Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs

Hugo Jacob

Joint work with Marcin Pilipczuk

école _____ normale _____ supérieure _____ paris – saclay _____

Twin-width

Strong product

Definition (Strong product)

Given two graphs G,H, their strong product is the graph $G\boxtimes H$ on vertex set $V(G)\times V(H)$ with edges $\{(u,u'),(v,v')\}$ such that:

•
$$u = v$$
 or $uv \in E(G)$; and

$$\blacktriangleright \ u' = v' \text{ or } u'v' \in E(H).$$

Strong product

Product structure of planar graphs

Using a construction of Pilipczuk and Siebertz [5], Dujmović et al [3] show:

Theorem

Every planar graph is a subgraph of:

- 1. $H \boxtimes P$ for some planar graph H of treewidth at most 8 and some path P.
- 2. $H \boxtimes P \boxtimes K_3$, for some planar graph H of treewidth at most 3 and some path P.

Ueckerdt et al [6] improved the first result with:

Theorem

If G is planar then G is a subgraph of $H \boxtimes P$, where P is a path and H is a minor of G of treewidth at most 6.

Treewidth and branchwidth

Theorem (Robertson and Seymour 1991)

 $\mathbf{b}\mathbf{w} \le \mathbf{t}\mathbf{w} + 1 \le \left|\frac{3}{2}\mathbf{b}\mathbf{w}\right|$

Sphere-cut decompositions

Concluding with treewidth

The previous construction gives:

Lemma

 $\mathbf{tww}(G) \leq \mathbf{ctww}(G) \leq 3 \cdot 2^{\mathbf{tw}(G)-1}$

Bonnet and Déprés [2] show:

Lemma

There are graphs G with $\mathbf{tww}(G) \geq 2^{\mathbf{fvs}(G)} \geq 2^{\mathbf{tw}(G)-1}$

Neighbourhood complexity

Vertices of A_i with different neighbourhoods in $f(\boldsymbol{u})$ must not be contracted.

Definition (Neighbourhood complexity)

The *neighbourhood classes* with respect to Y in X is

$$\Omega(X,Y) = \{N(x) \cap Y : x \in X\}$$

We call *neighbourhood complexity* the number of classes.

In the general setting, we can bound the neighbourhood complexity by $2^{|Y|}$. If we forbid $K_{s,s}$ as an induced subgraph and |Y|>s, we can bound it by $O(|Y|^s)$.

Neighbourhood complexity in planar graphs

We count separately neighbourhoods of sizes less, equal, or more than 2: < 2: |Y| singletons, 1 empty set = 2: at most 3|Y| - 6 > 2: at most 2|Y| - 4 $|\Omega(X, Y)| \le 6|Y| - 9$.

Neighbourhood complexity in planar graphs

We count separately neighbourhoods of sizes less, equal, or more than 2:

< 2:
$$|Y|$$
 singletons, 1 empty set
= 2: at most $3|Y| = 6 2|Y| - 3$
> 2: at most $2|Y| = 4 |Y| - 2$
 $|\Omega(X,Y)| \le 6|Y| = 9 4|Y| - 4$

We now assume that there is a closed curve going through Y that contains vertices of X.

Sphere-cut decompositions

Sphere-cut decompositions

Lemma

For an undirected connected planar graph G with $\mathbf{bw}(G) \ge 2$:

$$\mathbf{tww}(G) \le \mathbf{ctww}(G) \le \max\left(4\mathbf{bw}(G), \frac{9}{2}\mathbf{bw}(G) - 3\right)$$

An undirected graph with $\mathbf{bw}(G) \leq 1$ has $\mathbf{tww}(G) = 0$.

Bounds using previous results

Simple bound on the twin-width of a subgraph of $H \boxtimes P$, taking the product of neighbourhood classes:

 $5\left(\mathbf{ctww}(H)\right)^3 \le 115746$

But we could also use the fact that the subgraph is planar:

 $5(6 \cdot (3 \cdot 7) - 9) \le 585$

Using the embedding

To use our stronger neighbourhood complexity argument, we need an embedding.

Using the embedding

To use our stronger neighbourhood complexity argument, we need an embedding.

 \rightarrow We use the decomposition argument hidden behind the product structure theorem.

Using the embedding

To use our stronger neighbourhood complexity argument, we need an embedding.

 \rightarrow We use the decomposition argument hidden behind the product structure theorem.

We consider a BFS tree of a triangulation of our planar graph and use it to recursively decompose the graph.

Using the embedding

To use our stronger neighbourhood complexity argument, we need an embedding.

 \rightarrow We use the decomposition argument hidden behind the product structure theorem.

We consider a BFS tree of a triangulation of our planar graph and use it to recursively decompose the graph.

For every edge $uv \in E$, $|d(u) - d(v)| \le 1$

Using the embedding

Contraction sequence

Summing up

We can conclude that the twin-width of a planar graph is at most 183.

Our construction can also be translated to a polynomial time algorithm producing a contraction sequence with these guarantees.

Further work

Improving the planar bound

- ► Can we improve the product structure theorem further ?
- Can we improve the lower bound ?
- Improved to 37 by Bekos et al. [1], then to 9 by Hliněný [4].

M. A. Bekos, G. D. Lozzo, P. Hlinený, and M. Kaufmann. Graph product structure for h-framed graphs. CoRR, abs/2204.11495, 2022.

É. Bonnet and H. Déprés.

Twin-width can be exponential in treewidth. CoRR, abs/2204.07670, 2022.

V. Dujmovic, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood.

Planar graphs have bounded queue-number.

In D. Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 862–875. IEEE Computer Society, 2019.

P. Hliněný.

Twin-width of planar graphs is at most 11, 2022.

- M. Pilipczuk and S. Siebertz.

Polynomial bounds for centered colorings on proper minor-closed graph classes.

In T. M. Chan, editor, *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019*, pages 1501–1520. SIAM, 2019.

T. Ueckerdt, D. R. Wood, and W. Yi. An improved planar graph product structure theorem. *CoRR*, abs/2108.00198, 2021.

Further work

Universal bipartite graph

