
On the parameterized complexity of computing
tree-partitions

Hans L. Bodlaender, Carla Groenland, Hugo Jacob

Tree-partition vs tree decomposition

What is a tree-partition?

Tree-partition-width is largest bag size
(3 here).

▶ Partition of vertex set
indexed by tree nodes

▶ Each part of bounded
size

▶ Edges are within parts or
between adjacent parts

Bodlaender, Groenland, Jacob 2/31

Tree-partition vs tree decomposition

What is treewidth?

••

•

•

••

•
•

••

••

• •

•

•
••

Bags are not disjoint but cover all vertices and all edges.
Each vertex is mapped to a (connected) subtree.

Treewidth is largest bag size minus one.

Bodlaender, Groenland, Jacob 3/31

Tree-partition vs tree decomposition

Graph minors

Minor

Topological minor

Bodlaender, Groenland, Jacob 4/31

Tree-partition vs tree decomposition

Grid minor theorem

A k × k-grid has treewidth k.

Theorem (Robertson and Seymour)

Every graph with large treewidth contains a large grid minor.

Bodlaender, Groenland, Jacob 5/31

Tree-partition vs tree decomposition

Some context on tree-partitions

▶ Introduced independently by Seese (’85) and Halin (’91).

▶ Work of Ding and Oporowski (’95,’96) on tree-partition-width: its
relationship with treewidth and a characterisation by topological
minor obstructions.

▶ Mostly studied for ‘structural’ purposes (coloring, layout, ...)

▶ Recently Bodlaender, Cornelissen, and van der Wegen gave
parameterized problems that are FPT parameterized by
tree-partition-width but hard for treewidth.

Bodlaender, Groenland, Jacob 6/31

Tree-partition vs tree decomposition

Relation to treewidth

A

B

C

D

E

A ∪B B ∪ C

C ∪D

B ∪ E

tw ≤ 2tpw − 1

Ding and Oporowski (’95) and Wood (’09) show tpw = O(∆tw).

Bodlaender, Groenland, Jacob 7/31

Tree-partition vs tree decomposition

Relation to treewidth

A

B

C

D

E

A ∪B B ∪ C

C ∪D

B ∪ E

tw ≤ 2tpw − 1

Ding and Oporowski (’95) and Wood (’09) show tpw = O(∆tw).

Bodlaender, Groenland, Jacob 7/31

Tree-partition vs tree decomposition

Topological minor obstructions for tree-partition-width

Bodlaender, Groenland, Jacob 8/31

Tree-partition vs tree decomposition

Our goal

The efficient algorithms parameterized by tree-partition-width require a
given decomposition.

No known algorithms to efficiently compute a tree-partition of good
width prior to our work.

Bodlaender, Groenland, Jacob 9/31

Parameterized complexity

Basic complexity classes

Definition (FPT)

The class of parameterized problems that can be solved
(deterministically) in time f(k) · nO(1).

Definition (XP)

The class of parameterized problems that can be solved
(deterministically) in time f(k) · ng(k).

Conjecture

FPT ⊊ W[1]

Bodlaender, Groenland, Jacob 10/31

Parameterized complexity

Quick introduction to XNLP

XNLP : what can be computed by a nondeterministic Turing machine
using f(k) log n space, running in time f(k)nc.

What do XNLP-hard problems look like ?
Linear structure + locally hard parameterized problem.

Conjecture

There exist no deterministic algorithms running in XP time and FPT
space for XNLP-hard problems.

Bodlaender, Groenland, Jacob 11/31

Parameterized complexity

Quick introduction to XNLP

XNLP : what can be computed by a nondeterministic Turing machine
using f(k) log n space, running in time f(k)nc.

What do XNLP-hard problems look like ?
Linear structure + locally hard parameterized problem.

Conjecture

There exist no deterministic algorithms running in XP time and FPT
space for XNLP-hard problems.

Bodlaender, Groenland, Jacob 11/31

Parameterized complexity

Quick introduction to XNLP

XNLP : what can be computed by a nondeterministic Turing machine
using f(k) log n space, running in time f(k)nc.

What do XNLP-hard problems look like ?
Linear structure + locally hard parameterized problem.

Conjecture

There exist no deterministic algorithms running in XP time and FPT
space for XNLP-hard problems.

Bodlaender, Groenland, Jacob 11/31

Parameterized complexity

Quick introduction to XALP

XALP : what can be computed by an alternating Turing machine using
f(k) log n space, with total computation in time f(k)nc.

Or equivalently, what can be computed by a nondeterministic Turing
machine using f(k) log n space and a stack, running in time f(k)nc.

What do XALP-hard problems look like ?
Tree-like structure + locally hard parameterized problem.

XALP-hardness ⇒ XNLP-hardness ⇒ W[t]-hardness, for all t

Bodlaender, Groenland, Jacob 12/31

Parameterized complexity

Quick introduction to XALP

XALP : what can be computed by an alternating Turing machine using
f(k) log n space, with total computation in time f(k)nc.

Or equivalently, what can be computed by a nondeterministic Turing
machine using f(k) log n space and a stack, running in time f(k)nc.

What do XALP-hard problems look like ?
Tree-like structure + locally hard parameterized problem.

XALP-hardness ⇒ XNLP-hardness ⇒ W[t]-hardness, for all t

Bodlaender, Groenland, Jacob 12/31

Parameterized complexity

Quick introduction to XALP

XALP : what can be computed by an alternating Turing machine using
f(k) log n space, with total computation in time f(k)nc.

Or equivalently, what can be computed by a nondeterministic Turing
machine using f(k) log n space and a stack, running in time f(k)nc.

What do XALP-hard problems look like ?
Tree-like structure + locally hard parameterized problem.

XALP-hardness ⇒ XNLP-hardness ⇒ W[t]-hardness, for all t

Bodlaender, Groenland, Jacob 12/31

Parameterized complexity

Complexity classes

FPT

W[1]

W[2]

...

XNLP

XALP

XP=XAL

Bodlaender, Groenland, Jacob 13/31

Algorithms on tree-partitions

Courcelle’s theorem

Theorem

Given a graph G, any property expressible by a formula ϕ in MSO logic
can be tested in time f(tw(G), |ϕ|) · n.

This extends to optimisation variants and modulo counting predicates.

This applies to graphs of bounded tree-partition-width.

Bodlaender, Groenland, Jacob 14/31

Algorithms on tree-partitions

Other problems

Some problems are XALP-hard for treewidth and FPT for
tree-partition-width:

▶ Capacitated Vertex Cover, Capacitated Dominating
Set, Bounded-Degree Vertex Deletion

▶ Target Outdegree Orientation, Chosen Maximum
Outdegree, Minimum Maximum Outdegree, Circulating
Orientation, Undirected Flow with Lower Bounds,
All-or-Nothing Flow

Bodlaender, Groenland, Jacob 15/31

Computing an optimal tree-partition

An XP algorithm for tree-partitions

Bodlaender, Groenland, Jacob 16/31

Computing an optimal tree-partition

Hardness

...

Reduction from a tree-like variant of Independent Set.

Bodlaender, Groenland, Jacob 17/31

Computing an optimal tree-partition

Hardness

Theorem

Tree-Partition-Width is XALP-complete.

This means we do not expect a significantly better algorithm to find an
optimal tree-partition to exist.

We can still hope for efficient approximation!
This is sufficient to be used as a routine by FPT algorithms.

Bodlaender, Groenland, Jacob 18/31

Computing an optimal tree-partition

Hardness

Theorem

Tree-Partition-Width is XALP-complete.

This means we do not expect a significantly better algorithm to find an
optimal tree-partition to exist.

We can still hope for efficient approximation!
This is sufficient to be used as a routine by FPT algorithms.

Bodlaender, Groenland, Jacob 18/31

Approximation

Exploiting the topological minor obstructions

▶ We can find topological minor obstructions in FPT time, using the
algorithm of Grohe, Kawarabayashi, Marx, and Wollan (STOC 2011).

▶ The result of Ding and Oporowski is constructive and can be turned
into an algorithm. However, the algorithm is not very efficient in
terms of running time and in terms of approximation guarantees.

Bodlaender, Groenland, Jacob 19/31

Approximation

Reminder of obstructions

Bodlaender, Groenland, Jacob 20/31

Approximation

Scheme

We start with a graph G, and parameter k, a believed upper bound to
tpw(G).

▶ First check that the treewidth is small and get a tree decomposition
of width w.

▶ Compute some clever auxiliary graph.

▶ Compute a tree-partition on blocks of the auxiliary graph.

▶ Combine them and deduce a tree-partition of the original graph.

Bodlaender, Groenland, Jacob 21/31

Approximation

Auxiliary graph

High connectivity between a pair of vertices implies their proximity in a
good tree-partition.

For bags of size at most k, connectivity of 2k between a pair of vertices
enforces that they are in the same bag.

Bodlaender, Groenland, Jacob 22/31

Approximation

Auxiliary graph

High connectivity between a pair of vertices implies their proximity in a
good tree-partition.

For bags of size at most k, connectivity of 2k between a pair of vertices
enforces that they are in the same bag.

Bodlaender, Groenland, Jacob 22/31

Approximation

Auxiliary graph

High connectivity between a pair of vertices implies their proximity in a
good tree-partition.

For bags of size at most k, connectivity of 2k between a pair of vertices
enforces that they are in the same bag.

Bodlaender, Groenland, Jacob 22/31

Approximation

Auxiliary graph

By contracting all pairs of vertices with connectivity at least 2k, we
obtain the auxiliary graph H.

We will use the following key property: within blocks of H, maximum
degree is bounded by a function of k.

Bodlaender, Groenland, Jacob 23/31

Approximation

Degree in blocks of the reduced graph

≤ k ≤ k

≤ k − 1

Bodlaender, Groenland, Jacob 24/31

Approximation

Computing the tree-partition

▶ We can compute tree-partitions for blocks of H using constructions
with width O(∆tw).

▶ We can then combine them to obtain a tree-partition of H, by
merging bags that share vertices.

▶ We should be careful about cutvertices since they may be contained
in many blocks. To deal with this obstacle, we can make sure that
each cutvertex has only one block adding vertices to its bag.

Bodlaender, Groenland, Jacob 25/31

Approximation

Dealing with cutvertices

Bodlaender, Groenland, Jacob 26/31

Approximation

Concluding the construction

▶ The constructions of width O(∆tw) allow for the isolation of
exactly one vertex for free.

▶ We can get a tree-partition of width O(∆(B∗)w) for H where B∗ is
the block that maximizes its maximum degree. We should have
∆(B∗) = O(wk2), otherwise we can contradict tpw(G) ≤ k.

▶ Expanding the vertices of H, we get a tree-partition for G of width
O(w2k3).

Bodlaender, Groenland, Jacob 27/31

Possible implementations

Computing auxiliary graph H

We can restrict contractible pairs to vertices sharing a bag of the tree
decomposition.

▶ We can compute the number of vertex disjoint paths using dynamic
programming on the tree decomposition.
⇝ 2O(k log k)n

▶ We can use simple flow computations for each pair of vertices.
⇝ kO(1)n2

Bodlaender, Groenland, Jacob 28/31

Possible implementations

Finding balanced separators

▶ We can reduce the diameter of the tree decomposition to O(log n)
and find balanced separators by moving around the decomposition.
This runs in O(kO(1)n log n overall.

▶ We can use more elaborate techniques to obtain a running time of
O(2O(k)n) overall.

Bodlaender, Groenland, Jacob 29/31

Possible implementations

Results

The scheme allows to find tree-partitions of width:

▶ O(k5 log k) in polynomial time; or

▶ O(k5) in 2O(k log k)n time; or

▶ O(k7) in kO(1)n2.

or conclude that any tree-partition has width more than k.

Bodlaender, Groenland, Jacob 30/31

Conclusion

Open questions

▶ Can we find better approximations ?

▶ Can we improve the running time of our approximation to kcn log n ?

▶ What are the problems that can be solved in FPT time when
parameterized by tree-partition-width ?

Bodlaender, Groenland, Jacob 31/31

	Tree-partition vs tree decomposition
	Parameterized complexity
	Algorithms on tree-partitions
	Computing an optimal tree-partition
	Approximation
	Possible implementations
	Conclusion

