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Abstract
In this paper we propose a study of the 3-adapted list coloring problem [11] by 2-list colorings.

First we prove that this problem is equivalent to the problem of separation of the cliques and the
stable sets. This problem is deeply linked with a problem of communication complexity introduced
by Yannanakis [18]. Hence we show that these problems are also equivalent with a polynomial bound
for an oriented Alon-Saks-Seymour conjecture.

1 Definitions
Let k be an integer. We denote by [k] the set of integers between 0 and k−1. Let G = (V,E) be a graph.
An edge uv ∈ E links its two endpoints u and v. The neighbourhood N(x) of x is the set of vertices y
such that xy ∈ E. The non-neighbourhood NC(x) of x is the complementary of the neighbourhood N(x).
For oriented graphs, N+(x) (resp. N−(x)) denote the incoming (resp. outcoming) neighborhood of x,
that is the set of vertices y such that yx ∈ E (resp. (xy ∈ E)). The subgraph induced by X ⊆ V denoted
by G[X] is the graph (X,E′) where E′ = E ∩ (X ×X). A clique of G is a complete induced subgraph of
G. A stable set is an induced subgraph without edges. Observe that a clique and a stable set intersect
on at most one vertex. A vertex-coloring (resp. edge-coloring) of G with k colors is a function fV (resp.
fE) from V (resp. E) to [k]. For edge-colored graphs, an (α1...αk)-clique is a clique where the edges are
only colored by α1...αk. A vertex-coloring fV of G is fE-proper if for each edge uv of E, fV (u) 6= fE(uv)
or fV (v) 6= fE(uv). In other words, an endpoint of each edge does not have the color of the edge. The
k-Adapted-List-Coloring Problem was defined by Hell and Zhu in [11], and then studied in [3] and
[13]. It is defined as follows:
k-Adapted-List-Coloring Problem (k-ALCP)
Input: An edge coloring fE of the complete graph on n vertices with k colors.
Question: Is there an fE-proper coloring?
This problem has applications to matrix partitions of graphs, full constraint satisfaction problems and
trigraph homomorphisms [6], [7], [5], [10]. Hell and Zhu proved that the problem is NP-complete if k ≥ 4
and polynomial if k ≤ 2 [11]. The complexity when k = 3 was solved by Cygan and al. [2] Upgrader la
ref. We focus our attention on the case k = 3. The majority color of x ∈ V is the color which appears
the most often for the edges with endpoint x (in case of ties, we arbitrarily cut them). We now introduce
some definitions relative to list coloring. For list-coloring, each vertex has a set of possible colors.

The following definitions are illustrated on Figure 1 and are relative with list coloring. A set of
possible colors, called constraint, is associated to each vertex. A vertex has an l-constraint if its set of
possible colors has size l. An l-list coloring is a coloring where each vertex has an l-constraint. An l-list
coloring is compatible with a solution fV if for each vertex x, fV (x) is in the l-constraint of x. A set of
l-list colorings is compatible with a solution if one of the l-list coloring is compatible with the solution.
A partition problem is l-list colored for a function f is there exist f(n) l-list colorings compatible with
all the solutions. A partition problem is said polynomially l-list colored if there exists a polynomial Q
such that the partition problem is l-list colored for Q. In other words, there exists a polynomial family
F of l-list colorings such that for any solution s, we can find in F a l-list coloring which is compatible
with s.

Observation 1. Given a polynomial number of 2-list colorings, it is possible to decide in polynomial
time if they are compatible with a solution.
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(a) An instance of 3-ALCP

{0, 1}

{0, 2}

{0, 2}
(b) A solution to the instance (ver-
tex coloring) together with a compati-
ble 2-list coloring: each vertex has a 2-
constraint.

{0, 2}

{0, 1}

{1, 2}
(c) Another solution to the instance with
a compatible 2-list coloring. This 2-list
coloring together with the previous one
form a family that is compatible with all
the solutions.

Figure 1: Illustration of definitions. Color correspondence: 0=red ; 1=green ; 2=blue.

Indeed, each 2-list coloring can be translated into an instance of 2-SAT.

Theorem 1. [4] There exists an algorithm in time O(nlogn) which solves the 3-ALCP. This algorithm
gives O(nlogn) 2-list colorings which are compatible with all the solutions.

Proof. We give the proof for self completeness. This algorithm consists in testing nlog(n) 2-list colorings
which contains all the solutions. Consider the vertex x, without loss of generality we can assume that
the majority color of x is 0. If there is a solution in which x is colored by 0 then all its 0-neighbours
cannot have the color 0, hence all its 0-neighbours has 2-list constraints. And the number of remaining
vertices with 3 possible colors is at most 2n/3 (recall that the graph is complete). It is possible to make
the same for the remaining vertices. Hence consider the following algorithm, for each vertex x try to find
a solution for which x is colored by its majority color. If there is no such solution for all x, then all the
vertices have 2-list constraints. This algorithm is representable by a research-tree of degree n + 1 (one
child for the case where no vertex can be colored by its majority color, and one child for each vertex that
can be first chosen to be colored by its majority color) and depth log(n) (we remove 1/3 of the vertices
at each node) in which each of the nlog(n) leaves is a 2-list coloring of the instance.

2 Link with the Cliques-Stables separation conjecture
A cut is a pair (A,B) such that A∪B = V and A∩B = ∅. A cut separates a clique C and a stable set
S if C ⊆ A and S ⊆ B. Note that a clique and a stable set can be separated if and only if they do not
intersect. Let CG be the set of cliques of G and SG be the set of stable sets of G. We say that a family
F of cuts separates all the cliques and the stable sets if for all (C, S) ∈ CG × SG which do not intersect,
there exists a cut in F that separates C and S.

Conjecture 1. (Clique-Stable Set separation Conjecture) There is a polynomial Q, such that for every
graph G on n vertices, there exists a family of Q(n) cuts that separates all the cliques and the stable sets.

Proposition 1. To prove the Clique-Stable Set separation Conjecture, one only need a polynomial family
that separates all the maximal (in sense of inclusion) cliques from the maximal stable sets that do not
intersect.

Proof. Assume F is a polynomial family that separates all the maximal cliques from the maximal stable
sets that do not intersect. Add to F the following cuts, for all x ∈ V :

• Put x and N(x) on the left hand-side, and the remaining vertices on the right hand-side (call it
Cut1,x).

• Put N(x) on the left and side, and x and the remaning vertices on the right hand side (call it
Cut2,x).

Note that these additional cuts are in linear number. Now, let (C, S) be a pair of clique and stable
set. Grow up C and S by adding vertices to get a maximal clique C ′ and a maximal stable set S′. Either
C ′ and S′ do not intersect, and in this case there is a cut in F that separate C ′ from S′, thus C from
S; or C ′ and S′ intersect in x (recall that a clique and a stable set intersect on at most one vertex): if
x ∈ C, then Cut1,x separates C from S, otherwise Cut2,x does.
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Consequently, in the following, we will only focus on separating the maximal cliques from the maximal
stable sets.

To motivate this polynomial separation let us prove the conjecture for some particular classes of
graphs. For classes with a polynomial number of cliques or a polynomial number of stable sets, the
conjecture is satisfied. Hence a class of graphs with bounded cliques or stable sets verifies the conjecture.
Theorem 2 and 3 give more interesting classes of graphs satisfying the conjecture.

2.1 Random graphs
Let n be a positive integer and p ∈ [0, 1]. The random graph G(n, p) is a probability space over the
set of graphs on the vertex set {1, . . . , n} determined by Pr[{i, j} ∈ G] = p, with these events mutually
indepedent. We say that G(n, p) has clique number ω if ω satisfies E(number of cliques of size ω) = 1.
We define similarly the independent number of G(n, p).

Theorem 2. For random graphs, the clique-stable set conjecture is satisfied.

The claim is detailed by the following propositions, in which ln denotes the logarithm to the base e,
logb denotes the logarithm to the base b, and log denotes the logarithm to the base 2.

Proposition 2. Let a(n) (denoted by a in the following) be a function of n such that 2 ≤ a(n)� log n.
The random graph G(n, p) with p = 1− n−2/a = 1− 2−2 logn/a has:

• independent number α = a− a log a

log n
+ 1 + o(1)

• clique number ω = 2 ln 2 · 22 logn/a ·
(

log n− 2 log n

a
− log log n

)
+O(22 logn/a) +O(log n).

Moreover, for all ε > 0, with high probability there exists a family of O(n6+ε) cuts (more precisely
O(n5+2/a+ε) if a is a constant, and O(n5+ε) if a(n) →n→∞ ∞) that separates all the clique and the
stable sets.

Observation 2. If a is a constant, then the previous formulas give:

• α = a+ 1 + o(1)

• ω = 2 ln 2 · n2/a
(
a− 2

a
log n− log log n

)
+O(log n).

Proof. Let p′ = 1 − p, b = 1/p and b′ = 1/p′. The independence number and clique number of G(n, p)
are given by the following formulas, depending on p (see [1]):

ω = 2 logb(n)− 2 logb(logb n) + 2 logb(e/2) + 1 + o(1)
α = 2 logb′(n)− 2 logb′(logb′ n) + 2 logb′(e/2) + 1 + o(1)

Now
1

log b′
=

a

2 log n
, thus:

α = 2 logb′(n)− 2 logb′(logb′ n) + 2 logb′(e/2) + 1 + o(1)

= a− a log a

log n
+ 1 + o(1)

Moreover, using log(1− x) =
x+O(x2)

ln 2
then

1

1− x = 1 +O(x) we have:

1

log b
=

− ln 2

−2−2 logn/a +O(2−4 logn/a)

= 22 logn/a · ln 2 · (1 +O(2−2 logn/a)))
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Thus,

− log log b = log ln 2 +
2 log n

a
+O(2−2 logn/a))

Consequently:

−2 logb logb n = −2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a)) · (log log n− log log b)

= −2 ln 2 · 22 logn/a · (log log n+ log ln 2 +
2 log n

a
) +O(log n)

Hence:

w = 2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log log n− log ln 2 + log(e/2)) +O(log n)

= 2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log log n) +O(22 logn/a) +O(log n)

Now, let x = 1 − p = 2−2 logn/a. Draw a random partition (V1, V2) where each vertex is put in V1
independently from the others with probabilty x. Let (C, S) be a pair of clique and stable set of the
graph. There are at most 4n such pairs. The probability that S ⊆ V1 and C ⊆ V2 is xα(1− x)ω. Let us
show that xα ≥ n−(2+2/a+ε′) and (1− x)ω ≥ n−(2+ε′) for all ε′ > 0.

On one hand,

xα ≥ n−(2+2/a+ε′) ⇔ α log x ≥ −(2 + 2/a+ ε′) log n

⇔ 2 log n+
2 log n

a
+ o(log n) ≤ (2 + 2/a+ ε′) log n

which is true if n is large enough.

Note that for a→n→∞ ∞, we even have 2 log n+
2 log n

a
+o(log n) ≤ (2+ε′) log n for n large enough,

which implies xα ≥ n−(2+ε′).
On the other hand, log(1− x) = log b, thus, using the previous approximations:

(1− x)ω ≥ n−(2+ε) ⇔ ω log(1− x) ≥ −(2 + ε′) log n

⇔
(

2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log log n) +O(22 logn/a) +O(log n)

)
·
(−2−2 logn/a

ln 2
+O(2−4 logn/a)

)
≥ −(2 + ε′) log n

⇔ 2(log n− 2 log n

a
− log log n) +O(1) +O(2−2 logn/a log n) ≤ (2 + ε′) log n

which is true if n is large enough.
This leads us to xα(1− x)ω ≥ n−(5+2ε′) = n−(5+ε) for ε′ = ε/2. Thus (C, S) is separated by at least

n−(5+ε) of all the partition. By double counting, there exists a partition that separates at least n−(5+ε)
of all the pairs. We delete these separated pairs, and it remains at most (1 − 1/n5+ε) · 4n pairs. The
same probability for a pair (C, S) to be cut by a random partition still holds, hence we can iterate the
process k times until (1 − 1/n5+ε)k · 4n ≤ 1. This is satisfied for k = 2n6+ε which is a polynomial in
n. If a →n→∞ ∞, we can do the same and get k = 2n5+ε. There is a polynomial family of cuts that
separates all the cliques and the stable sets.

However, this does not cover the classic configuration where p = 1/2 and α ≈ 2 log n. Thus we need
the following:

Proposition 3. Let a(n) = 2c log n (denoted by a in the following) where 0 ≤ c ≤ 1 is a constant. The
random graph G(n, p) with p = 1− 2−c has:

• independent number α = 2c log(n)− 2c log logn+ 2c(log(e/2)− log c) + 1 + o(1)

• clique number ω = 2c′ log n− 2c′ log log n+ o(log log n) where 1/c′ = log(1− 2−1/c).
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Moreover, for all ε > 0, with high probability there exists a family of O(n5) cuts that separates all the
clique and the stable sets.

Proof. Let p′ = 1− p, b = 1/p and b′ = 1/p′. We proceed the same way as in the previous proposition.
The independence number and clique number of G(n, p) are given by the following formulas, depending
on p (see [1]):

ω = 2 logb(n)− 2 logb logb n+ 2 logb(e/2) + 1 + o(1)
α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

Now
1

log b′
= c, thus:

α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

= 2c log(n)− 2c log log n+ 2c(log(e/2)− log c) + 1 + o(1)

Moreover, log b = log(1− 2−1/c) = 1/c′, thus, similarly to α, we get:

w = 2c′ log(n)− 2c′ log log n+ 2c′(log(e/2)− log c′) + 1 + o(1)

The same reasonning as for Proposition 2 with the same x = 1−p′ gives a probability xα(1−x)ω ≥ n−4
for a given pair (C, S) to be separated by a random non-uniform cut (V1, V2), so there is a family of
O(n5) cuts that separate all the clique and the stable sets (see the proof of Proposition 2 for details).

2.2 Split-free graphs
A geometric generalization of the clique-stable set conjecture was studied by Lovász in [15]. The question
is to know if the stable set polytope of a graph is the projection of a polytope in higher dimension, with
a polynomial number or facets. On sait maintenant que c’est faux, cf Fiorini et al.! He claims that
if the answer to this question is positive, then there is a polynomial number of cuts that separates all
the cliques and the stable sets. Moreover, he proved it for several subclasses of perfect graphs, such
as comparability graphs and their complements, chordal graphs and their complements, and t-perfect
graphs which are a generalization of series-parallel graphs. Let us show the result for split-free graphs,
which contain comparability graphs.

A graph G = (V,E) is split if V = V1 ∪ V2 and the subgraph induced by V1 is a clique and the
subgraph induced by V2 is a stable set. Let H be a split graph. We denote by CH the class of graph with
no induced H. Note, for example, that the graph with |V1| = 1, |V2| = 3 and all possible edges between
V1 and V2 is a claw, hence CH is the class of claw-free graphs.

Theorem 3. Let H be a fixed split graph. Then the clique-stable set conjecture is verified on CH .

Before going to the proof, we need a few additional definitions regarding transversality and Vapnik-
Chervonenkis dimension. Let G = (V,E) be a hypergraph.

Definition 1. The transversality τ is the minimum cardinality of a set of vertices intersecting each
hyperedge.

Definition 2. The fractionnal transversality τ∗ is a relaxation of the transversality : it is a solution to
the following linear programming: min Σx∈V w(x) subject to

• for all x ∈ V , 0 ≤ w(x) ≤ 1.

• for all e ∈ E, Σx∈ew(x) ≥ 1.

Observation 3. The constraint 0 ≤ w(x) ≤ 1 for all x ∈ V comes naturally from the relaxation of τ
where each vertex takes value in {0, 1}. However, removing the contraint w(x) ≤ 1 for all x ∈ V does
not change the solution as we search for a minimum: if w(y) > 1 for some y ∈ V in a feasible solution
w, getting w(y) down to 1 will not violate any constraint, and will reduce strictly the objective function.
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Definition 3. The Vapnik-Chervonenkis dimension or VC-dimension of a hypergraph H = (V,E) is the
maximum cardinality of a set of vertices A ⊂ V such that for every B ⊂ A there is an edge e ∈ E so
that e ∩A = B.

Let us introduce some dual measure:

Definition 4. A set T of hyperedges forms a complete Venn diagramm is for all T ′ ⊆ T , there exists
a vertex v such that for all e ∈ T ′, v ∈ e and for all e /∈ T ′, v /∈ e. In other words, for all subset T ′ of
hyperedges, there exists a vertex in the intersection of all hyperedges in T ′, and in no other hyperedge.

Definition 5. The dual Vapnik-Chervonenkis dimension (dual VC-dimension for short) of G is the
maximum size of a complete Venn diagramm in G.

Since we will use only hypergraphs extracted from neighbourhood of vertices in a given graph, we
will work more easily with the dual VC-dimension. In this context, the VC-dimension and the dual
VC-dimension of a hypergraph are the same, coming from x being in N(y) if and only if y ∈ N(x), for
all vertices x and y. Consequently, we will abuse notation in the following and say VC-dimension instead
of dual VC-dimension.

Proof of Theorem 3. Let t be a constant depending only on H, to be defined later. Let G = (V,E) ∈ CH
be a H-free graph, and let F be the following family of cuts: for all subsets {x1, . . . , xr} of at most t
vertices which is a clique (resp. a stable set), take U = ∩1≤i≤rN(xi) (resp. U = ∪1≤i≤rN(xi)). Add
(U, V \ U) to F . Then F has size O(nt), which is polynomial in n. Let (C, S) be a pair of maximal
clique and stable set. Let us show that (C, S) is separated by F .

Let us build an oriented graph B with vertices C ∪ S as shown on Figure 2(b). For all x ∈ C and
y ∈ S, put the oriented edge xy if xy ∈ E, and put the oriented edge yx otherwise. From the hyperplane
separation theorem applied to the cone of positive vectors on one side, and the convex hull of the columns
of the adjacency matrix of B on the other side, we can derive the following lemma:

Lemma 1. For all oriented graph (V,E), there exists a weight function w : V → [0, 1] such that w(V ) = 1
and for all vertex x, w(N+(x)) ≥ w(N−(x)).

Corollary 1. In B, there exists either:

(i) a weight function w : C → R+ such that w(C) = 2 and for all vertex x ∈ S,w(N+(x)) ≥ 1.

or (ii) a weight function w : S → R+ such that w(S) = 2 and for all vertex x ∈ C,w(N+(x)) ≥ 1.

Proof. Take w : V → [0, 1] as in Lemma 1. Then w(V ) = 1 so either w(C) > 0 or w(S) > 0.
Assume w(C) > 0 (the other case is handled symetrically). Take a new weight function defined by
w′(x) = 2w(x)/w(C) if x ∈ C, and 0 otherwise. Then for all x ∈ S, on one hand w′(N+(x)) ≥ w′(N−(x))
by extension of the property of w, and on the other hand, N+(x) ∪ N−(x) = C by construction of B.
Thus w′(N+(x)) ≥ w′(C)/2 = 1 since w′(C) = 2.

In the following, let assume we are in case (i). Case (ii) is handled symetrically by switching C (resp.
neighbourhood) and S (resp. non-neighbourhood).

Let us now build B′ an hypergraph with vertices C and for all x ∈ S, build the hyperedge C \NG(x),
that is the complementary in C of the neighbours of x in the original graph G. This construction is
illustrated on Figure 2(c).

Lemma 2. The hypergraph B′ has fractionnal transversality τ∗ ≤ 2.

Proof. Let w be the weight function given by Corollary 1. Let h be a hyperedge built from the non-
neighbourhood of x ∈ S. Recall that this non-neighbourhood was precisely N+(x) in B, then we have:∑

y∈h
w(y) = w(N+(x)) ≥ 1.

Thus w satisfies the constraints of the extended transversality, and w(V ) = w(C) ≤ 2.

Recall that the vertices of H are partitionned into (V1, V2) where V1 is a clique and V2 is a stable set.
Let ϕ = max(|V1|, |V2|).
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C
S

(a) A clique C and a stable S in G.

C
S

(b) Graph B build from C and S. Edges in G are
replaced by forward edges (blue edges on the draw-
ing), and non-edges are replaced by backward edges
(yellow edges on the drawing).

C
S

(c) Hypergraph B′ where hyperedges are built from
the non-neighbourhood of vertices from S.

Figure 2: Illustration of proof of Theorem 3.
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Lemma 3. B′ has VC-dimension bounded by 2ϕ− 1.

Proof. Suppose we have a complete Venn diagramm D of size 2ϕ in B′. The aim is to exploit the
shuttering to find an induced H, which builds a contradiction. Let s1, . . . sϕ, t1, . . . , tϕ be the hyperedges
composing D. In the following, we will abuse notation by calling si (resp. ti) both the hyperedge and the
vertex of S whose non-neighborhood is precisely the hyperedge si (resp. ti). We denote by y1, . . . , yϕ′

the vertices of V2 (with ϕ′ ≤ ϕ). Let x ∈ V1 and let {yi1 , . . . , yik} be the set of its neighbors in V2.
Since D is a complete Venn diagramm in B′, there exists x′ ∈ C such that x′ is in the intersection of
the hyperedges si1 , . . . , sik , and in no other hyperedge. This means that, in G[C ∪ {s1, . . . , sϕ}], x′ has
exactly the same neighborhood in S as x in V2. If there is no two vertices x1, x2 ∈ V1 with the same
neighborhood in V2, the above statement iterated on the other vertices of V1 proves that there is an
induced H in G[C ∪ S], thus in G, which is absurd.

Now let us handle the case where several vertices in H have the same neighbourhood. We will
artificially use the vertices t1, . . . , tϕ to ensure that we can find in our setting as many vertices as needed
with this particular neighbourhood, to find an induced H. Assume x1, . . . , xr ∈ V1 have the same
neighborhood {yi1 , . . . , yik} in V2. Let δj = {si1 , . . . , sik} ∪ {tj} for all 1 ≤ j ≤ r. Then there exists
x′j ∈ C such that x′j is exactly in the intersection of all hyperedges in δj , and in no other hyperedge.
Thus, in G[C ∪ {s1, . . . , sϕ}], x′1, . . . , x′r have the same neighborhood {si1 , . . . , sik}, just as x1, . . . , xr in
V1. In the same way as before, we find an induced H in G[C ∪ S], which is absurd.

Observation 4. In fact, the VC-dimension of B′ is bounded by ϕ + logϕ. Indeed, we need only
t1, . . . , tlogϕ in addition to s1, . . . , sϕ: if x1, . . . , xr ∈ V1 have the same neighborhood in V2 with r ≤ ϕ,
we need r different subsets of {t1, . . . , tϕ}, which is already possible with t1, . . . tlogϕ.

The following bound [9] links the transversality with VC-dimension and extended transversality.

Lemma 4. Every hypergraph H with VC-dimension d satisfies

τ(H) ≤ 16dτ∗(H) log(dτ∗(H)).

Applying this lemma to B′, we obtain

τ(B′) ≤ 16dτ∗(B′) log(dτ∗(B′)) ≤ 32ϕ(log(ϕ) + 1).

Let us now define t = 32ϕ(log(ϕ) + 1) (recall that t was part of the construction of the family F
of cuts in the beginning of the proof). As a consequence, τ is bounded by t which depends only on H.
There must be x1, . . . , xτ ∈ C such that each hyperedge of B′ contains at least one xi. Thus for all y ∈S,
there is i such that xi ∈ NC(y). Consequently, S ⊆ ∪1≤i≤tNC

G (xi). Moreover, C ⊆ U = ∩1≤i≤tNG(xi)
as x1, . . . , xτ are members of the same clique C. This means that the cut (U, V \ U) ∈ F built from the
subset x1, . . . xτ separates C and S.

Let us mention that if case (ii) of Corollary 1 were actually occuring, we would have extracted τ
vertices x1, . . . , xτ ∈ S such that S ⊆ ∪1≤i≤tNC

G (xi) and C ⊆ U = ∪1≤i≤tNG(xi). The cut (U, V \U) ∈ F
built from the subset x1, . . . xτ separates C and S.

2.3 Equivalence with the polynomial 2-list coloring of 3-ALCP
The following of this section is devoted to the equivalence between the Clique-Stables separation conjec-
ture and the polynomial 2-list coloring of the 3-ALCP.

Recall that a graph G = (V,E) is split if V = V1 ∪ V2 and the subgraph induced by V1 is a clique
and the subgraph induced by V2 is a stable set. A graph with edges colored by a and b is split if there
is a partition of the vertices into a a-clique and a b-clique.

Proposition 4. Let x be a vertex. Let A be the 0-neighbourhood of x. Let U be a 12-clique of A. If U
is not split then there is no solution where x is colored by 0.
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Proof. Assume that x is colored by 0. Then all the vertices of U are of color 1 or 2 because they are
in the 0-neighbourhood of x. The vertices colored by 1 form a 2-clique and all the vertices colored by 2
form a 1-clique and the union is U . Hence U is split. �
Observe that the same property holds for the 1 and the 2-neighbourhoods. A vertex x is really 3-colorable
if for each color a, each bc-clique of the a-neighbourhood of x is a split graph. If a vertex is not really 3-
colorable then, in a solution, it can be colored by at most 2 different colors. Hence, given a 2-list coloring
of the graph without x, there is a natural 2-list coloring of the whole graph by adding the 2-constraint
on x. Hence it is possible to assume that the graph has only really 3-colorable vertices.

Let us state the main result of this section. For this, we define two functions and we prove that these
two functions are polynomially equivalent. We denote by |G| the number of vertices of the graph.

f1(n) = max
|G|=n

min
F

(|F| : F set of 2-list colorings compatible with all the solutions)

f2(n) = max
|G|=n

min
F

(|F| : F family of cuts which separates all the cliques and the stable sets)

Theorem 4. The functions f1 and f2 are polynomially equivalent.

Corollary 2. The Clique-Stable set separation conjecture is verified iff there exits a polynomial number
of 2-list coloring compatible with all the solutions of an instance of 3-ALCP.

We start the proof of Theorem 4 by the following lemma:

Lemma 5. f2(n) ≤ nf1(n).

Proof. Let G = (V,E) be a graph with n vertices. Consider the graph F obtained from G by coloring its
edges by 0, and replacing all missing edges by 1-colored edges (formally, H is an edge-colored graph with
the same vertices as G where xy is colored by 0 if xy ∈ E and colored by 1 otherwise.) By assumption,
we have a set F of f1(n) 2-list coloring that is compatible with all solutions of 3-ALCP. The idea is
the following: from a pair (C, S) of clique and stable set of G which do not intersect, we find a natural
solution of 3-ALCP on H. Hence we have a 2-list coloring in F which is compatible with this particular
solution. We build from this about n cuts that depend only on the previous 2-list coloring, and among
which there is for sure a cut that separates C and S. Let C be a clique and S a stable set of G which
do not intersect. Observe that the edges of C are colored by 0, and those of S are colored by 1. Then
the vertex-coloring 1 for the vertices of C, 0 for those of S and 2 for the other vertices is a solution of
the 3-ALCP. Left-hand side of Figure 2.3 illustrates the situation.
There is a 2-list coloring (X,Y, Z) in F which is compatible with this solution. The set X (resp. Y , Z) is
the set of vertices which have the constraint {0, 1} (resp. {1, 2}, {0, 2}). The vertices of C cannot be in
Z, and those of S cannot be in Y (see right hand-side of Figure 2.3). Then C ⊆ X ∪ Y and S ⊆ X ∪ Z.
Since all the edges are of color 0 and 1, and X can be colored properly, the graph restricted to X is split
(put all the 0-colored vertices on one side, and the 1-colored vertices on the other side to get a 1-clique
and a 0-clique). Given a graph, there is a linear number of decompositions into a split graph [6]. Then
the number of possible decompositions of X is linear. Let (Uk, Vk)k be these decompositions. The pair
(C, S) is separated by one of the (Uk ∪ Y, Vk ∪ Z). Then f2(n) is bounded by a polynomial function of
f1(n).

Before the next lemma, we need the following observation about the union of two cliques:

Observation 5. If there are p cuts that separate all the clique from the stable sets, then there are p2 cuts
that separates all the C∪C ′ (where C and C ′ are cliques) from the stable sets. Indeed, if (V1, V2) separates
C from S and (V ′1 , V

′
2) separates C ′ from S, then the new cut (V1∪V ′1 , V2∩V ′2) satisfies C ∪C ′ ⊆ V1∪V ′1

and S ⊆ V2 ∩ V ′2 .

Lemma 6. f1 ≤ O(f62 (n)).

Proof. Let G be an instance of 3-ALCP, and x a vertex of G. Let us build a set of 2-list colorings of
size polynomial in f2 that is compatible with all the solutions where x is given color 0. The same can
be done for the other colors. As seen before, we can assume that x is really 3-colorable, otherwise there
is a natural 2-constraint on it. First of all, give the constraint {1, 2} to the 0-neighbourhood of x. Let
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C

SV \ (C ∪ S)

X

Z

Y

{0, 1}

{0, 2}

{1, 2}⇒

Figure 3: Illustration of proof of lemma 5. On the left hand-side, G is separated in 3 parts: C, S, and the
remaining vertices. Each possible configuration of edge- and vertex-colouring are represented. On the
right-hand-side, (X,Y, Z) is a 2-list coloring compatible with the solution. X (resp. Y , Z) has constraint
{0, 1} (resp. {1, 2}, {0, 2}). Color correspondence: 0=red ; 1=green ; 2=blue.

U be the graph obtained from the 1-neighbourhood of x by removing 0-colored edges. There is a family
of f22 (|U |) cuts that separates all the union of two cliques and the stable sets in U (see Obs 5). For all
cut (V1, V2) in this family, give to V2 the constraint {1, 2}. We iterate this process to get the constraints
on V1: let V be the graph obtained from V1 by keeping only the 2-colored edges. There is a family of
f2(|V |) cuts that separates all the clique and the stable sets in V . For all cut (V3, V4), give to V3 the
constraint {0, 1} and to V4 the constraint {0, 2}. This gives us f22 (|U |)f2(|V |) 2-list colorings on the
1-neighbourhood of x. Do the same for the 2-neighbourhood and get O(f62 (n)) 2-list colorings.

Take a solution of the 3-ALCP on G and assume x is colored by 0. Let us show that one of the
2-list colorings we built is compatible with this solution. Figure 2.3 illustrates the construction. First
of all, the 0-neighbourhood can not by colored by 0, because x already is, so they are colored 1 or 2.
Consider the 1-neighbourhood N1(x) of x: the 1-colored vertices in N1(x) form a 02-clique, thus it is a
split graph (recall that x is really 3-colorable). Then it is the union of a 0-clique A and a 2-clique B. Call
C (resp. D) the 12-clique (resp. 01-clique) formed by the 0-colored (resp. 2-colored) vertices of N1(x).
(A,B,C,D) is thus a partition of N1(x). Remove the 0-colored edges to obtain the graph U . Then A
is a stable set, B and C are cliques. Then there exists a cut (V1, V2) with B ∪ C ⊆ V1 and A ⊆ V2. V2
is compatible with the constraint {1, 2} because it is formed by A and a part D′ of D. Let V be the
graph obtained from V1 by keeping only the 2-colored edges. Then B is a clique and D′′ = D \ D′ is
a stable set, so there is a cut (V3, V4) that separates B from D′′. V3 is compatible with the constraint
{0, 1} because it is the union of B and a part of C. V4 is compatible with the constraint {0, 2} because
it is the union of D′′ and a part of C. We can check the same for the 2-neighbourhood of x.

Proof of theorem 4. Lemma 5 and Lemma 6 conclude the proof of the theorem.

3 Link with the oriented Alon-Saks-Seymour conjecture
Given a graph G, the chromatic number χ of G is the minimum number of colors such that, two vertices
connected by an edge do not have the same color. The bipartite packing bp(G) of a graph G is the
minimum number of edge disjoint complete bipartite graphs needed to cover the edges of G. The Alon-
Saks-Seymour conjecture states the following.

Conjecture 2. (Alon, Saks, Seymour) If bp(G) ≤ k, then χ ≤ k + 1

The result is a well-known result for complete graphs, due to Graham and Pollak [8]. Indeed, n− 1
edge-disjoint complete bipartite graphs are needed to cover the edges of a complete graph on n vertices.
A beautiful proof of this theorem is due to Tverberg [17]. This conjecture was disproved by Huang and
Sudakov in [12] who prove that for some graphs χ ≥ k6/5 using a construction based on Razborov’s
graphs [16]. Nevertheless the existence of a polynomial bound is still open. In the following we will use
an oriented version of the Alon-Saks-Seymour conjecture.

Conjecture 3. (Oriented Alon-Saks-Seymour Conjecture) There exists a polynomial P such that if G
is a disjoint union of k complete oriented bipartite graphs, then the chromatic number χ is at most P (k).
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constraint {1, 2}
0-neighbourhood

2-neighbourhood

1-neighbourhood

1-colored vertices

0-colored vertices
2-colored vertices

A B

CD

(a) Vertex x, its 0-neighbourhood subject to the constraint {1, 2}, and its 1-neighbourhood separated in different parts.

1-neighbourhood

1-colored vertices

0-colored vertices
2-colored vertices

A B

CD

U

V2

V1

constraint {1, 2}

(b) Graph U built from the 1-neighbourhood by remov-
ing 0-edges. There is a partition in (V1, V2) separating
A from B ∪ C, shown by the purple line. V2 is subject
to the 2-constraint {1, 2}.

1-neighbourhood

A B

C
D

V

V2
V3

D′′

V4

constraint {0, 1}

constraint {0, 2}

(c) Graph V built from V1 by removing 1-edges. There
is a partition in (V3, V4) separating B from D′′, shown
by the purple line. V3 is subject to the 2-constraint
{0, 1} and V4 is subject to the 2-constraint {0, 2}.

Figure 4: Illustration of proof of lemma 6. Color correspondence: 0=red ; 1=green ; 2=blue.
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Theorem 5. The oriented Alon-Saks-Seymour conjecture is verified iff the Clique-Stable set separation
conjecture is verified.

Lemma 7. If the oriented Alon-Saks-Seymour conjecture is verified, then the Clique-Stable set separation
conjecture is verified.

Proof. Let G be a graph on n vertices. We want to separate all pairs of cliques and stable sets which
do not intersect. Consider all the pairs (C, S) such that the clique C does not intersect the stable set
S. Construct an auxiliary graph H as follows. The vertices of H are the pairs (C, S) and there is an
oriented edge between a pair (C, S) and a pair (C ′, S′) iff there is a vertex x ∈ C ∩ S′. Observe that
the number of vertices of this graph is at most 4n. The bipartite packing of this graph is at most the
number n of vertices of G. Indeed, let Hx be the graph H restricted to the edges for which x ∈ C ∩ S′.
Observe that the union of the graphs Hx for all x is the the graph H because if (C, S)(C ′, S′) is an edge
C ∩ S′ 6= ∅. In addition, the graph Hx is a complete bipartite graph. Indeed, if there is an edge which
starts in (C, S) and if there is an edge which ends in (C ′, S′) then x ∈ C and x ∈ S′ and finally there is
an oriented edge (C, S)(C ′, S′). The graphs Hx and Hy cannot share an oriented edge because otherwise
the intersection between a clique and a stable set would be at least 2 which is impossible. Hence the
bipartite packing of this graph is at most n.
If the oriented Alon-Saks-Seymour conjecture is verified, χ(H) < P (n). Consider a color of this polyno-
mial coloring. Let A be the set of vertices of this color. There is no edges between two vertices of A,
then the union of all the first components (cliques) of the vertices of A do not intersect the union of all
the second components (stable sets) of A. Indeed, if they intersect, there is a clique C which intersects
a stable set S, hence there is an edge which is impossible.
The union of the cliques and the union of the stable sets do not intersect, hence it defines a cut which
separates all the pairs of A. The same can be done for all the colors. Then we can separate all the pairs
(C, S) by χ(H) cuts, which is a polynomial in n if the Alon-Saks-Seymour conjecture is verified. This
achieves the proof of the first implication.

Lemma 8. If the Clique-Stable set separation conjecture is verified, then the oriented Alon-Saks-Seymour
conjecture is verified.

Proof. Let G = (V,E) be an oriented graph with bipartite packing k. Construct an auxiliary graph H
as follows. It has k vertices which are the oriented complete bipartite graphs that cover the edges of G.
There is an edge between two pairs (A1, B1) and (A2, B2) iff there is a vertex x ∈ A1 ∩ A2. Hence the
complete bipartite graphs in which x appears at the left form a clique of H (say the clique Cx associated
to x) and the complete bipartite graphs for which y appears at the right form a stable set in H (say the
stable set Sy associated to x) . Indeed, it is quite clear for the clique, and it is also true for the stable
set because if y ∈ B1 ∩ B2 and x ∈ A1 ∩ A2 there is an edge covered twice which is impossible, then it
is a stable set. Note that a clique or a stable set associated to a vertex can be empty, but this does not
trigger any problem.
For each vertex x, consider a cut Cutx that separates Cx and Sx. By asumption there is a polynomial
number in k of cuts which separates all the pairs (C, S), hence which separate this particular pairs of
cliques and stable sets. We color each vertex x by the color Cutx. This coloring is proper: assume there
is an edge from x to y, and that x and y are given the same color. Then there exists a bipartite (A,B)
that cover the edge xy, hence (A,B) is in the clique associated to x and in the stable set associated to
y, which means they intersect: the cut Cutx can not separate in the same time Cy from Sy, because it
would then separate Cx from Sy. This is impossible. Then we have a coloring with at most as many
colors as cuts needed to separate all the clique and the stable sets, which is a polynomial in k.

Corollary 3. The oriented Alon-Saks-Seymour conjecture is equivalent to the Clique-Stable set sepa-
ration conjecture. Moreover, they are also equivalent to having a polynomial number of 2-list coloring
which are compatible with all the solutions of an instance of 3-ALCP.

4 Relations between the t-biclique covering numbers
(COPIER COLLER SIMPLE. VERIFIER QUE LES NOTATIONS MATCHENT)
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definir les bpk(G) et les polynomial ASS conjectures
Let G be a graph and let B = (B1, ..., Bn) be some bipartite complete graphs which covers the edges

of G. Given an edge e, the multiplicity m(e) of e is the number of bipartite which contain the edge e.
Let us denote by k = maxe∈E(m(e)). We associate a positive side and a negative side to each bipartite.
Given an edge xy, two half edges are asociated to xy: (xy, x) and (xy, y). If Bi covers the edge xy, the
half edge (xy, x) is a positive (resp. negative) half edge for Bi if x is in the positive (resp. negative) side
of the bipartite and y in the negative (resp. positive) side. The vertex associated to the half edge (e, x)
is the vertex x. A tag is a pair consisting into a bipartite of B and a sign. The opposite tag of a tag is
the same bipartite and the opposite sign. A bag is a set of tags. Two bags are opposite if for each tag
which appears in the first one, the opposite of this tag appears in the second one.

Theorem 6. The polynomial Alon-Saks-Seymour conjecture holds for multiplicity 1 if and only if it
holds for all multiplicity k. LÃ , on dirait que savoir la poly ASS pour k=5 par exemple, ne suffit pas
Ã conclure que c’est bon pour n’importe quel k, y compris 1. Alors que dans mon souvenir, Ã§a marchait.
Qu’en penses-tu?

Let us prove the result by induction on k. Let G be a graph and let B = (B1, ..., Bn) be some bipartite
complete graphs. Since each edge is covered by at most k bipartite, each half edge of the graph can be
represented by bags with at most k tags. Note that there are 2n possible tags, thus the total number of
different bags is at most (2n)k.

Partition the set of the half edges into (2n)k parts P, in such a way that two half edges are in the
same set if and only if they have exactly the same bag. The vertives associated to a set X of P are the
vertices associated to the half edges which appear in X. In a first time we will only consider the edges
which are covered exactly k times. The half edges which do not have k different tags are not considered
for the moment. Let X and Y be two opposite sets of P. Note first that the vertices associated to X and
Y are disjoint. Indeed, let Bi be a bipartite which appears in X, the vertices of X are on the positive
side of the bipartite Bi and those of Y on the negative side (or the reverse). Let V (resp W ) be the
set of vertices associated to A (resp. B) There is a complete bipartite graph between V and W in G.
Indeed, for all bipartite Bi ∈ X, all the edges between V and W are in Bi.

Let us now consider the family of complete bipartite graphs B′i which links the vertices associated
to X to the vertices associated to opposite tag of X. All the edges of the graph G of multiplicity k are
covered by this set of bipartite. Indeed, consider an edge xy of multiplicity k. The two half edges (xy, x)
and (xy, y) have two opposite bags of size k. Then by construction, they are covered by one of the B′i.
Let us prove that each edge is covered at most once. Indeed, if x and y appears in two opposite bags X
and Y , then there are already k bipartite Bi which cover the edge xy. If it is also covered for the sets
X ′ 6= X and Y ′ 6= Y , it means that, there is a bipartite Bj which is not in the bag X but in the bag X ′
(since all the bags have size k) which cover the edge xy. Thus, the edge xy is covered by at least k + 1
bipartite which contradicts the definition of k. Thus this set of bipartite cover the edges of multiplicity
k with a multiplicity one.

Hence if the Alon Saks Seymour conjecture holds for k = 1, it means that the graph restricted to
this set of bipartite B′i has chromatic number at most ((2n)k)c since there are (2n)k B′i satisfying k = 1.
Thus the vertex set can be partitionned into ((2n)k)c stable sets. Since all the edges of multiplicity k are
covered it means that the multiplicity of the edges in each stable set is at most k−1. Hence by induction
hypothesis, it means that the chromatic number of each part is bounded. Thus the chromatic number
of the graph is at most nck · nf(k−1). Thus the Alon-Saks-Seymour conjecture holds for multiplicity k if
and only if it holds for multiplicity one.

5 Cliques-Stables separation conjecture and Communication com-
plexity

Yannakakis introduced in [18] the following communication complexity problem, called CL− IS: given
a publicly known graph Γ on n vertices, Alice and Bob agree on a protocol, then a clique is given to
Alice and a stable set is given to Bob. They do not know which clique or which stable set was given
to the other one, and their goal is to decide whether the clique and the stable set intersect or not, by
minimizing the worst-case number of exchanged bits. The intersection can be formalized by a function
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f : X ×Y → {0, 1}, where X is the set of cliques and Y the set of stable sets. Note that the intersection
of a clique and a stable set is at most one vertex. In the deterministic version, Alice and Bob send
alternatively messages one to each other, and the minimization is on D(f), the number of bits exchanged
between them. In the non-deterministic version, for b ∈ {0, 1}, an all powerful prover sends a certificate
of size N b(f) in order to convince both Alice and Bob that the result is b. Then, Alice and Bob exchange
one final bit, saying whether they agree or disagree with the certificate. The aim is to minimize N b(f).

In this particular setting, a certificate proving that f(x, y) = 1 is just the name of a vertex in the
intersection of the clique and the stable set. Thus N1(f) ≤ dlog2(n)e. Convincing Alice and Bob
that the result is 0 is much more complicated. If we have a family of m cuts that separate all the
cliques and the stable sets, then a certificate for f(x, y) = 0 can be a cut that separates x and y. Thus
N0(f) ≤ dlog2(m)e.

It is known in therory of communication complexity [14] that, for general f , N b(f) =
⌈
log2 C

b(f)
⌉

where Cb(f) is the minimum number of monochromatic combinatorial rectangles needed to cover the b-
inputs of the communication matrixM of f , withMx,y = f(x, y). One can observe that a monochromatic
combinatorial rectangle that cover some 0-inputs of M is precisely a cut that separates the cliques and
the stable sets involved in the rectangle. Thus finding the minimum N0(f) is equivalent to finding the
minimum number of cuts needed to separate all the cliques and the stable sets.

The existing bounds for CL− IS are ([18], [14]):

log2m ≤ N0(f) ≤ D(f) ≤ O(log2(n)).

Moreover, Huand and Sudakov improved in [12] the trivial lower bound N0(f) ≥ log2 n thanks to
a counterexample to the Alon-Saks-Seyour conjecture: for CL-IS, there exists an infinite collection of
graphs such that

N0(f) ≥ 6/5 log(n)−O(1).
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