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Definitions

Strong product

Definition (Strong product)

Given two graphs G,H, their strong product is the graph G�H on
vertex set V (G)× V (H) with edges {(u, u′), (v, v′)} such that:

I u = v or uv ∈ E(G); and

I u′ = v′ or u′v′ ∈ E(H).
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Definitions

Strong product
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Definitions

Product structure of planar graphs

Using a construction of Pilipczuk and Siebertz [5], Dujmović et al [3]
show:

Theorem

Every planar graph is a subgraph of:

1. H � P for some planar graph H of treewidth at most 8 and some
path P .

2. H � P �K3, for some planar graph H of treewidth at most 3 and
some path P .

Ueckerdt et al [6] improved the first result with:

Theorem

If G is planar then G is a subgraph of H � P , where P is a path and H
is a minor of G of treewidth at most 6.
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Definitions

Treewidth and branchwidth
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Definitions

Sphere-cut decompositions
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The case of bounded treewidth

Avoiding red edges upwards

f(u) ≤ k vertices
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The case of bounded treewidth

Avoiding red edges upwards

f(u) ≤ k vertices
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The case of bounded treewidth

Concluding with treewidth

The previous construction gives:

Lemma

tww(G) ≤ ctww(G) ≤ 3 · 2tw(G)−1

Bonnet and Déprés [2] show:

Lemma

There are graphs G with tww(G) ≥ 2fvs(G) ≥ 2tw(G)−1
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The case of bounded treewidth

Neighbourhood complexity

Vertices of Ai with different neighbourhoods in f(u) must not be
contracted.

Definition (Neighbourhood complexity)

The neighbourhood classes with respect to Y in X is

Ω(X,Y ) = {N(x) ∩ Y : x ∈ X}

We call neighbourhood complexity the number of classes.

In the general setting, we can bound the neighbourhood complexity by
2|Y |.
If we forbid Ks,s as an induced subgraph and |Y | > s, we can bound it
by O(|Y |s).

Hugo Jacob, Marcin Pilipczuk 9/19



Using planarity

Neighbourhood complexity in planar graphs

We count separately neighbourhoods of sizes less, equal, or more than 2:

< 2: |Y | singletons, 1 empty set

= 2: at most 3|Y | − 6

> 2: at most 2|Y | − 4

|Ω(X,Y )| ≤ 6|Y | − 9.
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Using planarity

Neighbourhood complexity in planar graphs

We count separately neighbourhoods of sizes less, equal, or more than 2:

< 2: |Y | singletons, 1 empty set

= 2: at most ����3|Y | − 6 2|Y | − 3

> 2: at most ����2|Y | − 4 |Y | − 2

|Ω(X,Y )| ≤����6|Y | − 9 4|Y | − 4

We now assume that there is a closed curve going through Y that
contains vertices of X.
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Using planarity

Sphere-cut decompositions

G1 G2

e

e1 e2

Hugo Jacob, Marcin Pilipczuk 12/19



Using planarity

Sphere-cut decompositions

Lemma

For an undirected connected planar graph G with bw(G) ≥ 2:

tww(G) ≤ ctww(G) ≤ max

(
4bw(G),

9

2
bw(G)− 3

)
An undirected graph with bw(G) ≤ 1 has tww(G) = 0.
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General planar case

Bounds using previous results

Simple bound on the twin-width of a subgraph of H � P , taking the
product of neighbourhood classes:

5 (ctww(H))
3 ≤ 115746

But we could also use the fact that the subgraph is planar:

5(6 · (3 · 7)− 9) ≤ 585
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General planar case

Using the embedding

To use our stronger neighbourhood complexity argument, we need an
embedding.

→ We use the decomposition argument hidden behind the product
structure theorem.

We consider a BFS tree of a triangulation of our planar graph and use it
to recursively decompose the graph.

For every edge uv ∈ E, |d(u)− d(v)| ≤ 1
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General planar case

Using the embedding
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General planar case

Contraction sequence
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General planar case

Summing up

We can conclude that the twin-width of a planar graph is at most 183.

Our construction can also be translated to a polynomial time algorithm
producing a contraction sequence with these guarantees.
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Further work

Improving the planar bound

I Can we improve the product structure theorem further ?

I Can we improve the lower bound ?

I Improved to 37 by Bekos et al. [1], then to 9 by Hliněný [4].
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Graph product structure for h-framed graphs.
CoRR, abs/2204.11495, 2022.
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Further work

Universal bipartite graph
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