
Which strategy to move the mesh in the
Computational Fluid Dynamic code

OpenFOAM

Christophe Kassiotis

April 12, 2008

École Normale Supérieure de Cachan,
Laboratoire de Mécanique et Technologies (LMT)

Secteur Génie Civil,
61, avenue du président Wilson, 94 235 Cachan Cedex, France

TU-Braunschweig Braunschweig
Institut for Scientific Computing
D-38092 Braunschweig , Germany

1

Abstract

In this paper we compair some of the moving mesh strategies provided
by OpenFOAM.

2

1 Introduction
Fluid-Structure interaction problems usually lead to unsteady moving domain
for the fluid part. Traditional Computational Fluid Dynamic programs solve
the fluid equations on a fixed (eulerian) grid. A classical approach to overcome
this difficulty is to consider the so-called Arbitrary Lagrangian Eulerian (ALE)
method where the grid is moved arbitrary inside the fluid domain, following the
movement of the boundary.

However, this lead to new difficulties: knowing the new shape of the bound-
ary, how can one conserve the quality and the validity of the inner mesh? Sev-
eral approaches are traditionally proposed with mechanical analogy (spring or
pseudo-solid analogy) or Laplacian smoothing.

By the way, a fluid-structure interaction problem become not only a two
fields (fluid and solid) but a three fields coupling problem (fluid, solid and
mesh). We have also to add that the global solution must not depend of the
mesh motion, and this is naturally verified when the quality of the mesh is
preserved.

The outline of the present paper is the following. In Section 2 we will show
that the use of default mesh solvers can lead to problems for fluid-structure
computations. The first two parts of the section can be quickly read for a
someone who is not interested in fluid-structure interaction. That make us
briefly introduce and recall the main solving strategy for the mesh motion (in
OpenFOAM) in Section 3. Then, we will solve some examples in Section 4 to
make a choice between some of this strategies. We conclude in Section 5.

2 Bring to light a mesh motion problem

2.1 Oscillating flexible structure in a flow
Developing fluid-structure interaction solvers by a partitioned strategy1, we were
trying to validate the following benchmark first introduced by Wall and Ramm
[8, 7]. This benchmark (see sketch in Fig. 1) aims to solve the motion of a thin
appendage behind a bluff body in a fluid flow at a Reynold number around 100.

For the fluid, the incompressible Navier-Stockes equations are solved, and
compute on their discrete form on around 6000 Finite Volume (Q1) Element.
For the solid, we consider a Saint-Venant-Kirchoff type material, based upon a
finite deformation measure and a plane stress description. We discretize it on 40
9-nodes Finite Elements (Q9). An example of mesh associated to the discrete
form of the equations can be seen for the fluid in Fig. 5.

The material properties are the following:

• for the fluid: dynamic viscosity νf = 1.51 · 10−12 as ρf = 1.18 · 10−3 (like
air) and µf = 1.82 · 10−4 (10× more than air).

• for the solid: Young’s modulus Es = 2.5 · 106, Poisson’s ratio νs = 0.35
and density ρs = 0.1.

1we are coupling CTL components based on Feap for the structural part and OpenFOAM
for the fluid part

2like in [7, 8] the value are given without units. A careful reader can see that the unit for
dimensions is 10−1m, the other units are the international system one (kg, s. . .)

3

ρs , Es , νs

vf ρf , νf
x

y

12.01.0

1.0 6.0

0.06

5.5 14.0

Figure 1: The benchmark used for FSI problems

The boundary conditions are imposed as follow:

• for the fluid: imposed velocity vf = [51.3, 0, 0]T in input, slip condition
for the upper and lower parts of the mesh, “do-nothing” output condition.

• for the solid: imposed null displacement at the origin of the appendage.

• for the interface: kinematic continuity (vs = vf) and dynamic equilibrium
(pf = σsn) are imposed for strong coupling or approximate for weak
coupling.

The initial conditions are computed from a stationary flow regime with fixed
structure for the fluid; they are null for the solid.

The fluid-structure interaction computation strategy used allows different
time steps for the fluid and the structure. We consider here ∆tf = 0.0002 and
∆ts = 0.005 for the computation time interval t ∈ [0, 5].

The solving of the fluid-structure interaction problem is carried out by the
so-called partitioned strategy. The coupling can be weak (this is often the case
for partitioned strategy) but strong too. For more details on the subject, the
reader is invited to see [4]. In the Institut for Scientific Computing is developed
a middleware called Component Template Library (CTL)3 , developed by Rainer
Niekamp [5]. The CTL allows to make components from codes, and to make
them communicate easily. For the fluid-structure interaction framework, we
consider mainly two components:

• ofoam developed by Martin Krosche [3], a component based on Open-
FOAM4.

• coFeap developed by Martin Hautefeuille and Christophe Kassiotis [2], a
component based on Feap5, the Finite Element Analysis Program from
R. L. Taylor [6].

3http://www.wire.tu-bs.de/forschung/projekte/ctl/e_ctl.html
4http://www.opencfd.co.uk/openfoam
5http://www.ce.berkeley.edu/~rlt/feap

4

http://www.wire.tu-bs.de/forschung/projekte/ctl/e_ctl.html
http://www.opencfd.co.uk/openfoam
http://www.ce.berkeley.edu/~rlt/feap

2.2 A problem with moving mesh
The first implementations of the fluid component Ofoam were carried out for
OpenFOAM 1.2 and 1.3. The last release (OpenFOAM 1.4.1) was introduced
in summer 2007 and Ofoam was adapted to support this new version. This new
version gives me first the following sentiments: the icoDyMFoam solver seems to
be really faster than before. As we will see in the following Section 3 this can
be explain by the use of a Finite Volume based strategy to move the mesh.

Unfortunately, testing of this new solver gives sometime bad results. To
be more precise, let’s consider the Wall and Ramm benchmark describe above
and in [8]; On the one hand applying material properties proposed herein on
the seems to give relatively accurate results. On the other hand, applying for
instance just a smaller stiffness to the structure than the value given above leads
to computation crashes after a little more than 1s. The material properties
above seems to be the one allowing maximum motion for the structure with the
default solver in OpenFOAM 1.4.1.

The computation crash occurs during the increasing motion phase, when the
displacement of the extremity is around ymax = 1.1. The mesh shows clearly at
this time non-convex elements: it becomes clear that this crash is mainly due to
bad (or unadapted) mesh motion computations. In Figure 2), one can see the
output for the fluid-structure interaction problem just before the crashing. Even
if the velocity field seems correct, the mesh deformation exhibits non-convex
elements. That leads to bad computation of the pressure field and crahsing
computations.

Figure 2: Velocity field in the fluid-structure interaction problem and its mesh
motion just before crashing.

In the following section we will see how can one handle mesh motion in a
CFD code like OpenFOAM.

3 Strategies to move the mesh
In this section, we briefly recalls the main explanations given by Jasak and
Tuković about handling mesh motions in [1].

3.1 Mesh motion equations
Let us consider a domain Dold which represent the mesh configuration at a time
told. This domain is moving through imposed condition at the boundary for

5

instance imposed displacement or velocity. The question is to build a new valid
mesh Dnew at tnew = told + ∆t knowing the initial valid mesh Dold and imposed
boundary conditions.

It can be proved that the mesh motion problem is formally equivalent to a
solid body under large deformations. The coast to solve this non-linear equa-
tion is tremendous and this strategy can’t be applied in an efficient 3D CFD
code. A traditional way to overcome this difficulty is to consider simplified solid
equations for the mesh motion:

• The spring analogy aims to links each point of the mesh by fictitious
spring. In [1], Jasak and Tuković show this leads failures modes. This
failures modes can be avoided introducing non-linear and torsional springs.
However, the cost induced by the improvement of this non perfect system
by nature can be considered as too huge.

• The pseudo-solid equations can be considered as simplification of the 3D
non-linear problem to the linear one; the analogy is a mechanical problem
with small deformations.

A totally other strategy is to consider the Laplace smoothing equation:

∇ · (γ∇u) = 0 in D (1)

Where u is the mesh deformation velocity such that:

xnew = xold + ∆t u (2)

The Laplace smoothing equation does not allow to take account coupling of
the components of the motion vector due to rotation. This coupled motion are
handle by the pseudo-solid solver, but the computational cost can’t be neglected.

In OpenFOAM, mesh motion solver based on a pseudo-solid and a Laplace
smoothing equation are implemented. In the following, as the rotational cou-
pling is not the main interest of this paper, we will concentrate one Laplace
system.

3.2 Methods for mesh motion equations
The solve of the Laplace equation is insured by a numerical strategy. The
simplest idea is too in a CFD code in Finite Volume framework is to use a Finite
Volume Method. This method leads to many difficulties extensively described
in [1], Section 4.3. The problem of mesh motion based on such a strategy will
be shown in the following Section 4.

To overcome this difficulties, a Finite Element Method based strategy has
been implemented in OpenFOAM [1]. Among all the ideas developing in this
papers, one of great interest is the cell decomposition strategy. Each polyhedral
cell is decomposed in a sum of linear tetrahedron where the expression of the
Laplacian operator can be expressed without the use of shape functions.

4 Numerical Experiment

4.1 A rigid structure moving at imposed velocity in a flow
In this section we will not consider a fluid-structure interaction problem. To
compare the different mesh motion solver considered, we will solve the following

6

problem: a flow at a Reynold number around 100 is surrounding an appendage
fixed behind a square bluff body. The boundary and initial conditions are
describe in Section 2 and in [8].

ρs , Es , νs

vf ρf , νf

vs =
[

0
Ax + B

]

Figure 3: The benchmark used for moving mesh testing

However, as sketched in Fig. 3, the thin appendage is not here considered as
an elastic body, but submitted to a bi-dimensional velocity field with the form
vs = [0, Ax+ B]T such that the velocity is null at the origin of the appendage
(vs(0) = [0, 0]T) and at the tip of the appendage L, its value is vs(L) = [0, 4.0]T .

4.2 Qualitative comparison for different mesh motion solvers
The solver for the considered problem, have at least to solve the incompressible
Navier-Stokes Equation in a moving shape domain. In OpenFOAM, it is natural
to use the so-called icoDyMFoam solver, which fulfilled this minimum require-
ment. This program propose many options, and we will focus on the change of
moving mesh options which are set in the dynamicMeshDict file (see Fig. 4).

First, we consider the default proposal in OpenFOAM-1.4.1 wich is the
velocityLaplacian solver with a uniform diffusivity coefficient. This is the
in the following way in the dynamicMeshDict file:

1 /*---*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 1.4.1 |
5 | \\ / A nd | Web: http://www.openfoam.org |
6 | \\/ M anipulation | |
7 *---*/
8

9 FoamFile
10 {
11 version 2.0;
12 format ascii;
13

14 root "";
15 case "";
16 instance "";
17 local "";
18

19 class dictionary;

7

20 object motionProperties;
21 }
22

23 // * //
24

25 dynamicFvMesh dynamicMotionSolverFvMesh;
26 twoDMotion yes;
27 solver velocityLaplacian;
28 diffusivity uniform;
29 frozenDiffusion off;
30

31 // * //

<case>

system

controlDict

fvSchemes

fvSolution

tetFemSolution

constant

dynamicMeshDict

transportProperties

polyMesh

0

motionU or pointMotionU

U

p

Figure 4: OpenFOAM architecture case

The velocities at the boundary have to be given in a pointMotionU file (see
Fig. 4) under the form of pointVectorField so that the non-uniform values
are set only at each point of the mesh’s boundaries.

As seen in Fig. 5, this quickly lead to bad mesh deformations, and at t =
0.11s, when the maximum displacement at the tip of the appendage is 0.44, one
can observe computation crashing due to non-convex element.

The simplest way to overcome this difficulty is to modify the diffusivity co-
efficient. OpenFOAM proposes many options, but it seems that whatever the
case considered, the most robust results are given by quadratic inverse depen-
dency. With this option, the diffusivity coefficient is somehow proportional to
∼ 1/l2 where l is the distance to a specified boundary. So, the blockMeshDict
file take the following form:

8

Time 0.11s

Figure 5: Mesh motion solving uniform Laplace equation.

23 // * //
24

25 dynamicFvMesh dynamicMotionSolverFvMesh;
26 twoDMotion yes;
27 solver velocityLaplacian;
28 diffusivity quadratic inverseDistance 1(movingWall);
29 frozenDiffusion off;
30

31 // * //

As seen in Fig. 6, the inverse quadratic option allows a better conservation
of mesh quality in the close narrows of the moving boundary. However, at
t = 0.66, when the maximum displacement is 2.68 some of the elements become
non-convex.

The next step is to change the kind of solver used. With the previous solver
velocityLaplacian we were solving the Laplace smoothing equation by FVM.
With laplaceFaceDecomposition, not only the Laplace smoothing equation is
solved for a given mesh by the Finite Volume Method, but the mesh is rebuild
after a decomposition of all cells and faces, and the Laplace smoothing equation
is solved by the Finite Element Method (see Sec. 3 for more details). The
tremendous gain in robustness observed are paid by a computational coast (see
the following Sec. 4.3 for more details).

The laplaceFaceDecomposition is first applied with uniform diffusivity.
The used of this solver is specified in the blockMeshDict file by the following
entrances:

23 // * //
24

25 dynamicFvMesh dynamicMotionSolverFvMesh;
26 twoDMotion yes;
27 solver laplaceFaceDecomposition;
28 diffusivity uniform;
29 frozenDiffusion off;
30

31 // * //

For the FE based solvers, the velocities at the boundary have to be given
in a motionU file (see Fig. 4) under the form of tetPointVectorField so that

9

Time 0.11s

Time 0.44s

Time 0.66s

Figure 6: Mesh motion solving a non uniform Laplace equation with quadratic
inverse distance to the moving boundary dependancy.

the non-uniform values are set at each point and face center of the mesh’s
boundaries.

Even if the deformation of the meshes observed in Fig. 7 are far from being
really smooth and beautiful, the first non-convex element that leads to crashing
the computation is observed only at t = 0.84s, when the maximum displacement
is 3, 36.

The last improvement is to consider a quadratic inverse distance moving
mesh specified as follow in the blockMeshDict file:

23 // * //
24

25 dynamicFvMesh dynamicMotionSolverFvMesh;
26 twoDMotion yes;
27 solver laplaceFaceDecomposition;
28 diffusivity quadratic;

10

29 distancePatches (movingWall);
30 frozenDiffusion off;
31

32 // * //

Time 0.11s

Time 0.44s

Time 0.66s

Time 0.84s

Figure 7: Mesh motion with a face decomposition strategy solving a uniform
Laplace equation.

11

Time 0.11s

Time 0.44s

Time 0.66s

Time 1.00s

Figure 8: Mesh motion with a face decomposition strategy solving a non uni-
form Laplace equation with quadratic inverse distance to the moving boundary
dependency.

12

4.3 Quantitative comparison for different mesh motion
solvers

In this section we will denote by t̃ all computational time, and by t the physical
time for the computation. In the considered simulations, t ∈ [0, 1] so that the
maximum displacement awaited is ymax = 4.0. The reference value are taken
for the simulation with the finite element method and non uniform Laplace
smoothing. For the quantitative comparison, we consider two non-dimensional
variables:

• The computational coast c: is the computational time for one time step
divided by the time step size. The value is taken as the mean for all
the time of the computation before the crash (if it occurs). This not on
the advantage of the FEM method that allows to compute much more
disordered meshes with higher max. Courant number. This value is then
divided by the found for the LaplaceFaceDecomposition solver:

c =
t̃(tmax

min(tmax, 1s)
× 1s
t̃ref(1s)

(3)

• The robustness r: is taken as the time when the computation crash di-
vided by the reference value taken for the Finite Element Method with cell
and face decomposition solver and a quadratic diffusivity, value of 1s (we
consider that a tip displacement of more thant 4.0 will necessitate also to
change the mechanical model).

r =
min(tmax, 1s)

1s
(4)

The results can be found in Tab. 1.

case robustness computational coast
1 0.11 0.428

2a 0.66 0.453
2b 0.66 0.575
3 0.67 1.747
4 1.00 1.000

Table 1: robustness and computational coast for four moving mesh methods.
1 - uniform Laplace equation solved by FV. 2 - non-uniform Laplace equation
solved by FV (a for OpenFOAM-1.4.1-dev, and b for OpenFOAM-1.4.1). 3 -
uniform Laplace equation solved by FE cell and face decomposition. 4 - non
uniform Laplace equation solved by FE cell and face decomposition.

5 Conclusion
As a conclusion, for fluid-structure interaction problem coupling icoDyMFoam
solver from OpenFOAM, we advice:

• to use the solver velocityLaplacian each time an order of magnitude of
the maximum displacement is known to be not too big.

13

• to use the solver laplaceFaceDecomposition when the order of magni-
tude of the maximum displacement is not known, or when it is known to
be big.

Whatever is the case, one shall use an inverse quadratic diffusivity coefficient.
Other solver, and among them pseudo-solid and only cell decomposition

solvers were not extensively tested. For the first one, the computational coast
seems to be extremely high for no gain in most of the fluid-structure interac-
tion cases. For the second one, the result in term of computational coast and
reliability can be compared to cell and face decomposition presented herein.

Acknowledgment
The author wants to acknowledge Hrvoje Jasak for help, support and quick
answering in the OpenFOAM forum6.

Martin Krosche is also acknowledged for constant sharing office and great
(scientific) conversations.

References
[1] H. Jasak and Z. Tuković. Automatic mesh motion for the unstructured finite

volume method. Transactions of FAMENA, 30(2):1–18, 2007.

[2] C. Kassiotis and M. Hautefeuille. coFeap’s Manual. École Normale
Supérieure de Cachan, Laboratoire de Mécanique et Technologies, Secteur
Génie Civil, 2008. http://www.lmt.ens-cachan.fr/cofeap.

[3] M. Krosche. Ofoam’s manual. Informatikbericht, Institute for Scientific
Computing, 2008. (In Preparation).

[4] H. G. Matthies, R. Niekamp, and J. Steindorf. Algorithms for strong cou-
pling procedures. Computer Methods in Applied Mechanics and Engineering,
195:2028–2049, 2006.

[5] T. Srisupattarawanit, R. Niekamp, and H. G. Matthies. Simulation of non-
linear random finite depth waves coupled with an elastic structure. Computer
Methods in Applied Mechanics and Engineering, 195:3072–3086, 2006.

[6] R. L. Taylor. FEAP – a Finite Element Analysis Programm – User Manual.
University of California at Berkeley, Departement of Civil and Environmen-
tal Engineering, 2008. http://www.ce.berkeley.edu/~rlt/feap/manual.
pdf.

[7] W. A. Wall. Fluid-Struktur Interaktion mit stabilisierten Finiten Elementen.
Phd Thesis, Institut für Baustatik, Universität Stuttgart, 1999.

[8] W. A. Wall and E. Ramm. Fluid-structure interaction based upon a stabi-
lized (ALE) finite element method. Sonderforschungsbereich 404, Institute
of Structural Mechanics, 1998.

6see particularly the thread about the question described in this paper http://openfoam.
cfd-online.com/cgi-bin/forum/show.cgi?1/7079

14

http://www.lmt.ens-cachan.fr/cofeap
http://www.ce.berkeley.edu/~rlt/feap/manual.pdf
http://www.ce.berkeley.edu/~rlt/feap/manual.pdf
http://openfoam.cfd-online.com/cgi-bin/forum/show.cgi?1/7079
http://openfoam.cfd-online.com/cgi-bin/forum/show.cgi?1/7079

	Introduction
	Bring to light a mesh motion problem
	Oscillating flexible structure in a flow
	A problem with moving mesh

	Strategies to move the mesh
	Mesh motion equations
	Methods for mesh motion equations

	Numerical Experiment
	A rigid structure moving at imposed velocity in a flow
	Qualitative comparison for different mesh motion solvers
	Quantitative comparison for different mesh motion solvers

	Conclusion

