored graphs, an α1, ..., αk-clique is a clique
where the edges are only colored with colors in the set {α1, ..., αk}. The α-neighborhood of x is
the set of vertices y such that xy is a α-edge, i.e an edge colored with α. The majority color of
x ∈ V is the color which appears the most often for the edges with endpoint x (in case of ties,
we arbitrarily cut them).

3 Cliques-Stable Sets separation conjecture

A cut is a pair (A,B) such that A ∪ B = V and A ∩ B = ∅. It separates a clique C and a
stable set S if C ⊆ A and S ⊆ B. Note that a clique and a stable set can be separated if and
only if they do not intersect. Let CG be the set of cliques of G and SG be the set of stable sets
of G. We say that a family F of cuts is a CS-separator if for all (C, S) ∈ CG ×SG which do not
intersect, there exists a cut in F that separates C and S.

Conjecture 1. (Clique-Stable Set separation Conjecture) There is a polynomial Q, such that
for every graph G on n vertices, there is a CS-separator of size at most Q(n).

Proposition 2. Conjecture 1 holds if and only if a polynomial family F of cuts separates all
the maximal (in sense of inclusion) cliques from the maximal stable sets that do not intersect.

Proof. First note that one direction is direct. Let us prove the other one. Assume F is a
polynomial family that separates all the maximal cliques from the maximal stable sets that do not
intersect. Let Cut1,x be the cut (N(x)∪x, V \{N(x), x}) and Cut2,x be the cut (N(x), V \N(x)).
Let us prove that F ′ which is the family F plus the family Cut1,x and Cut2,x for all x is a CS-
separator.

Let (C, S) be a pair of clique and stable set. Grow up C and S by adding vertices to get a
maximal clique C ′ and a maximal stable set S′. Either C ′ and S′ do not intersect, and there is
a cut in F that separate C ′ from S′ (thus C from S). Or C ′ and S′ intersect in x (recall that a
clique and a stable set intersect on at most one vertex): if x ∈ C, then Cut1,x separates C from
S, otherwise Cut2,x does.

Consequently, in the following, we will only focus on separating the maximal cliques from
the maximal stable sets.

In the following, we first verify in Section 3.1 that Conjecture 1 holds for random graphs.
The interesting point is that to prove it, we use some random cuts and that these random cuts
separate an important part of cliques and stable sets only when the probability of taking the
vertex is equal to the probability of an edge.
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Then, we verify Conjecture 1 for split-free graphs. The proof is in some sense exactly the
opposite of Section 3.1, since when a bipartite is forbidden, there are no random-like structures.
Then, via an argument based on VC-dimension, one can find a polynomial number of cuts which
can be defined locally which form a CS-separator.

3.1 Random graphs

Let n be a positive integer and p ∈ [0, 1]. The random graph G(n, p) is a probability space
over the set of graphs on the vertex set {1, . . . , n} determined by Pr[{i, j} ∈ G] = p, with
these events mutually indepedent. We say that G(n, p) has clique number ω if ω satisfies
E(number of cliques of size ω) = 1. We define similarly the independent number of G(n, p).

Theorem 3. For random graphs, the clique-stable set conjecture is satisfied.

The claim is detailed by the following propositions, in which ln denotes the logarithm to the
base e, logb denotes the logarithm to the base b, and log denotes the logarithm to the base 2.

Proposition 4. Let a(n) (denoted by a in the following) be a function of n such that 2 ≤ a(n)�
log n. The random graph G(n, p) with p = 1− n−2/a = 1− 2−2 logn/a has:

• independent number α = a− a log a

log n
+ 1 + o(1)

• clique number ω = 2 ln 2 · 22 logn/a ·
(

log n− 2 log n

a
− log log n

)
+O(22 logn/a) +O(log n).

Moreover, for all ε > 0, with high probability there exists a family of O(n6+ε) cuts (more precisely
O(n5+2/a+ε) if a is a constant, and O(n5+ε) if a(n)→n→∞ ∞) that separates all the cliques and
the stable sets.

Proof. The interested reader can find details of computation in Appendix A. Let p′ = 1 − p,
b = 1/p and b′ = 1/p′. The independence number and clique number of G(n, p) are given by the
following formulas, depending on p (see [3]):

ω = 2 logb(n)− 2 logb(logb n) + 2 logb(e/2) + 1 + o(1)
α = 2 logb′(n)− 2 logb′(logb′ n) + 2 logb′(e/2) + 1 + o(1)

Using Taylor series, we get:

• α = a+ 1 + o(1)

• ω = 2 ln 2 · n2/a

(
a− 2

a
log n− log log n

)
+O(log n).

Now, let x = 1− p = 2−2 logn/a. Draw a random partition (V1, V2) where each vertex is put
in V1 independently from the others with probabilty x. Let (C, S) be a pair of clique and stable
set of the graph. There are at most 4n such pairs. The probability that S ⊆ V1 and C ⊆ V2 is
xα(1− x)ω. Let us show that xα ≥ n−(2+2/a+ε′) and (1− x)ω ≥ n−(2+ε′) for all ε′ > 0.

On one hand,
xα ≥ n−(2+2/a+ε′) ⇔ α log x ≥ −(2 + 2/a+ ε′) log n

⇔ 2 log n+
2 log n

a
+ o(log n) ≤ (2 + 2/a+ ε′) log n

which is true if n is large enough.
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Note that for a →n→∞ ∞, we even have 2 log n +
2 log n

a
+ o(log n) ≤ (2 + ε′) log n for n

large enough, which implies xα ≥ n−(2+ε′).
On the other hand, log(1− x) = log b, thus, using again Taylor series:

(1− x)ω ≥ n−(2+ε) ⇔ ω log(1− x) ≥ −(2 + ε′) log n

⇔ 2(log n− 2 log n

a
− log log n) +O(1) +O(2−2 logn/a log n) ≤ (2 + ε′) log n

which is true if n is large enough.
This leads us to xα(1− x)ω ≥ n−(5+2ε′) = n−(5+ε) for ε′ = ε/2. Thus (C, S) is separated by

at least n−(5+ε) of all the partition. By double counting, there exists a partition that separates
at least n−(5+ε) of all the pairs. We delete these separated pairs, and there remains at most
(1− 1/n5+ε) · 4n pairs. The same probability for a pair (C, S) to be cut by a random partition
still holds, hence we can iterate the process k times until (1− 1/n5+ε)k · 4n ≤ 1. This is satisfied
for k = 2n6+ε which is a polynomial in n. If a→n→∞ ∞, we can do the same and get k = 2n5+ε.
There is a polynomial family of cuts that separates all the cliques and the stable sets.

However, this does not cover the classic configuration where p = 1/2 and α ≈ 2 log n. Thus
we need the following:

Proposition 5. Let a(n) = 2c log n (denoted by a in the following) where 0 ≤ c ≤ 1 is a
constant. The random graph G(n, p) with p = 1− 2−c has:

• independent number α = 2c log(n)− 2c log logn+ 2c(log(e/2)− log c) + 1 + o(1)

• clique number ω = 2c′ log n− 2c′ log logn+ o(log log n) where 1/c′ = log(1− 2−1/c).

Moreover, for all ε > 0, with high probability there exists a family of O(n5) cuts that separates
all the cliques and the stable sets.

Proof. Let p′ = 1 − p, b = 1/p and b′ = 1/p′. We proceed the same way as in the previous
proposition. The independence number and clique number of G(n, p) are given by the following
formulas, depending on p (see [3]):

ω = 2 logb(n)− 2 logb logb n+ 2 logb(e/2) + 1 + o(1)
α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

Now
1

log b′
= c, thus:

α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

= 2c log(n)− 2c log log n+ 2c(log(e/2)− log c) + 1 + o(1)

Moreover, log b = log(1− 2−1/c) = 1/c′, thus, similarly to α, we get:

w = 2c′ log(n)− 2c′ log log n+ 2c′(log(e/2)− log c′) + 1 + o(1)

The same reasonning as for Proposition 4 with the same x = 1 − p′ gives a probability
xα(1− x)ω ≥ n−4 for a given pair (C, S) to be separated by a random non-uniform cut (V1, V2),
so there is a family of O(n5) cuts that separates all the cliques and the stable sets (see the proof
of Proposition 4 for details).
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3.2 Split-free graphs

Let us first state some definitions concerning hypergraphs and VC-dimension. LetH = (V,E) be
a hypergraph. The transversality τ is the minimum cardinality of a set of vertices intersecting
each hyperedge. One can see the transversality as the following integer linear programming:
min Σx∈V w(x)

• for all x ∈ V , w(x) ∈ {0, 1}.

• for all e ∈ E, Σx∈ew(x) ≥ 1.

The fractionnal transversality τ∗ is a relaxation of the transversality. It means that we look
for real solutions and then the first condition becomes: for all x ∈ V , 0 ≤ w(x) ≤ 1. Note
that removing the contraint w(x) ≤ 1 for all x ∈ V does not change the solution as we want
to minimize the objective function. Indeed if w(y) > 1 for some y ∈ V in a feasible solution
w, getting w(y) down to 1 will not violate any constraint, and will reduce strictly the objective
function.

The Vapnik-Chervonenkis dimension or VC-dimension of a hypergraph H = (V,E) is the
maximum cardinality of a set of vertices A ⊂ V such that for every B ⊂ A there is an edge e ∈ E
so that e ∩ A = B. The main interest of VC-dimension is the following bound due to Haussler
and Welzl [15], linking the transversality with VC-dimension and fractionnal transversality.

Lemma 6. Every hypergraph H with VC-dimension d satisfies

τ(H) ≤ 16dτ∗(H) log(dτ∗(H)).

Let us introduce the dual measure of VC-dimension. A set T of hyperedges forms a complete
Venn diagram is for all T ′ ⊆ T , there exists a vertex v such that for all e ∈ T ′, v ∈ e and for all e /∈
T ′, v /∈ e. In other words, for all subset T ′ of hyperedges, there exists a vertex in the intersection
of all the hyperedges in T ′, and in no other hyperedge. The dual Vapnik-Chervonenkis dimension
(dual VC-dimension for short) of G is the maximum size of a complete Venn diagram in G. In
the remaining of the paper, we only consider hypergraphs which are neighborhood hypergraphs,
i.e. hypergraphs in which the hyperedges are neighborhood of vertices of the graph. In this
context, the VC-dimension and the dual VC-dimension of a hypergraph are the same, since
x ∈ N(y) if and only if y ∈ N(x), for all vertices x and y. Consequently, for simplicity, in the
following the dual VC-dimension will be called VC-dimension.

We denote by CΓ the class of graph with no induced Γ.

Theorem 7. Let Γ be a fixed split graph. Then the clique-stable set conjecture is verified on CΓ.

Proof. The vertices of Γ are partitionned into (V1, V2) where V1 is a clique and V2 is a stable
set. Let ϕ = max(|V1|, |V2|). Let t be the constant 32ϕ(log(ϕ) + 1). Let G = (V,E) ∈ CΓ be a
Γ-free graph, and let F be the following family of cuts. For every subset {x1, . . . , xr} of at most
t vertices which is a clique (resp. a stable set), take U = ∩1≤i≤rN(xi) (resp. U = ∪1≤i≤rN(xi)),
and put (U, V \ U) in F . Since each member of F is defined with a set of at most t vertices, F
has size at most O(nt). Let us now prove that F is a CS-separator.

Let (C, S) be a pair of maximal clique and stable set. Let us show that (C, S) is separated
by F . Let us build an oriented graph B with vertex set C ∪ S. For all x ∈ C and y ∈ S, put
the oriented edge xy if xy ∈ E, and put the oriented edge yx otherwise (see Fig. 2(b)). We use
the following variant of Farkas’ lemma, from which we derive Lemma 9:

Lemma 8 (Farkas’ lemma [22]). Let A be a m× n matrix and b ∈ Rm. Then either:

1. There is a w ∈ Rn such that Aw ≤ b; or
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2. There is a y ∈ Rm such that y ≥ 0, yA = 0 and yb < 0.

Lemma 9. For all oriented graph G = (V,E), there exists a weight function w : V → [0, 1] such
that w(V ) = 1 and for all vertex x, w(N+(x)) ≥ w(N−(x)).

Proof. Let us define a (2n + 1) × n matrix A obtained from the vertical concatenation of first
the transpose tAdj(G) of the adjacency matrix of G, second the matrix −Idn, and finally the
line vector (−1, . . . ,−1) ∈ Rn. Define b = t(0, . . . , 0,−1) ∈ R2n+1.

Then apply lemma 8: either case one occurs and then Aw ≤ b: thanks to tAdj(G), we get
w(N+(x)) ≥ w(N−(x)) for all x ∈ V ; thanks to the other lines, we get w(x) ≥ 0 for all x and
w(V ) ≥ 1. We conclude by rescaling the weight function with a factor 1/w(V ).

Otherwise, case two occurs and there is y ∈ R2n+1 : let w ∈ Rn be the projection of y on the
first n coordinates. Then for all 1 ≤ j ≤ 2n + 1, yj ≥ 0 so w(x) ≥ 0 for all x; moreover, since
yA = 0 then for all xi ∈ V , w(N+(x))−w(N−(x))−yn+i−y2n+1 = 0 so w(N+(x)) ≥ w(N−(x)).
Since yb < 0, then y2n+1 > 0 which ensures w(V ) > 0: indeed, otherwise for all x, w(x) = 0
and the previous equality becomes y2n+1 = −yn+i ≤ 0, which is a contradiction. We conclude
as before by rescaling with a factor 1/w(V ).

Corollary 10. In B, there exists either:

(i) a weight function w : C → R+ such that w(C) = 2 and for all vertex x ∈ S,w(N+(x)) ≥ 1.

or (ii) a weight function w : S → R+ such that w(S) = 2 and for all vertex x ∈ C,w(N+(x)) ≥ 1.

Proof. Let w : V → [0, 1] be a weight function satisfying conditions of Lemma 9. Since w(V ) = 1,
either w(C) > 0 or w(S) > 0. Assume w(C) > 0 (the other case is handled symetrically). Take
a new weight function defined by w′(x) = 2w(x)/w(C) if x ∈ C, and 0 otherwise. Then for all
x ∈ S, on one hand w′(N+(x)) ≥ w′(N−(x)) by extension of the property of w, and on the
other hand, N+(x) ∪N−(x) = C by construction of B. Thus w′(N+(x)) ≥ w′(C)/2 = 1 since
w′(C) = 2.

In the following, let assume we are in case (i). Case (ii) is handled symetrically by switching
C (resp. neighborhood) and S (resp. non-neighborhood).

Let us now build H an hypergraph with vertex set C. For all x ∈ S, build the hyperedge
C \NG(x), that is the complementary in C of the neighbors of x (see Fig. 2(c)).

Lemma 11. The hypergraph H has fractionnal transversality τ∗ ≤ 2.

Proof. Let w be the weight function given by Corollary 10. Let h be a hyperedge built from the
non-neighborhood of x ∈ S. Recall that this non-neighborhood is precisely N+(x) in B, then
we have: ∑

y∈h
w(y) = w(N+(x)) ≥ 1.

Thus w satisfies the constraints of the fractionnal transversality, and w(C) ≤ 2, i.e. τ∗ ≤ 2.

Lemma 12. H has VC-dimension bounded by 2ϕ− 1.

Proof. Assume that there is a complete Venn-diagram D of size 2ϕ in H. The aim is to exploit
the shuttering to find an induced H, which builds a contradiction. Let s1, . . . sϕ, t1, . . . , tϕ be
the hyperedges composing D. In the following, we will abuse notation by calling si (resp. ti)
both the hyperedge and the vertex of S whose non-neighborhood is precisely the hyperedge si
(resp. ti). Recall that the forbidden split graph Γ is the union of a clique V1 = {x1, . . . , xr} and
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C
S

(a) A clique C and a stable S in G.

C
S

(b) Graph B build from C and S.
Edges in G are replaced by forward
edges, and non-edges are replaced by
backward edges.

C
S

(c) Hypergraph H where hyperedges
are built from the non-neighborhood
of vertices from S.

Figure 2: Illustration of proof of Theorem 7. For more visibility in 2(b), forward edges are drawn
in blue and backward edges in yellow.
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a stable set V2 = {y1, . . . , y
′
r} (with r, r′ ≤ ϕ). Let xi ∈ V1 and let {yi1 , . . . , yik} = NΓ(xi) ∩ V2

be the set of its neighbors in V2.
Consider S = {si1 , . . . , sik}∪ {ti} (possible because |V1|, |V2| ≤ ϕ). As D is a complete Venn

diagramm, there exists x′i ∈ C such that x′i ∈ ∩s∈Ss and x′i /∈ ∪s′ /∈Ss′, meaning that the set of
hyperedges containing x′i is precisely S. Now, forget about the existence of t1, . . . , tϕ, and look
at the subgraph of G induced by x′1, . . . , x′r and s1, . . . , sϕ: x′i has exactly the same shape of
neighborhood in {s1, . . . , sϕ} as the neighborhood of xi in V2. Thus we have found an induced
Γ, which is impossible.

Note that the presence of t1, . . . , tϕ is useful in case where two vertices of V1 are twins with
respect to V2, meaning that their neighborhoods intersected with V2 are the same. Then, we
could not have ensured thanks to the complete Venn diagramm to have two vertices contained
in exactly the set of hyperedges S = {si1 , . . . , sik}, and no more. In fact, this remark lead us to
assert that the VC-dimension of H is bounded by ϕ+ logϕ. Indeed, we need only t1, . . . , tlogϕ

in addition to s1, . . . , sϕ: for xi ∈ V1, code i in binary over logϕ bits and define S to be the
union of {si1 , . . . , sik} with the set of tj such that the j-th bit is one. This ensures that no two
xi, xi′ have the same S.
Applying Lemma 6 to H, we obtain

τ(H) ≤ 16dτ∗(H) log(dτ∗(H)) ≤ 32ϕ(log(ϕ) + 1).

Since t = 32ϕ(log(ϕ) + 1), τ is bounded by t which only depends on H. There must be
x1, . . . , xτ ∈ C such that each hyperedge of H contains at least one xi. Thus for all y ∈S,
there is an i such that xi ∈ NC(y). Consequently, S ⊆ ∪1≤i≤tN

C
G (xi). Moreover, C ⊆ U =

∩1≤i≤tNG(xi)∪ {xi} since x1, . . . , xτ are in the same clique C. This means that the cut (U, V \
U) ∈ F built from the subclique x1, . . . xτ separates C and S.

When case (ii) of Corollary 10 occurs, there are τ vertices x1, . . . , xτ ∈ S such that for all
y ∈ C, there exists xi ∈ N(y). Thus C ⊆ U = ∪1≤i≤tNG(xi) and S ⊆ ∪1≤i≤tN

C
G (xi). The cut

(U, V \ U) ∈ F built from the stable set x1, . . . xτ separates C and S.

4 Link with 3-CCP and the stubborn problem

The following definitions are illustrated on Figure 3 and are relative with list coloring. Formally,
given a graph G and a set Col of k colors, we can associate to each vertex a set of possible
colors of size at most k. A set of possible colors, called constraint, is associated to each vertex. A
vertex has an l-constraint if its set of possible colors has size l. An l-list assignment is a function
L : V → P(Col) that give each vertex an l-constraint. A solution S is a coloring of the vertices
S : V → Col. For small k, we may equivalently consider S as a partition S = (A1, . . . , Ak)
with x ∈ Ai if and only if S(x) = Ai. An l-list assignment L is compatible with a solution S if
for each vertex x, S(x) ∈ L(x). A set of l-list assignment covers a solution S if at least one of
the l-list assignment is compatible with S.

We recall the definitions of 3-CCP and the stubborn problem:
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(a) An instance of 3-CCP

{A,C}

{A,B}

{A,B}
(b) A solution to the instance (vertex
coloring) together with a compatible
2-list assignment: each vertex has a 2-
constraint.

{A,B}

{A,C}

{C,B}
(c) Another solution to the instance
with a compatible 2-list assignment.
This 2-list assignment together with the
previous one form a 2-list covering be-
cause any solution is compatible with
at least one of them.

Figure 3: Illustration of definitions. Color correspondence: A=red ; B=blue ; C=green.

⇒?

G A1

A2

A3

A4

Figure 4: Diagram representing the stubborn problem. Cliques are represented by hatched sets,
stable sets by dotted sets. Completely non-adjacent sets are linked by a dashed edge. Grey lines
represent edges that may or may not appear in the graph.

3-Compatible Coloring Problem (3-CCP)
Input: An edge coloring fE of the complete graph on n vertices with 3 colors {A,B,C}.
Question: Is there a coloring of the vertices with the same three colors, such that no edge
has the same color as both its extremities?

Stubborn Problem (see Fig. 4)
Input: A graph G = (V,E) together with a list assignment L : V → P({A1, A2, A3, A4}).
Question: Can V be partionned into four sets A1, . . . , A4 such that A4 is a clique, both A1

and A2 are stable sets, A1 and A3 are completely non-adjacent, and the partition is compatible
with L?

Given an edge-coloring fE on Kn, we say that a set of 2-list assignment is a 2-list covering
for 3-CCP on (Kn, fE) if it covers all the solutions of 3-CCP on this instance. Moreover, it is
called a polynomial 2-list covering if its size is bounded by a polynomial in n. Symmetrically, we
want to define a 2-list covering for the stubborn problem. However, we will not be able to cover
all the solutions, so we need a notion of maximal solutions. A solution (A1, A2, A3, A4) of the
stubborn problem on (G,L) is a maximal solution if no member of A1 satisfies A3 ∈ L(v). This
notion is extracted from the notion of dominating set (here A3 dominates A1) in the language
of general list-M partition problem (see [7]). Intuitively, if L(v) contains both A1 and A3 and v
belongs to A1 in some solution S, we can build a simpler solution by putting v ∈ A3 and leaving
everything else unchanged. We may note that if A3 is contained in every L(v) for v ∈ V , then
every maximal solutions of the stubborn problem on (G,L) let A1 empty. Now, a set of 2-list
assignment is a 2-list covering for the stubborn problem on (G,L) if it covers all the maximal
solutions on this instance. Moreover, it is called a polynomial 2-list covering if its size is bounded
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by a polynomial in the number of vertices in G.
In this section, we show that the existence of a polynomial 2-list covering for the stubborn

problem is equivalent to the existence of one for 3-CCP, which in turn is equivalent to the
existence of a polynomial CS-separator.

We start by justifying the interest of 2-list covering and observing that we can always find a
quasipolynomial 2-list covering.

Observation 13. Given a polynomial number of 2-list assignment, it is possible to decide in
polynomial time if there exists a solution covered by them.

Indeed, each 2-list assignment can be translated into an instance of 2-SAT.

Theorem 14. [8] There exists an algorithm in time O(nlogn) which solves 3-CCP. This algo-
rithm gives a 2-list covering of size O(nlogn).

Proof. We give the proof for self completeness. This algorithm consists in testing nlog(n) 2-list
assignment which cover all the solutions. Consider the vertex x, without loss of generality we
can assume that the majority color of x is A. If there is a solution in which x is colored by A
then all its A-neighbors cannot have the color A, hence all its A-neighbors has 2-constraints.
And the number of remaining vertices without 2-constraint is at most 2n/3 (recall that the
graph is complete). It is possible to make the same for the remaining vertices. Hence consider
the following algorithm, for each vertex x try to find a solution for which x is colored by its
majority color. If there is no such solution for all x, then all the vertices have 2-constraints.
This algorithm is representable by a research-tree of degree n+ 1 (one child for the case where
no vertex can be colored by its majority color, and one child for each vertex that can be first
chosen to be colored by its majority color) and depth log(n) (we remove 1/3 of the vertices at
each node) in which each of the nlog(n) leaves is a 2-list assignment, and the set of all leaves
covers all the solutions.

The main result of this section is the following theorem:

Theorem 15. The following are equivalent:

1. For all graph G and all list assignment L : V → P({A1, A2, A3, A4}), there is a polynomial
2-list covering for the stubborn problem on (G,L).

2. For all n and all edge-coloring f : E(Kn)→ {A,B,C}, there is a polynomial 2-list covering
for 3-CCP on (Kn, f).

3. For all graph G, there is a polynomial CS-separator.

We decompose the proof into three lemmas, each of which describing one implication.

Lemma 16. (1⇒ 2): Suppose for all graph G and all list assignment L : V → P({A1, A2, A3, A4}),
there is a polynomial 2-list covering for the stubborn problem on (G,L). Then for all graph n
and all edge-coloring f : E(Kn) → {A,B,C}, there is a polynomial 2-list covering for 3-CCP
on (Kn, f).

Proof. Let n ∈ N, (Kn, f) be an instance of 3-CCP, and x a vertex of Kn. Let us build a
polynomial number of 2-list assignment that cover all the solutions where x is given color A.
Since all the colors are symmetric, we just have to multiply the number of 2-list assignment by
3 to cover all the solutions. Let (A,B,C) be a solution of 3-CCP where x ∈ A.
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Claim 17. Let x be a vertex and u, v, w be the three different colors. Let U be the u-neighborhood
of x. If there is a vw-clique Z of U which is not split, then there is no solution where x is colored
with u.

Proof. Indeed, consider a solution in which x is colored with u. All the vertices of Z are of color
v or w because they are in the u-neighborhood of x. The vertices colored with v form a w-clique,
those colored by w form a v-clique. Hence Z is split.

A vertex x is really 3-colorable if for each color u, every vw-clique of the u-neighborhood of
x is a split graph. If a vertex is not really 3-colorable then, in a solution, it can be colored by
at most 2 different colors. Hence if Kn(V \x) has a polynomial 2-list covering, the same holds
for Kn by assigning the only two possible colors to x in each 2-list assignment.

Thus we can assume that x is really 3-colorable, otherwise there is a natural 2-constraint
on it. Since we assume that the color of x is A, we can consider that in all the following 2-list
assignment, the constraint {B,C} is given to the A-neighborhood of x. Let us abuse notation
and still denote by (A,B,C) the partition of the C-neighborhood of x, induced by the solution
(A,B,C). As x is really 3-colorable, C is a split graph C ′ ] C ′′ with C ′ a B-clique and C ′′ a
A-clique. The situation is described in Fig. 6(a). Let H be the non-colored graph where the
vertices are the vertices of the C-neighborhood of x and there is an edge e if and only if f(e) = B
or f(e) = C (see Fig. 6(b)). Moreover, let H ′ be the non-colored graph where the vertices are
also the vertices of the C-neighborhood of x and there is an edge e if and only if f(e) = B (see
Fig. 6(c)). We consider (H,L0) and (H ′,L0) as two instances of the stubborn problem, where
L0 is the trivial list assignment that give each vertex the constraint {A1, A2, A3, A4}.

By assumption, there exists F (resp. F ′) a polynomial 2-list covering for the stubborn
problem on (H,L0) (resp. (H ′,L0)). We construct F ′′ the set of 2-list assignment f ′′ built from
all the pairs (f, f ′) ∈ F × F ′ according to the rules described in Figure 5. F ′′ aims at being a
polynomial 2-list covering for 3-CCP on the C-neighborhood of x.

The following is illustrated on Fig. 6(b) and 6(c). Let S be the partition defined by A1 = ∅,
A2 = C ′′, A3 = B∪C ′ and A4 = A. We can check that A2 is a stable set and A4 is a clique (the
others restrictions are trivially satisfied by A1 being empty and L0 being trivial). In parrallel,
let S ′ be the partition defined by A′1 = ∅, A′2 = B, A′3 = A ∪ C ′′ and A4 = C ′. We can also
check that A′2 is a stable set and A′4 is a clique. Thus S (resp. S ′) is a maximal solution for the
stubborn problem on (H,L0) (resp. (H ′,L0)) inherited from the solution (A,B,C = C ′ ] C ′′)
for 3-CCP.

Let f ∈ F (resp. f ′ ∈ F ′) be a 2-list assignment compatible with S (resp. S ′). Then f ′′ ∈ F ′′
built from (f, f ′) is a 2-list assignment compatible with (A,B,C).

Doing so for the B-neighborhood of x and pulling everything back together gives a polynomial
2-list covering for 3-CCP on (Kn, f).

Lemma 18. (2⇒ 3): Suppose for all n and all edge-coloring f : E(Kn)→ {A,B,C}, there is
a polynomial 2-list covering for 3-CCP on (Kn, f). Then for all graph G, there is a polynomial
CS-separator.

Proof. Let G = (V,E) be a graph on n vertices. Let f be the coloring onKn defined by f(e) = A
if e ∈ E and f(e) = B otherwise. In the following (Kn, f) is considered as an instance of 3-CCP.
By hypothesis, there is a polynomial 2-list covering F for 3-CCP on (Kn, f). Let us prove that
we can derive from F a polynomial CS-separator C.

Let L ∈ F be a 2-list assignment. Define X (resp. Y , Z) the set of vertices which have
the constraint {A,B} (resp. {B,C}, {A,C}). Since no edge has color C, X is split. Indeed,
the vertices of color A form a B-clique and conversely. Given a graph, there is a linear number
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f(v) f ′(v) f ′′(v)

A2 or A1, A2 ∗ C

A3 or A1, A3 ∗ B,C

A4 or A1, A4 ∗ A

A2, A4 ∗ A,C

A2, A3 ∗ B,C

A3, A4 A′2 or A′1, A′2 B

A3, A4 A′3 or A′1, A′3 A,C

A3, A4 A′4 or A′1, A′4 C

A3, A4 A′2, A
′
4 B,C

A3, A4 A′2, A
′
3 A,B

A3, A4 A′3, A
′
4 A,C

Figure 5: This table describes the rules used in proof of lemma 16 to built a 2-list assignment
f ′′ for 3-CCP from a pair (f, f ′) of 2-list assignment for two instances of the stubborn problem.
Symbol ∗ stands for any constraint. For simplicity, we write X,Y (resp. X) instead of {X,Y }
(resp. {X}).

of decompositions into a split graph [7]. Thus there are a linear number of decomposition
(Uk, Vk)k≤cn of X into a split graph where Uk is a B-clique. For all k, the cut (Uk ∪ Y, Vk ∪ Z)
is added in C. For each 2-list assignment we create a linear number of separators.

Let K be a clique and S a stable set of G which do not intersect. The edges of K are colored
by A, and those of S are colored by B. Then the coloration S(x) = B if x ∈ K, S(x) = A
if x ∈ S and S(x) = C otherwise is a solution of (Kn, f). Left-hand side of Fig. 7 illustrates
the situation. There is a 2-list assignment L in F which is compatible with this solution. As
before, let X (resp. Y , Z) be the set of vertices which have the constraint {A,B} (resp. {B,C},
{A,C}). Since the vertices of K are colored B, we have K ⊆ X ∪ Y (see right hand-side of Fig.
7). Likewise, S ⊆ X ∪Z. Then (K∩X,S∩X) forms a split partition of X. So, by construction,
there is a cut ((K ∩X) ∪ Y, (S ∩X) ∪ Z) ∈ C which ensures that (K,S) is separated by C.

Lemma 19. (3 ⇒ 1): Suppose for all graph G, there is a polynomial CS-separator. Then for
all graph G and all list assignment L : V → P({A1, A2, A3, A4}), there is a polynomial 2-list
covering for the stubborn problem on (G,L).

Proof. Let (G,L) be an instance of the stubborn problem. By assumption, there is a polynomial
CS-separator for G.

Claim 20. If there are p cuts that separate all the cliques from the stable sets, then there are p2

cuts that separates all the cliques from the unions S ∪ S′ (where S and S′ are stable sets).

Proof. Indeed, if (V1, V2) separates C from S and (V ′1 , V
′

2) separates C from S′, then the new
cut (V1 ∩ V ′1 , V2 ∪ V ′2) satisfies C ⊆ V1 ∩ V ′1 and S ∪ S′ ⊆ V2 ∪ V ′2 .

Let F2 be a polynomial family of cuts that separate all the cliques from union of two stable
sets, which exists by Claim 20. Then for all (U,W ) ∈ F2, we build the following 2-list assignment
L′:

1. If v ∈ U , let L′(v) = {A3, A4}.

2. If v ∈W and A3 ∈ L(v), then let L′(v) = {A2, A3}.
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constraint {B,C}
A-neighbourhood

B-neighbourhood

C-neighbourhood

C-colored vertices

A-colored vertices
B-colored vertices

C ′ C ′′

AB

x

(a) Vertex x, its A-neighborhood subject to the constraint {B,C}, and its C-
neighborhood separated in different parts.

C ′′

AB

H

C ′

Solution to (H,L0)

A2

A4

A3

(b) Above, the graph H obtained from
the C-neighborhood by keeping only B-
edges and C-edges. Below, the solution
of the stubborn problem.

C ′′

AB

H ′

C ′

Solution to (H ′,L0)

A2

A4

A3

(c) Above, the graph H ′ obtained from
the C-neighborhood by keeping only B-
edges. Below, the solution of the stub-
born problem.

Figure 6: Illustration of proof of lemma 16. Color correspondence: A=red ; B=blue ; C=green.
As before, cliques are represented by hatched sets, stable sets by dotted sets.

K

SV \ (K ∪ S)

X

Z

Y

{A, B}

{A, C}

{B, C}⇒

Figure 7: Illustration of proof of lemma 18. On the left hand-side, G is separated in 3 parts:
K, S, and the remaining vertices. Each possible configuration of edge- and vertex-coloring
are represented. On the right-hand-side, (X,Y, Z) is a 2-list assignment compatible with the
solution. X (resp. Y , Z) has constraint {A,B} (resp. {B,C}, {A,C}). Color correspondence:
A=red ; B=blue ; C=green.
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A1

A2

A3

A4

G

constraint {A3, A4}

constr.{A2, A3} if A3 ∈ L(v)

A3 /∈ L(v)

constr.{A1, A2} otherwise

Figure 8: Illustration of proof of lemma 19. A solution to the stubborn problem together with
the cut that separates A4 from A1 ∪ A2. The 2-list assignment built from this cut is indicated
in purple.

3. Otherwise, v ∈W and A3 /∈ L(v), let L′(v) = {A1, A2}.

Now the set F ′ of such 2-list assignment L′ is a 2-list covering for the stubborn problem on
(G,L): let S = (A1, A2, A3, A4) be a maximal solution of the stubborn problem on this instance.
Then A4 is a clique and A1, A2 are stable sets, so there is a separator (U,W ) ∈ F2 such that
A4 ⊆ U and A1 ∪ A2 ⊆ W (see Fig. 8), and there is a corresponding 2-list assignment L′ ∈ F ′.
Consequently, the 2-constraint L′(v) built from rules 1 and 3 are compatible with S. Finally, as
S is maximal, there is no v ∈ A1 such that A3 ∈ L(v): the 2-constraints built from rule 2 are
also compatible with S.

Proof of theorem 15. Lemmas 16, 18 and 19 concludes the proof of Theorem 15.

5 Link with the oriented Alon-Saks-Seymour conjecture

Given a graph G, the chromatic number χ of G is the minimum number of colors needed to
color the vertices such that, two vertices connected by an edge do not have the same color. The
bipartite packing bp(G) of a graph G is the minimum number of edge-disjoint complete bipartite
graphs needed to cover the edges of G. The Alon-Saks-Seymour conjecture states the following.

Conjecture 21. (Alon, Saks, Seymour) If bp(G) ≤ k, then χ ≤ k + 1 .

The result is a well-known result for complete graphs, due to Graham and Pollak [13]. Indeed,
n− 1 edge-disjoint complete bipartite graphs are needed to cover the edges of a complete graph
on n vertices. A beautiful proof of this theorem is due to Tverberg [26]. This conjecture
was disproved by Huang and Sudakov in [17] who prove that for some graphs χ ≥ k6/5 using
a construction based on Razborov’s graphs [23]. Nevertheless the existence of a polynomial
bound is still open. In the following we will use an oriented version of the Alon-Saks-Seymour
conjecture.

Conjecture 22. (Oriented Alon-Saks-Seymour Conjecture) There exists a polynomial P such
that if G is a disjoint union of k complete oriented bipartite graphs, then the chromatic number
χ is at most P (k).

Theorem 23. The oriented Alon-Saks-Seymour conjecture is verified if and only if the Clique-
Stable set separation conjecture is verified.
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Lemma 24. If the oriented Alon-Saks-Seymour conjecture is verified, then the Clique-Stable set
separation conjecture is verified.

Proof. Let G be a graph on n vertices. We want to separate all the pairs of cliques and stable
sets which do not intersect. Consider all the pairs (C, S) such that the clique C does not intersect
the stable set S. Construct an auxiliary graph H as follows. The vertices of H are the pairs
(C, S) and there is an oriented edge between a pair (C, S) and a pair (C ′, S′) if and only if there
is a vertex x ∈ S ∩ C ′. Observe that the number of vertices of this graph is at most 4n. The
bipartite packing of this graph is at most the number n of vertices of G. Indeed, let Hx be the
graph H restricted to the edges for which x ∈ S ∩ C ′. Observe that the union of the graphs
Hx for all x is the the graph H because if (C, S)(C ′, S′) is an edge S ∩ C ′ 6= ∅. In addition,
the graph Hx is a complete bipartite graph: if there is an edge which starts in (C, S) and if
there is an edge which ends in (C ′, S′) then x ∈ S and x ∈ C ′ and finally there is an oriented
edge (C, S)(C ′, S′). The graphs Hx and Hy cannot share an oriented edge because otherwise
the intersection between a clique and a stable set would be at least 2 which is impossible. Hence
the bipartite packing of this graph is at most n.
If the oriented Alon-Saks-Seymour conjecture is verified, χ(H) < P (n). Consider a color of this
polynomial coloring. Let A be the set of vertices of this color. There is no edge between two
vertices of A, then the union of all the second components (stable sets) of the vertices of A do
not intersect the union of all the first components (cliques) of A. Indeed, if they intersect, there
is a clique C which intersects a stable set S, hence there is an edge which is impossible.

The union of the cliques and the union of the stable sets do not intersect, hence it defines
a cut which separates all the pairs of A. The same can be done for every colors. Then we can
separate all the pairs (C, S) by χ(H) cuts, which is a polynomial in n if the Alon-Saks-Seymour
conjecture is verified. This achieves the proof of the first implication.

Lemma 25. If the Clique-Stable set separation conjecture is verified, then the oriented Alon-
Saks-Seymour conjecture is verified.

Proof. Let G = (V,E) be an oriented graph with bipartite packing k. Construct an auxiliary
graph H as follows. It has k vertices which are the oriented complete bipartite graphs that cover
the edges of G. There is an edge between two pairs (A1, B1) and (A2, B2) if and only if there is
a vertex x ∈ A1 ∩ A2. Hence the complete bipartite graphs in which x appears at the left form
a clique of H (say the clique Cx associated to x) and the complete bipartite graphs for which y
appears at the right form a stable set in H (say the stable set Sy associated to y) . Indeed, it is
quite clear for the clique, and it is also true for the stable set because if y ∈ B1 ∩B2 and there
is an edge resulting from x ∈ A1 ∩ A2, then the edge xy is covered twice which is impossible.
Note that a clique or a stable set associated to a vertex can be empty, but this does not trigger
any problem.

By asumption there are P (k) (with P a polynomial) cuts which separate all the pairs (C, S),
in particular which separate all the pairs (Cx, Sx) for x ∈ V . We color each vertex x by the
color of the cut separating (Cx, Sx). This coloring is proper: assume there is an edge from x to
y, and that x and y are given the same color. Then there exists a bipartite (A,B) that cover
the edge xy, hence (A,B) is in the clique associated to x and in the stable set associated to y,
which means they intersect: no cut can separate at the same time both Cx from Sx and Cy from
Sy, because it would then separate Cx from Sy. This is impossible. Then we have a coloring
with at most P (k) colors, which is a polynomial in k.

Corollary 26. The oriented Alon-Saks-Seymour conjecture is equivalent to the Clique-Stable set
separation conjecture. Moreover, they are also equivalent to having a polynomial 2-list covering
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for 3-CCP, and to having a polynomial 2-list covering for the stubborn problem.

6 Relations between the t-biclique covering numbers

We study here a natural generalization of the Alon-Saks-Seymour conjecture, introduced by
Huang and Sudakov in [17]. While the Alon-Saks-Seymour conjecture deals with partitionning
the edges, we relax here to a covering of the edges by complete bipartite graphs, meaning that
an edge can be covered several times. Formally, a t-biclique covering of an undirected graph G
is a collection of bicliques that cover every edge of G at least once and at most t times. The
minimum size of such a covering is called the t-biclique covering number, and is denoted by
bpt(G). In particular, bp1(G) is the usual biclique partition number bp(G).

In addition to being an interesting parameter to study in its own right, the t-biclique covering
number of complete graphs is also closely related to a question in combinatorial geometry about
neighborly families of boxes. It was studied by Zaks [18] and then by Alon [2], who proved that
Rd has a t-neighborly family of k standard boxes if and only if the complete graph Kk has a
t-biclique covering of size d. Alon gives also asymptotic bounds for bpt(Kk):

(1 + o(1))(t!/2t)1/tk1/t ≤ bpt(Kk) ≤ (1 + o(1))tk1/t .

Our results are concerned not only with Kk but for every graph G. It is natural to ask the
same question for bpt(G) as for bp(G), namely:

Conjecture 27 (Generalized Alon-Saks-Seymour conjecture of order t). There exists a polyno-
mial P such that for all graphs G, χ(G) ≤ P (bpt(G)).

Observation 28. Since a t-biclique covering is a fortiori a t′-biclique covering for all t′ ≥ t, we
have the following inequalities:

. . . ≤ bpt+1(G) ≤ bpt(G) ≤ bpt−1(G) ≤ . . . bp1(G) .

In particular, if the generalized Alon-Saks-Seymour conjecture of order t holds, then χ(G) is
bounded by a polynomial in bpt(G) and thus by a polynomial in bp1(G), so the generalized
Alon-Saks-Seymour of order 1 holds.

We show that the reverse is also true.

Theorem 29. Let t ∈ N∗. The generalized Alon-Saks-Seymour conjecture of order t holds if
and only if it holds for order 1.

Before going to the proof, we need a few definitions: let G be a graph and let B = {B1, ..., Bk}
be a family of bipartite complete graphs which covers the edges of G. Given an edge e, the
multiplicity m(e) of e is the number of bipartites which contain the edge e. We associate a
positive side and a negative side to each bipartite, meaning that Bi = (B+

i , B
−
i ) with B+

i (resp.
B−i ) being a stable set and refered to as the positive (resp. negative) side of Bi. Given an edge
xy, two half edges are asociated to xy: (xy, x) and (xy, y). If Bi covers the edge xy, the half
edge (xy, x) is a positive (resp. negative) half edge for Bi if x is in the positive (resp. negative)
side of the bipartite and y in the other side. The vertex associated to the half edge (e, x) is the
vertex x. A tag is a pair consisting into a bipartite Bi ∈ B and a sign (+ or −). The opposite
tag of a tag is the same bipartite and the opposite sign. A bag is a set of tags and two bags X
and Y are opposite if for each tag in X, the opposite tag is in Y .
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Proof of Theorem 29. As Observation 28 shows one direction, we focus on the other, and assume
that the generalized Alon-Saks-Seymour conjecture of order 1 holds. Let us prove the result by
induction on t, initialization for t = 1 being obvious. Let G be a graph and let B = (B1, ..., Bk)
be a t-biclique covering. Since each edge is covered by at most t bipartites, each half edge (e, x)
of the graph can be represented by a bag with at most t tags, containing all the (Bi,+) such
that (e, x) is a positive half edge in Bi, and all the (Bj ,−) such that (e, x) is a negative half
edge in Bj . Note that there are 2k possible tags, thus the total number of different bags is at
most (2k)t.

Partition the set of half edges into {P1, . . . , Pm} with m = (2k)t, in such a way that two half
edges are in the same Pj if and only if they have exactly the same bag. The vertices associated
to Pj are the vertices associated to the half edges which appear in Pj . In a first time we will
only consider the edges which are covered exactly t times. Let Pj and Pj′ be two parts such
that their induced bags X and X are opposite and of size t, and let U and U ′ be their set of
associated vertices, respectively. Observe that the bipartites appearing in X and in X are the
same, and that the vertices of U and U ′ appear in all these bipartites. Note first that U and U ′

are disjoint: indeed, if x ∈ U ∩ U ′, then there exists (e, x) ∈ Pj and (e′, x) ∈ Pj′ . For all tag
(Bi,±) in X, (Bi,∓) is in X, thus x has to be on both side of Bi, which is impossible. Moreover,
there is a complete bipartite graph between U and U ′ in G. Indeed, for all x ∈ U , x′ ∈ U ′ and
for all bipartite Bi in X, x is on one side on Bi and x′ on the other so the edge xx′ is in Bi.

Select one bipartite (it can be any of those appearing in X) and call it B′j . It covers all the
edges between U and U ′. We do the same for all pair (X,X) of opposite bags of size t and get
a family B′ of complete bipartites. All the edges of the graph G of multiplicity t are covered by
this set of bipartites. Indeed, consider an edge xy of multiplicity t, the two half edges (xy, x)
and (xy, y) have two opposite bags of size t. Then by construction, they are covered by one
of the B′j . Let us prove that each edge is covered at most once. Indeed, if xy is covered by
B′j , then the two half-edges are appearing in two opposite bags (X,X) of size t, thus there are
already t bipartite Bi which cover xy. If it is also covered by another bipartite B′j′ selected from
a different pair of opposite bags (Y, Y ), it means that, there is a bipartite Bi′ which is not in
the bag X but in the bag Y (since all the bags have size t) which covers the edge xy. Thus, the
edge xy is covered by at least t+ 1 bipartites which contradicts the hypothesis on t. Thus this
set of bipartites cover the edges of multiplicity t with a multiplicity one.

As we assumed that the generalized Alon-Saks-Seymour conjecture of order 1 holds, it means
that the graph restricted to this set of bipartite B′j has chromatic number at most P ((2k)t) (with
P a polynomial) since B′ ensures bp1(G) ≤ (2k)t. Thus the vertex set can be partitionned into
P ((2k)t) stable sets S1, . . . , SP ((2k)t). Since all the edges of multiplicity t in B are covered, it
means that the multiplicity of the edges of G in each part Si is at most t−1. Hence by induction
hypothesis, it means that the chromatic number of each Si is bounded by a polynomial Q in
bpt−1(Si). As Si contains no edge of multiplicity t, B restricted to the vertices of Si ensures
that bpt−1(Si) ≤ (2k)t. Thus the chromatic number of G seen as a product graph is at most
P ·Q(2kt), which is a polynomial in k. Thus the generalized Alon-Saks-Seymour conjecture of
order t holds if and only if it holds for order one.

7 Conclusion

Pour rapport de stage
These results are interesting due to the link they make between some distant areas of theoret-

ical computer science such as communication complexity, graph theory, constraint satisfaction
problem, and even polytope geometrics, via an equivalence between long-standing open prob-
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lems in each area. It has been somehow fascinating to explore such a wide range of domains and
to see links appearing between them. The main question is now of course to prove or disprove
one of these equivalent problems. Our results are a step forward, enabling anyone to chose his
favorite domain between the three involved ones.

I would like to gratefully thank my supervizor Stéphan Thomassé and his PhD student
Nicolas Bousquet for their close collaboration during my internship. They were fully available
for answering my questions and they have been willingly sharing some interesting research prob-
lems with me. Moreover, I thank the whole team for their warm welcome and for having had
me take part into special events such as the workshop on χ-bounded classes with Paul Seymour
and Maria Chudnovsky, and the Turing days with Leslie Valiant.
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Appendices

A Detailed proof on random graphs

We recall Proposition 4 and give a detailed proof with all the computations and Taylor series.

Proposition 30. Let a(n) (denoted by a in the following) be a function of n such that 2 ≤
a(n)� log n. The random graph G(n, p) with p = 1− n−2/a = 1− 2−2 logn/a has:

• independent number α = a− a log a

log n
+ 1 + o(1)

• clique number ω = 2 ln 2 · 22 logn/a ·
(

log n− 2 log n

a
− log log n

)
+O(22 logn/a) +O(log n).
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Moreover, for all ε > 0, with high probability there exists a family of O(n6+ε) cuts (more precisely
O(n5+2/a+ε) if a is a constant, and O(n5+ε) if a(n)→n→∞ ∞) that separates all the cliques and
the stable sets.

Proof. Let p′ = 1 − p, b = 1/p and b′ = 1/p′. The independence number and clique number of
G(n, p) are given by the following formulas, depending on p (see [3]):

ω = 2 logb(n)− 2 logb logb n+ 2 logb(e/2) + 1 + o(1)
α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

Now
1

log b′
=

a

2 log n
, thus:

α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

= a− a

log n
log
(a

2

)
+ 1 + o(1)

= a− a log a

log n
+ 1 + o(1)

Moreover, thanks to Taylor series we get:

1

log b
=

−1

log(1− 2−2 logn/a)
by definition of b

=
− ln 2

−2−2 logn/a +O(2−4 logn/a)
using ln(1 + x) = x+O(x2)

=
ln 2 · 22 logn/a

1 +O(2−2 logn/a)
by factorization

= ln 2 · 22 logn/a · (1 +O(2−2 logn/a))) using
1

1− x = 1 +O(x)

Thus, let us look at the different terms in the approximation of ω:

• 2 logb n = 2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a)) · log n

= 2 ln 2 · 22 logn/a log n+O(log n)
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• −2 logb logb n = −2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a)) · (log log n− log log b)

by substitution of log b

= −2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a))

· (log log n+ log ln 2− log(2−2 logn/a(1 +O(2−2 logn/a))))

by previous computation

= −2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a))

· (log log n+ log ln 2 +
2 log n

a
+O(2−2 logn/a))

using ln(1 + x) = x+O(x2)

= −2 ln 2 · 22 logn/a · (log log n+ log ln 2 +
2 log n

a
) +O(log n)

by developping.

• 2 logb(e/2) + 1 + o(1) = 2 log(e/2) ln 2 · 22 logn/a +O(1)

Hence:

w = 2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log logn− log ln 2 + log(e/2)) +O(log n)

= 2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log logn) +O(22 logn/a) +O(log n)

Now, let x = 1− p = 2−2 logn/a. Draw a random partition (V1, V2) where each vertex is put
in V1 independently from the others with probabilty x. Let (C, S) be a pair of clique and stable
set of the graph. There are at most 4n such pairs. The probability that S ⊆ V1 and C ⊆ V2 is
xα(1− x)ω. Let us show that xα ≥ n−(2+2/a+ε′) and (1− x)ω ≥ n−(2+ε′) for all ε′ > 0.

On one hand,

xα ≥ n−(2+2/a+ε) ⇔ α log x ≥ −(2 + 2/a+ ε′) log n

⇔ (a− a log a

log n
+ 1 + o(1)) · −2 log n

a
≥ −(2 + 2/a+ ε′) log n

⇔ 2 log n+
2 log n

a
+ o(log n) ≤ (2 + 2/a+ ε′) log n

which is true if n is large enough.

Note that for a→n∞ ∞, we even have 2 log n+
2 log n

a
+ o(log n) ≤ (2 + ε′) log n for n large

enough, which implies xα ≥ n−(2+ε′).
On the other hand, log(1− x) = log b, thus, using the previous approximations:
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(1− x)ω ≥ n−(2+ε) ⇔ ω log(1− x) ≥ −(2 + ε′) log n

⇔
(

2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log logn) +O(22 logn/a) +O(log n)

)
·
(
−2−2 logn/a

ln 2
+O(2−4 logn/a)

)
≥ −(2 + ε′) log n

⇔ 2(log n− 2 log n

a
− log log n) +O(1) +O(2−2 logn/a log n) ≤ (2 + ε′) log n

which is true if n is large enough.
This leads us to xα(1 − x)ω ≥ n−(5+2ε′) = n−(5+ε) for ε′ = ε/2. Thus (C, S) is separate by

at least n−(5+ε) of all the partitions. By double counting, there exists a partition that separates
at least n−(5+ε) of all the pairs. We delete these separated pairs, and there remains at most
(1− 1/n5+ε) · 4n pairs. The same probability for a pair (C, S) to be cut by a random partition
still holds, hence we can iterate the process k times until (1− 1/n5+ε)k · 4n ≤ 1. This is satisfied
by k = 2n6+ε which is a polynomial in n. If a→n∞ ∞, we can do the same and get k = 2n5+ε.
As a conclusion, we have a polynomial family of random cuts that separates all the cliques and
the stable sets.
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