
Internship report

Tight complexity bounds for transversal problems

parameterized by the width of a given decomposition

Hugo JACOB
M1 student in Computer Science at ENS Paris-Saclay

Supervised by Marcin Pilipczuk
Co-supervised by Thomas Bellitto and Oscar Defrain

Hosted by the University of Warsaw

February-June 2021



Tight complexity bounds for transversal problems
parameterized by the width of a given decomposition

Hugo Jacob, supervised by Marcin Pilipczuk, MIMUW

General context

A meta-theorem of Courcelle, shows the tractability of problems that can be expressed by
second order formulae on graphs, parameterized by treewidth or clique-width. However, the
obtained complexity is often far from being tight. The optimal complexity of several classical
problems under standard assumptions has been studied. One of them is FEEDBACK VERTEX SET
which has raised particular interest with new techniques providing a better complexity than what
was thought to be possible at first.

Studied problem

A recent publication which studied problems derived from FEEDBACK VERTEX SET para-
meterized by treewidth showed that they could not be solved with the same complexity under
standard assumptions. Its authors left some open questions : finding an algorithm to match their
lower bound for one of the problems and generalizing their results with algorithms for the pa-
rameter clique-width. The goal of this internship was to tackle these questions. Answering them
positively strengthens the lower bound by providing a tight complexity analysis. Translating re-
sults on treewidth to clique-width also participates to a better understanding of this less studied
parameter.

Contribution

The questions are answered by first making some structural observations, and then refining
and adapting previous techniques to the problems at hand. The contribution is mainly of a tech-
nical nature. One of the questions is answered in a more general context, providing an improve-
ment on previously known algorithms.

Arguments in favor of correctness

All algorithms are provided with complete proofs. This contribution was also submitted and
accepted to IPEC 2021.

Assessment and perspectives

Although the approach for our algorithms parameterized by treewidth is rather general, we
only provide a first step towards generalizing the results to clique-width. This is easily explained
by the fact that designing an algorithm for clique-width is harder. Completing the generalization
of the results to clique-width is an open problem. It should be possible to extend our approach to
more technical variants but will require more work.
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1. Introduction

Treewidth is one of the most successful graph width notions, clique-width is another
graph width notion that can capture simple dense graphs unlike treewidth, both corre-
spond to the width of a graph decomposition (we denote them by tw and cw, refer to
Subsection 2.3 for definitions). Their algorithmic applications are illustrated by Cour-
celle’s theorems [Cou90, CMR00] stating that any problem expressible by a formula in
monadic second order logic with quantification on vertex sets and edge sets (resp. quan-
tification on vertex sets), can be solved in linear time on graphs of bounded treewidth
(resp. clique-width). These theorems are very general but the algorithms they construct
are often not optimal in complexity: the constants depending on the bound on the width
are usually towers of exponentials. This motivated work on finding algorithms with op-
timal complexity (e.g. [Pil11, BCKN15, CMPP17, BKN+18, CKN18, BST19, SdSS20,
BST20a, BST20b, BST20c]). After many simple algorithms were shown to be optimal, it
came as a surprise when a randomized algorithm for problem Feedback Vertex Set
using the “Cut&Count” method [CNP+11], achieved a running time of 3tw · kO(1) · n
beating the natural algorithm running in time 2O(tw log tw) · nO(1). A deterministic algo-
rithm using the “rank-based” method [BCKN15], was later found, also running in time
2O(tw) · nO(1). Feedback Vertex Set (FVS) is a problem where given a graph, we
are required to find a minimum set of vertices that hit all cycles.

In a recent publication [BBBK20], lower bounds are given for problems that are
closely related to Feedback Vertex Set, excluding algorithms running in time
2o(tw log tw) · nO(1) under a common assumption. The variant of FVS where we want
to hit even cycles or odd cycles are called Even Cycle Transversal (ECT) and Odd
Cycle Transversal (OCT) respectively. If we further restrict the cycles to hit by
fixing a set of vertices S and asking to hit cycles that contain a vertex in S, we obtain
variants Subset Feedback Vertex Set (SFVS), Subset Odd Cycle Transversal
(SOCT), and Subset Even Cycle Transversal (SECT). If instead of cycles we hit
paths between a specific set of vertices T , we obtain Node Multiway Cut (NMwC)
which can be reduced to weighted SFVS by connecting a vertex of S to vertices of
T . Given lower bounds include SFVS, SOCT, ECT and NMwC. The following open
questions were expressed in a live talk at IPEC 2020 and are the topic of this internship:

• Is there an algorithm for Even Cycle Transversal parameterized by treewidth
matching the given lower bound?

• Is there an algorithm for Node Multiway Cut or Subset Feedback Vertex
Set parameterized by clique-width matching the given lower bound?

• What running time can we achieve for Odd Cycle Transversal parameterized
by clique-width?

We provide a positive answer to all of these questions. For the first question, we
provide algorithms for ECT and SECT matching the lower bounds, and also apply our
method to SFVS and SOCT, improving on the complexity of the algorithms given in
[BBBK20]. For the second question, we give a simple algorithm for NMwC and a more
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convoluted algorithm for SFVS, both matching lower bounds. For the third question,
we provide an algorithm for OCT and a reduction to argue that our algorithm is likely
to be optimal. In Section 2, we introduce some notions of parameterized complexity, the
graph decompositions used by the algorithms and the studied problems. In Section 3,
we give an overview of the contribution, leaving detailed proofs to the appendix.

2. Preliminaries

2.1. Parameterized Complexity

Expressing complexity of problems only in terms of the size of the input can prove to be
quite inadequate in some cases, there are big instances that are easy and small instances
that are hard. For this reason, we add parameters that provide further information on
the instance to be solved. Consider the classical NP-complete problem Vertex Cover,
where given a graph, one looks for a set of vertices called vertex cover of size at most
k such that each edge is incident to at least one of these vertices. Suppose that you
want to solve instances with k = 3, while you might think that solving your instances
cannot be done in a reasonable amount of time because of the NP-hardness of Vertex
Cover, there is a simple algorithm running in time 2k · nO(1). Hence, your instances
are solvable in polynomial time and, even better, solving them will take a reasonable
amount of time. This example shows that some additional information on instances of
NP-hard problems have a serious impact on their hardness, motivating a more precise
classification of these problems via parameters.

Definition 1 A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed
finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the parameter. The size of
the instance is |x|+ k, as if the parameter was written in unary.

Definition 2 A parameterized problem L is called fixed-parameter tractable (FPT) if
there exists an algorithm A (called fixed-parameter algorithm), a computable function
f : N→ N, and a constant c such that, ”(x, k) ∈ L” can be decided by A in time bounded
by f(k) · |(x, k)|c. The class of FPT problems is called FPT.

It should be clear that P ⊆ FPT. We saw the example of Vertex Cover which is in
NP and in FPT parameterized by solution size. Other classical NP-complete problems
Independent Set and Dominating Set, are believed not to be in FPT (more details
later).

Intuitively, if a NP-hard problem is FPT for some parameterization, we can consider
that the parameter is a good way to quantify the hardness of some instance. For Vertex
Cover, it is easy to find a small vertex cover and hard to find a big vertex cover. A
very natural parameter is the solution size and when the parameter is omitted it should
be this parameter.
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For FPT algorithms, depending on the type of instance we are trying to solve, it can
be interesting to look for the best possible f or the best possible c.

Parameterized problems can be classified using reductions, similarly to classical prob-
lems. However, the crucial difference is that the parameter growth must be controlled.

Definition 3 Given two parameterized problems A,B over the same alphabet, a param-
eterized reduction from A to B is an algorithm A that, given an instance (x, k) of A,
outputs an instance (x′, k′) of B such that:

• (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B

• k′ ≤ g(k) for some computable function g

• A is FPT

If B is in FPT and a parameterized reduction from A to B is given, we can deduce
that A is also FPT.

Note that the simple reduction from Independent Set to Vertex Cover by taking
the complement of the solution is not a parameterized reduction because a solution of size
k is mapped to a solution of size n−k. On the contrary, Independent Set and Clique
can be reduced to one another because the simple reduction consists of considering the
complemented graph and preserves the solution size.

We now informally explain why Independent Set and Dominating Set are thought
not to be in FPT. The W hierarchy is based on parameterized reduction, if a problem
is in W[t] it means that it can be reduced to solving a formula with nested “big” quan-
tifications of depth at most t with the number of satisfied variables as the parameter.
Independent Set is W[1]-complete and Dominating Set is W[2]-complete, while
FPT = W[0]. It is commonly assumed that FPT 6= W[1], hence to prove that a problem
is believed not to be in FPT, W[1]-hardness results are given. Note that this assumption
is stronger than P 6= NP because W[1] ⊆ NP.

A more precise study of problems that are in FPT requires stronger assumptions. We
use some conjectures on the optimal complexity for this problem:

k-SAT
Input: A CNF formula ϕ with at most k variables per clause
Parameter: k
Question: Is ϕ satisfiable ?

Let sk be the infimum over positive reals ε such that there exists an algorithm running
in time O(2εn) to solve k-SAT, where n is the number of variables.

The Exponential Time Hypothesis (ETH) states that s3 > 0. This implies that
there is no 2o(n) time algorithm for 3-SAT. By reducing k-SAT to some problem, we can
conclude that there is no 2o(f(n)) time algorithm for it under the ETH. The ETH implies
FPT 6= W[1], hence P 6= NP.
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The Strong Exponential Time Hypothesis (SETH) states that lim
k→+∞

sk = 1. This

means that for some arbitrary formula, there is no algorithm significantly better than
testing every possible assignment. By reducing k-SAT to some problem with the new
parameter bounded independently of the number of clauses, we can prove that a running
time of the form O

(
ck|x|O(1)

)
has optimal c under the SETH. While this assumption

is considered less likely by part of the computational complexity community, note that
this mainly allows to express neatly the hardness result obtained from a reduction but is
not used in the reduction. Furthermore, it indicates that trying to beat the lower bound
is at least as hard as disproving the SETH.

2.2. Graph theory terminology

We call walk a sequence of vertices such that consecutive vertices are adjacent, a walk
without repetition of vertices is called (simple) path. A walk with the first vertex equal
to the last vertex is called a closed walk, if it is the only vertex repetition, it is called
a cycle. Given a graph G = (V,E) and a subset of vertices X ⊆ V , G[X] denotes the
induced subgraph of X. For A a set of edges, G+A denotes the graph G′ = (V,E ∪A).
For G,G′ two graphs, their union G ∪G′ is the graph (V (G) ∪ V (G′), E(G) ∪ E(G′)).

We will sometimes need multigraphs, which are tuples (V,E) where V is a set of
vertices and E is a multiset of pairs of vertices, i.e. it can have repeated edges.

When a subset of vertices S is fixed, we call S-path a path that contains a vertex of
S, S-cycle a cycle that contains a vertex of S.

A 2-connected component of a (multi)graph is a maximal induced subgraph such that
more than one vertex must be removed for it to be disconnected. We call nontrivial a 2-
connected component that contains a cycle, excluding the degenerate cases of the isolated
vertex and the bridge (2 vertices connected by a single edge). We call a (multi)graph
nontrivial 2-connected if it consists of a single 2-connected component.

2.3. Graph decompositions

One approach to solving hard problems on graphs that have a nice structure, is to first
compute a decomposition of the graph and then apply an efficient algorithm on the
decomposition. The decompositions that we will consider are well suited to the design
of dynamic programming.

Definition 4 A tree decomposition of a graph G = (V,E) is a pair (T,X ) where T is
a tree and X = {Xt}t∈T is a set of bags such that :

• bags contain vertices (elements of V )

• for v ∈ V , the bags that contain v form an induced subtree of T (they are connected)

• every vertex v ∈ V is contained in at least one bag

• for every edge uv ∈ E, there is a bag Xt that contains u and v.
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The width of a tree decomposition is defined as maxt∈T {|Xt| − 1}.
The treewidth of G is the minimal width over all possible tree decompositions of G, we

will denote it by tw(G).

The pathwidth of G is the minimal width over all possible tree decompositions of G
where the tree is a path, we will denote it by pw(G).

Definition 5 (Nice tree decomposition) A nice tree decomposition of a graph G is
a rooted tree decomposition (T, {Xt}t∈V (T )) such that:

• the root and leaves of T have empty bags; and

• other nodes are of one of the following types:

– Introduce vertex node: a node t with exactly one child t′ such that Xt =
Xt′ ∪ {v} with v /∈ Xt′. We say that v is introduced at t;

– Forget vertex node: a node t with only one child t′ such that Xt = Xt′ \{v}
with v ∈ Xt′. We say that v is forgotten at t; and

– Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2.

For each node t of the decomposition, we define a partial graph Gt = G
[⋃

s≤tXs

]
−

E(G[Xt]).

Note that edges of partial graphs appear at forget vertex nodes and that they correspond
to adding edges between the forgotten vertex and its neighbours.

From a tree decomposition T = (T, {Xt}t∈V (T )) of G of width k, a nice tree de-
composition of width k with O(k|V (G)|) nodes can be computed in time O(k2 ·
max(|V (T )|, |V (G)|)) [Klo94].

••

•

•

••

•
•

••

••

• •

•

•
••

Figure 1.: A graph and one of its tree decompositions

The state of the art for FPT computation of a tree decomposition of size k (or a
certificate that the input has greater treewidth than k) is an algorithm running in time
kO(k3) · n [Bod96]. There is also a very recent 2-approximation algorithm running in
time 2O(k) · n [Kor21], it is based on previous approximation algorithms and computes
an improved tree decomposition by running dynamic programming on an initial tree
decomposition.
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Since the number of edges of a graph is at most tw ·n, this decomposition is only
interesting for sparse graphs, this contrasts with clique-width which captures simple
dense graphs.

To define clique-width and k-expressions, we first define labeled graphs and operations
on them.

Definition 6 A k-labeled graph is a triple G = (V,E, γ) where (V,E) is a graph and
γ : V → {1, . . . , k} is a function called labeling function.

V (G), E(G) and γ(G) denote the set of vertices, set of edges and labeling function of
labeled graph G.

Given a k-labeled graph G = (V,E, γ), we refer to γ−1({i}) by vertices of label i or
even simply label i.

We will only consider undirected graphs in the following (but this notion can be
extended to directed graphs).

Definition 7 For two k-labeled graphs G1, G2, G1 ⊕G2 is their disjoint union.

For a given k-labeled graph G, ρi→j(G) is the labeled graph obtained from G when
changing the label of vertices labeled i to j.

For a given k-labeled graph G, ηi×j(G) is the labeled graph obtained from G by adding
edges between vertices labeled i and vertices labeled j.

The graph consisting of a single vertex v labeled i is simply denoted i(v).

k-expressions are terms that define a labeled graph using these operations.

Definition 8 The clique-width of a graph is the minimal k such that it can be repre-
sented by a k-expression.

Definition 9 A linearized version of clique-width called linear clique-width corresponds
to the minimum width of k-expressions such that disjoint union operations must contain
a single vertex on one side.

Note that it may happen that an edge having its endpoints in two different labels i
and j is already present in the graph G before performing the join ηi×j(G). Despite that
the edge is not produced twice, the existence of such a situation may be problematic in
our algorithms when we only consider a compact representation of G. To circumvent
this problem, we can assume that every edge of a graph appears at most once in the join
of our given k-expressions. More precisely, when performing a join operation ηi×j(G),
we can assume that none of the edges in G has its endpoints in i and j, respectively. An
expression with such property can be computed in time O(k2 ·n) from a given arbitrary
expression of size n [CO00].
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The following inequality stands between treewidth and clique-width :

cw(G) ≤ 3 · 2tw(G)−1

Hence, the class of graphs of bounded treewidth is included in the class of graphs of
bounded clique-width. Graphs of bounded clique-width can be dense unlike graphs of
bounded treewidth, a simple example is the complete graph on n vertices, it has treewidth
n − 1 (a single bag containing all vertices) but linear clique-width 2 (add vertices one
by one by joining a label containing the new vertex to a label containing other vertices
and then relabeling the new vertex).

Pathwidth can be compared to the other considered parameters with tw(G) ≤ pw(G)
(obvious from definition) and cw(G) ≤ lcw(G) ≤ pw(G) + 2 (use one label per vertex
in the bag and an additional label for forgotten vertices). This means that a complexity
lower bound involving pathwidth also stands for treewidth and clique-width.

There is no known FPT algorithm to obtain an optimal k-expression. The best ap-
proximation algorithms running in FPT time provide only expressions with exponentially
too many labels [Oum05]. Graphs of clique-width at most 3 (called distance hereditary
graphs) can be recognized in polynomial time [CHL+12]. Recognition of graphs of clique-
width at most k for k > 3 is an open problem, hence for algorithms parameterized by
clique-width, we assume that the graph is given with a k-expression describing it.

The monadic second order logic of graphs consists of formulas on vertices, edges,
sets of edges and sets of vertices with predicates for equality, membership, adjacency
and incidence testing. MSO2 stands for the Monadic Second Order logic of graphs in
which quantification over sets of vertices and sets of edges is possible, in MSO1 only
quantification over sets of vertices is allowed. A common extension called counting
monadic second order logic consists of adding modular counting predicates.

A theorem by Bruno Courcelle shows that a graph property defined by a formula
ϕ in MSO2 can be checked in time f(|ϕ|, tw) · n on graphs of treewidth tw [Cou90].
Similarly, a graph property defined by a formula ϕ in MSO1 can be checked in time
g(|ϕ|, cw) · n on graphs of clique-width cw [CMR00]. The original hypothesis that a
decomposition is given as an input is not necessary due to approximation algorithms
for both decompositions. Courcelle’s theorems give a very general result, however the
running time of algorithms constructed by the proof is often irrelevant. Their result is
only interesting from a theoretic point of view.

2.4. Studied problems and relatives

Feedback Vertex Set
Input: A graph G and an integer k
Question: Is there a set of at most k vertices hitting every cycle in G ?

As discussed earlier, this problem is known to have an algorithm running in time
2O(tw)nO(1) [BCKN15]. It is also known to have an algorithm running in time
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2O(cw)nO(1) when a clique-width expression is provided [BK19]. Note that the vari-
ant of this problem in the context of directed graphs (or digraphs) was shown to be
solvable in time 2O(tw log tw)nO(1) and not faster (the parameter is the treewidth of the
underlying undirected graph of the input digraph) [BKN+18].

Odd Cycle Transversal
Input: A graph G and an integer k
Question: Is there a set of at most k vertices hitting every odd cycle in G ?

This is the easiest variant of FVS, it can be solved in time 3twnO(1) with a given tree
decomposition and not faster [LMS11]. We show a similar result for clique-width in 3.4.

The following variants of FVS were all shown to be significantly harder, they admit
no algorithm running in time 2o(pw logpw)nO(1), assuming the ETH.

Even Cycle Transversal
Input: A graph G and an integer k
Question: Is there a set of at most k vertices hitting every even cycle in G ?

Node Multiway Cut
Input: A graph G, a set of terminals T (G) ⊆ V (G), and an integer k
Question: Is there a set of at most k non-terminal vertices hitting every path
between a pair of terminals ?

Subset Feedback Vertex Set
Input: A graph G, a subset of vertices S ⊆ V (G) and an integer k
Question: Is there a set of at most k vertices hitting every cycle containing a vertex
in S ?

Subset Odd Cycle Transversal
Input: A graph G, a subset of vertices S ⊆ V (G) and an integer k
Question: Is there a set of at most k vertices hitting every odd cycle containing a
vertex in S ?

Subset Even Cycle Transversal
Input: A graph G, a subset of vertices S ⊆ V (G) and an integer k
Question: Is there a set of at most k vertices hitting every even cycle containing a
vertex in S ?

All these problems can be equivalently expressed as finding a set of vertices to delete
for the resulting graph to have some properties. Such problems are often called deletion
problems, and the set of vertices to find is called deletion set. We adopt this point of
view to develop our algorithms by constructing maximal graphs that preserve the desired
properties.

We study these problems in the weighted setting meaning vertex v is given weight
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c(v), we extend this notation to subset of vertices with c(U) being the sum of weights
of vertices in U .

3. Contribution

In subsection 3.1, we present an algorithm for SFVS, ECT, SOCT, and SECT, pa-
rameterized by treewidth, using a common framework to solve the open question in a
more general setting. In subsection 3.2, we present an algorithm for NMwC parame-
terized by clique-width as a first step towards solving the harder SFVS. In subsection
3.3, we present a more involved algorithm for SFVS parameterized by clique-width. In
subsection 3.4, we present an algorithm for OCT parameterized by clique-width and a
parameterized reduction showing optimality of our OCT algorithm under the SETH.

3.1. Feedback Vertex Set relatives parameterized by treewidth

In [BBBK20], Bergougnoux, Bonnet, Brettell, and Kwon gave a 2Ω(tw log tw)nO(1) lower
bound for Subset Feedback Vertex Set, Subset Odd Cycle Transversal, and
Even Cycle Transversal under the ETH. We present an algorithm of complexity
2O(tw log tw)n for them and Subset Even Cycle Transversal, closing the gap for
Even Cycle Transversal and Subset Even Cycle Transversal, and improv-
ing on the previous 2O(tw log tw)n3 algorithm for Subset Feedback Vertex Set and
Subset Odd Cycle Transversal of [BBBK20].

Rather than simply giving an algorithm for just SOCT and SECT to which we can
reduce ECT and SFVS, we also show how our method gives less involved algorithms for
SFVS and ECT. In order to have a common notation, we will call �-cycles the cycles that
have to be hit in the problem and �-cycle-free the graphs that do not contain �-cycles.

Before diving in the explanation of the algorithm, we will discuss how to design a
bottom-up dynamic programming algorithm for these problems on a nice tree decom-
position. A natural way to proceed is to find a criterion such that the union of two
�-cycle-free graphs with k common vertices is also �-cycle-free. To check that no �-
cycle is created by the union, for each pair of the common vertices, we need to know what
type of paths exist between them (e.g. for ECT we want to know if they are connected
by an even path and if they are connected by an odd path) in each of the two graphs. A
naive way to do this is to simply have a matrix with the answer to each of these O(k2)
questions. This would lead to an algorithm running in time 2O(tw2)n. By representing
the graph with an auxiliary forest, we can encode the same information using O(k log k)
bits, leading to a 2O(tw log tw)n algorithm.

We begin by giving a characterisation of nontrivial 2-connected �-cycle-free graphs
for each problem. This implies characterisations of �-cycle-free graphs, because it can
be decomposed in 2-connected components and then the characterisation can be applied
to each component.
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Lemma 3.1 Let G be a nontrivial 2-connected multigraph.

1. G contains no S-cycle if and only if it contains no S-vertex.

2. G contains no even cycle if and only if it is an odd cycle.

3. G contains no odd S-cycle if and only if it has one of the following forms:

• G contains no S-vertex and is not bipartite

• G contains no S-vertex and is bipartite

• G contains at least one S-vertex and is bipartite.

4. G contains no even S-cycle if and only if it has of one of the following forms:

• G contains no S-vertex and is not bipartite

• G contains no S-vertex and is bipartite

• G contains at least one S-vertex, the connected components of G − S are
bipartite, together with S-vertices they form a cycle: each S-vertex has degree
2 and each connected component of G−S has outdegree 2. One S-cycle is odd.
We later call bipartite subcomponents the connected components of G − S.
This is illustrated in Figure 2a.

The first point is immediate, the second was observed in [MRRS12] and the third in
[BBBK20]. The last point was not known to us and we provide a proof in appendix (2).

Definition 10 Given a �-cycle-free graph G, we define its underlying forest F (G) as the
graph obtained from G by modifying independently each nontrivial 2-connected component
C as follows:

1. For SFVS, remove edges inside C and add an unlabeled vertex adjacent to all
vertices of C.

2. For ECT, remove edges inside C and add a vertex adjacent to all vertices of C and
label it “odd cycle”.

3. For SOCT, remove edges inside C and add a vertex adjacent to all vertices of C,
label it “bipartite” or “not bipartite” based on the property of C and make it an
S-vertex if C contains an S-vertex.

4. For SECT, in the two first forms we remove edges inside C and add a vertex
adjacent to all vertices of C and label it “bipartite” or “not bipartite” based on the
property of C. For the last form, for each bipartite subcomponent in the cycle, we
remove its edges, add a vertex labeled “internal bipartite” adjacent to its vertices.
Then remove edges of C incident to S, add an S-vertex labeled “odd cycle” adjacent
to S-vertices and vertices labeled “internal bipartite”. This is illustrated in Figure
2b.

Observe that, because labeled vertices are only introduced by this underlying forest,
to each labeled vertex v, each of them can be associated with a nontrivial 2-connected
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(a) An example of graph with no even S-cycle.
The vertices of S are depicted in red. The
blue
boxes denote the bipartite subcomponents.

(b) The underlying forest we build from the
graph on Figure 2a. The “internal bipar-
tite” vertices are depicted in blue and the
“odd cycle” vertex is black.

Figure 2.: The last form of SECT: “internal bipartite” vertices

component C: the one that resulted in the creation of v. Observe also that for a path
P between two unlabeled vertices, if it contains a labeled vertex, then it contains a
vertex of its associated component before it on P and another vertex of its associated
component after it on P .

Using some reduction rules inspired by [BBBK20], the forest can be reduced to O(tw)
vertices, we denote the set of reduced underlying forests with active vertices (vertices in
common when performing unions) X by F (G,X). The idea of the reduced forest is to
preserve only the paths between active vertices and to contract these paths as much as
possible. The length of paths still has to be maintained, there are two ways of doing
this. The simplest to describe is to have edges with weights in F2, but this can also
be done by coloring active vertices, which can give better constants for the size of the
reduced forests.

The main technical engine of our algorithms is the following join operation (see 2 for
proof).

Lemma 3.2 There exists a polynomial-time algorithm that, for every pair of �-cycle-
free graphs G1 and G2 with V (G1)∩V (G2) = X, given on input two reduced forests with
valid F2-labelings (F1, α1) and (F2, α2), with F1 ∈ F (G1, X) and F2 ∈ F (G2, X), decides
whether G1 ∪ G2 is �-cycle-free and, in case of a positive answer, computes a reduced
forest F ∈ F (G1 ∪G2, X) and, except for the SFVS problem, a valid F2-labeling α.

We now describe our dynamic programming algorithm on a nice tree decomposi-
tion (T, {Xt}t∈V (T )) of graph G. It consists of a bottom-up computation with states
(t, Y, F, α) where t ∈ V (T ), Y ⊆ Xt is the set of undeleted vertices of Xt, F is a labeled
forest description with active vertices Y , and α is a F2-labeling of edges of F . We denote
by d[t, Y, F, α] the cell of the table corresponding to this state. We call a state reachable
if its cell is updated at least once by a transition.

14



We call a state (t, Y, F, α) admissible if there exists U ⊆ V (Gt) such that Y = Xt \U ,
Gt−U is �-cycle-free, F is a forest description of a member of F (Gt−U, Y ), α is a valid
2-labeling of F and d[t, Y, F, α] = c(U).

To prove the correctness of the algorithm we will prove that reachable states are ad-
missible and that for each t ∈ V (T ) and U ⊆ V (Gt), if Gt−U is �-cycle-free there exists
a state with value at most c(U). The optimal transversal weight will be in d[r,∅,∅,∅]
where r is the root of the decomposition.

We now describe the computations for each node t of the nice tree decomposition
based on its type.

1. Leaf node. We set d[t,∅,∅,∅] = 0

2. Introduce vertex node. Let t′ denote the child node of t and v be the introduced
vertex. For each reachable state (t′, Y ′, F ′, α′), we have two transitions representing
the choice of deleting the vertex or not:

d[t, Y ′, F ′, α′]← d[t′, Y ′, F ′, α′] + c(v)

d[t′, Y ′ ∪ {v}, F, α′]← d[t′, Y ′, F ′, α′]

where F is obtained from F ′ by adding an isolated active vertex v.

3. Forget vertex node. Let t′ denote the child node of t and v be the forgotten
vertex. For each reachable state (t′, Y ′, F ′, α′), if v /∈ Y ′ then the transition is
simply:

d[t, Y ′, F ′, α′]← d[t′, Y ′, F ′, α′]

If v ∈ Y ′, we perform a join processing of (F ′, α′) and (H,β) where H is the union
of a star graph with internal vertex v and leaves NG(v) ∩ Y ′ and isolated vertices
for Y ′ \ NG[v], and β its edges to 1. If the join processing does not reject and
returns (F̃ , α̃), we obtain (F, α) from (F̃ , α̃) by making v inactive and applying
reduction rules, then have transition:

d[t, Y ′ \ {v}, F, α]← d[t′, Y ′, F ′, α′]

4. Join node. Let t1 and t2 denote the two children of t. For each pair of reach-
able states (t1, Y, F1, α1) and (t2, Y, F2, α2), we perform a join process of (F1, α1)
and (F2, α2). If the join isnt rejected, we obtain (F, α) and have transition
d[t, Y, F, α]← d[t1, Y, F1, α1] + d[t2, Y, F2, α2].

Lemma 3.3 All reachable states are admissible.

Lemma 3.4 For every node t ∈ V (T ), every U ⊆ V (Gt), if Gt−U is �-cycle-free then
there exists F, α such that F is a forest description of a member of F (Gt − U,Xt \ U),
α is a valid F2-labeling of F , (t,Xt \ U,F, α) is reachable, and d[t,Xt \ U,F, α] ≤ c(U).

Lemma 3.5 The final value of d[r,∅,∅,∅] is the weight of an optimal transversal.
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Proof. By applying Lemma 3.4 with U a �-cycle transversal, because V (G) is always
a transversal, we conclude that state (r,∅,∅,∅) is reachable, d[r,∅,∅,∅] ≤ c(U). By
applying Lemma 3.3 to reachable state (r,∅,∅,∅), there exists U∗ a �-cycle transversal
such that d[r,∅,∅,∅] = c(U∗). It has optimal weight by Lemma 3.4. 2

Theorem 3.1 Subset Feedback Vertex Set, Subset Odd Cycle Transversal,
and Subset Even Cycle Transversal, even in the weighted setting, can be solved
in time 2O(k log k) · n on n-vertex graphs of treewidth k.

Proof. We use an approximation algorithm to compute a tree decomposition of width
O(k) in time 2O(k) · n. We have 2O(k log k) · n states and transitions. Since transitions
are computed in time kO(1), the values of all states are computed in time 2O(k log k) · n.
The solution to the problem instance is correctly computed, by Lemma 3.5. 2

3.2. Node Multiway Cut parameterized by clique-width

In this problem the first obstacle to deal with is the fact that we can’t hope to maintain
the internal structure of a each label with O(k log k) bits. However, a crucial property
is that once a join is performed, the vertices of a label become connected. To solve
this problem, we apply a technique called “expectation from the outside” in [BSTV13]
that consists in guessing in advance what operation will happen next to a label (this
is not obvious from the expression because some joins will not add edges due to vertex
deletions) to design a bottom-up dynamic programming algorithm.

A state in our dynamic programming will consist of a near-partition P of labels ac-
cording to the expected evolution of their connectivity, where two subsets have a special
role : P∅ will denote labels that contain no vertex, Pf will denote labels that will only
be joined to empty labels in the future, other subsets P1, . . . , Pk represent labels that
may form a connected component in the future, together they form P∗; and a function
φ : [k]→ {0, 1} indicating if the component contains a terminal.

A state is designed to efficiently represent a graph G̃ resulting from some vertex dele-
tions on our input graph with just the information that is necessary for the computation.
If a label is in Pf , it means that we expect that its vertices will not receive additional
incident edges in the rest of the construction. Thus, a label in this situation will only be
joined to a label in P∅, which guarantees that no edge is added. For vertices in labels
that are in the same Pi, we expect that they will be in the same connected component
and already consider them as connected. Two nonempty labels are only joined when
they are in the same Pi, using this we make sure that the actual connected components
of G̃ are subdivisions of the

⋃
j∈Pi Vj(G̃) with the addition of some vertices of labels in

Pf .

The difficult question of knowing what is accessible from a vertex is circumvented by
our guessing strategy, which takes the form of the partitioning of non empty labels into
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Pf and P1, . . . , Pk. When a vertex is in a label of Pf , we know from our guess that the
question is irrelevant because we are done adding edges incident to this vertex. When
a vertex is in a label of Pi, we know from our guesses that it can only be connected to
vertices in labels of Pf and to vertices in labels of Pi.

P∅

P1

...

Pk

Pf

Figure 3.: The automaton shows how labels are allowed to move after a join.

The details of the algorithm are in appendix (2), the correctness proofs are struc-
tured similarly to the proofs of the algorithm of Subsection 3.1, to represent the guesses
on labels we use an auxiliary graph that contains the graph under construction with
additional edges to connect vertices when their labels are in the same set of P∗.

3.3. Subset Feedback Vertex Set parameterized by clique-width

Our algorithm for SFVS on k-expressions will reuse ideas from the two previous sub-
sections. We will make guesses to simplify the information to be kept on our labels as
for NMwC. The information about how vertices are connected is more complicated as
we have to consider the fact that paths may be S-paths. This is done by maintaining a
partially labelled forest as we did in the algorithm on tree decompositions.

The first step to design this algorithm has been to consider the different cases of joins
that can create an S-cycle, see Figure 4. There are few cases where the join does not
create an S-cycle which motivates a distinction between a finite number of what we call
label states, that allow a classification of the possible joins based on internal structure
of the label.

State Q∅ is assigned to labels that are completely contained in the current deletion
set, which means that the label is empty for the graph resulting from the deletion. States
Q1 and Q∗1 are assigned to labels consisting of a single non-S-vertex, or a single S-vertex,
respectively. States Qw and Q∗w are called waiting states: they are assigned to labels for
which we have guessed that they will be joined (only once) to a non-S-vertex from a label
in state Q1, or to an S-vertex from a label in state Q∗1, respectively. State Q2 is assigned
to labels having at least two vertices but no S-vertex: it is assigned to labels for which
we have guessed that they will be joined (potentially several times) to either a vertex
from a label in state Q1, or to vertices from a label in state Q2. These guessing tricks
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A B

(a) Case 1: |A| ≥ 2, |B| ≥ 2,
and |A∩ S|+ |B ∩ S| ≥ 1.

A B

(b) Case 2: |A| ≥ 1, |B| ≥ 2, and there
is an S-path with endpoints in B.

A B

(c) Case 3: |A| ≥ 1, |B| ≥ 1,
and there is an S-path
connecting a vertex of A
to one of B.

Figure 4.: The three cases when a join (depicted in green) creates an S-cycle. The figures
illustrate the smallest number of vertices of S required. Thus, up to symmetry,
the vertices depicted in red have to be in S while the vertices in white may
or may not be in S.

can be seen as a form of what is called “expectation from the outside” in [BSTV13]. We
point that guessing these joins implies that labels in states Qw, Q

∗
w, Q2 will eventually

be connected. At last, state Qf is called final state: it will contain vertices that will
not be joined anymore. To summarize, states in Q express the following constraints on
joins:

• joins with a label in state Q∅ will be ignored;

• no join with a label in state Qf will be performed;

• labels in state Qw (resp. Q∗w) will only be joined with those in state Q1 (resp. Q∗1);
and

• labels in state Q2 will never be joined with those in state Q∗1.

As illustrated by Subfigure 4c, we need to check the properties of a potential path
between two labels. To cope with these constraints, we also give a reduced forest with
a vertex per label and contracted paths between them. We have to adapt the notion of
active vertices to the context of k-expressions, now they are vertices representing labels
that are not in state Qf . This makes a lot of sense: in the context of the nice tree
decomposition, no additional incident edges may be added to a vertex once it has been
forgotten, and here, thanks to the guessing technique, we are exactly in the same case
where we know that there will not be any additional edge.

Theorem 3.2 Given a k-expression describing graph G, Subset Feedback Vertex
Set can be solved in time 2O(k log k) · n, where n is the size of the given k-expression.

The details of the computation and the proof of the algorithm are deferred to the
appendix (2).
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3.4. Odd Cycle Transversal parameterized by clique-width

To introduce our algorithm for OCT on k-expressions, we first explain the idea behind
the known algorithm for tree decompositions, which is optimal under the SETH [LMS11].

It is a dynamic programming algorithm with the following states: for each node t of
the nice tree decomposition, each tripartition (U,A,B) of Xt, compute the minimum |Ũ |
for all tripartitions (Ũ , Ã, B̃) of V (Gt) such that U = Xt ∩ Ũ , A = Xt ∩ Ã, B = Xt ∩ B̃,
and Ã and B̃ are independent sets of Gt − Ũ . The intuition is that we construct a
bipartition for the graph resulting from vertex deletion, ensuring that it is bipartite,
meaning it has no odd cycle. Furthermore, the part of the tripartition of the vertices of
the partial graph that is not in the current bag has no effect on the constraints on new
vertices.

We will simply adapt the same idea to k-expressions. As for the previous algorithms
on k-expressions, we have to find a way to manage the fact that labels may contain many
vertices. Luckily, in this case it will be quite simple, due to the following fact:

Fact 3.1 For (A,B) a bipartition of graph labeled graph H, (A,B) is a not a bipartition
of ηi×j(H) if and only if there is a side of the bipartition with a vertex in each of i and
j.

Proof. Suppose that (A,B) is not a bipartition of H ′ = ηi×j(H) then A or B is
not an independent set of H ′. Without loss of generality, we assume that A is not
an independent set of H ′, hence there exists u, v ∈ A adjacent in H ′. Since A is an
independent set of H, edge uv must be added by the join operation between i and j, so
one of u, v is in i and the other is in j.

Conversely, if there is a side of the bipartition with a vertex in each of the joined
labels then in H ′ there is an edge between them and this side is not an independent set
anymore, so (A,B) is not a bipartition of H ′. 2

This means that to check if a join ηi×j is compatible with a bipartition (A,B), we just
have to know the values of |A∩Vi| > 0, |A∩Vj | > 0, |B∩Vi| > 0, and |B∩Vj | > 0. This
requires 2 bits of information per label, hence there are 4k possible configurations. For
each node of the k-expression, we have a state for each of the 4k possible configurations.
Note that manipulating these informations is easy when performing a renaming label
operation or disjoint union operation.

To obtain our optimal complexity, we have to use a smart way of computing dis-
joint union operations. We do it in time O(4kk) (see Lemma 2.12), while the naive
enumeration of pairs of states takes time O(16k).

For the lower bound, we encode SAT with an OCT instance that can be constructed
by a linear k-expression. The main ideas are to represent SAT variables by paths, to
impose that consecutive paths are on distinct sides of the optimal bipartition, and to
encode clauses by odd cycles. The reason behind the optimal base of the exponent
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is that we can manage to store two variables in one label (more precisely the current
endpoints of the two consecutive paths), this will result in additional edges between the
two paths but they can be ignored because they are between vertices on distinct sides
of the optimal bipartition.

The paths representing variables come from the reduction for Independent Set and
the gadgets to transmit information called “arrows” come from the reduction for Odd
Cycle Transversal both in [LMS11].

Theorem 3.3 Given a k-expression describing graph G, Odd Cycle Transversal
can be solved in time O(4k · k · n). Furthermore, the base of the exponent is optimal
under the SETH.

Complete description and proofs are provided in the appendix (2).

3.5. Conclusion

This work contributes to a precise understanding of the hardness of variants of Feed-
back Vertex Set, by solving open problems left by a previous publication: finding
an algorithm for Even Cycle Transversal matching the lower bound for treewidth,
finding an algorithm for Node Multiway Cut or Subset Feedback Vertex Set
matching the lowerbound for clique-width, finding an optimal algorithm for Odd Cycle
Transversal parameterized by clique-width. Our algorithms have a complexity match-
ing lower bounds. For the first open question, we extend the result to a slightly more
general setting. For Subset Even Cycle Transversal, we provided some structural
properties that may be useful to study this problem in another context. We can ask the
following open question: Is there an algorithm for Even Cycle Transversal, Subset
Odd Cycle Transversal or Subset Even Cycle Transversal parameterized by
clique-width matching the lower bound?

After the end of the internship, a publication [HK21] generalized our result for Odd
Cycle Transversal to a more general problem. Their proposed algorithm can be
improved by applying our tailored convolution computation.

This contribution has been submitted and accepted to a specialized conference (IPEC
2021). The results are mainly of technical nature, they are not particularly surprising
but required work.
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A. Appendix

1. Meta-information

First two weeks. Mainly bibliography. First ideas for an ECT algorithm parameterized
by treewidth.

Weeks 3-4. Writing a proof of algorithm for ECT. Bibliography and search on clique-
width algorithms for the second and third questions.

Weeks 5-6. Found algorithm for OCT and for NMwC parameterized by clique-width,
looking for lowerbound for OCT.

Weeks 7-8. Attending talks of “Journées CALAMAR” on graph width parameters.
Looking for a lower bound for OCT. Description and proof of NMwC algorithm.

Weeks 9-10. Lower bound proof for OCT. Looking for algorithm for SFVS parameter-
ized by clique-width.

Weeks 11-14. Looking for formalisation of SFVS algorithm. Improving previous proofs.
Thinking about generalisation of ECT algorithm.

Weeks 15-16. Writing first version of SFVS algorithm, SECT graph characterization.
Attending (remotely) CanaDAM conference.

Weeks 17-18. Group meetings on Directed Feedback Vertex Set. Planning write-up for
submission to IPEC 2021. Generalization of ECT algorithm to SECT and related
problems.

Last weeks. Finalizing write-up for submission. A few meetings on a project on twin-
width with Marcin after submission.

2. Proofs

Feedback Vertex Set relatives

Proof of Lemma 3.1. Suppose that G is a nontrivial 2-connected multigraph contain-
ing no even S-cycle.

If G contains no S-vertex, it is either bipartite or not, leading to the first possible
forms.

If G contains an S-vertex, it must contain an S-cycle C due to being a nontrivial
2-connected multigraph and C is odd because G contains no even S-cycle.
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Claim 2.1 If two vertices are connected by three disjoints paths at least two of which
are S-paths then two of the paths form an even S-cycle.

Proof. The three cycles formed by combining the paths are S-cycles and they cannot
all be odd: if we denote them C1, C2, C3, |C3| = |C1|+ |C2| − 2|C1 ∩ C2|. 2

Consider a connected component A of G− V (C).

Consider an S-vertex v of A, because G is a nontrivial 2-connected multigraph, there
exist two disjoint paths that connect v to distinct vertices a, b of C, a and b satisfy the
conditions of claim 2.1 leading to a contradiction. Hence, A cannot contain an S-vertex.

Since G is a nontrivial 2-connected multigraph, there are at least 2 edges between A
and distinct vertices of C. Consider 2 arbitrary distinct such edges, they cut C into
two paths P1 and P2 with extremities u and v. Since A is connected, there is a third
u–v path P3 through A. Only one of P1 and P2 may contain an S-vertex, by claim 2.1
applied to P1, P2, P3. In particular, u and v cannot be S-vertices, this implies that the
only edges incident to S-vertices in G are edges of cycle C, so S-vertices have degree 2.

Let Ã be the connected component of G−S containing A. Ã contains a maximal S-free
path of C because A is connected to C and cannot be adjacent to S-vertices. Ã contains
only one maximal S-free path of C because otherwise either we get two edges from A
to C that separate C in two S-paths and this was excluded in the previous paragraph,
or we have a chord ab in C that connects two distinct maximal S-free-paths and this is
excluded by Claim 2.1. In particular, note that this shows that Ã has outdegree 2 in G.

Consider a cycle C ′ of Ã, then there are 2 disjoint paths from it to the S-vertices
adjacent to Ã. If they are distinct we can connect them with a disjoint path via C. This
constructions contains two S-cycles C and C∆C ′ which must both be odd so C ′ can
only be even. Hence Ã contains no odd cycle so it is bipartite.

We can conclude that all connected components of G − S are bipartite and that
together with S-vertices they form a cycle.

Conversely, if G contains no S-vertex it does not contain any even S-cycle. If it is a
cycle of bipartite components and S-vertices with one S-cycle C being odd, then each
S-cycle C ′ goes through all bipartite components and S-vertices. Replacing the path of
C by the path of C ′ in each bipartite component preserves parity because endpoints are
unique. We conclude that all S-cycles are odd in G. 2

Proof of Lemma 3.2 We now introduce reduction rules that allow us to maintain a
simplified description of underlying forests relatively to a set of active vertices. Vertices
that are not active are called inactive. Theses rules and this terminology are derived
from [BBBK20].

Definition 11 Given a �-cycle-free graph G, its underlying forest F (G) and subset of
active vertices X, a reduced underlying forest Fr is obtained by applying exhaustively the
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following rules on F (G):

• Delete inactive vertices of degree at most one.

• For each maximal path P with internal inactive vertices of degree 2, we replace it
with a path P ′ with same endpoints, such that P ′ contains exactly one occurrence of
each label present in P and a single S-vertex if P contained one, where endpoints
are considered to be contained in P and P ′.

For SECT we add another rule: if a maximal path with internal inactive vertices of
degree 2 contains at least 2 vertices labeled “internal bipartite” but no vertex labeled
“odd cycle”, we keep 2 occurences of the label “internal bipartite”.

The set of reduced underlying forests obtained from F (G) with active vertices X is
denoted F (G,X).

Observe that a reduced forest is not unique, however properties that we will show
on them will not depend on the choice of representative. Furthermore, in our dynamic
programming states, we use rooted representations that are not necessarily unique either
for each reduced underlying forest.

In the next lemma we show that a reduced forest has bounded size. On a maximal
path with internal inactive vertices of degree 2 and 2 vertices labeled “internal bipartite”,
there is no vertex labeled “odd cycle”. Hence the maximum number of vertices on such
a path after the reduction is also bounded by the number of labels.

Lemma 2.1 In a problem using K label symbols (including S-membership), F ∈
F (G,X) has at most (K + 1)(2|X| − 2) + 1 vertices.

Proof. By the first reduction rule, all leaves of F are active vertices. We use the
following result that can be proved by induction.

Claim 2.2 A non-empty tree with p leaves and internal degree at least 3 has at most
2p− 1 vertices.

Consider the forest F ′ obtained from F by replacing maximal paths with inactive
internal vertices of degree 2 by edges. Let p denote the number of leaves of F ′ and q
denote the number of active vertices of degree 2. We deduce from the claim that F ′

has at most 2p + q − 1 vertices. p + q ≤ |X| because p and q are cardinals of disjoint
parts of X, so F ′ has at most 2|X| − 1 vertices. Then F ′ has at most 2|X| − 2 edges
which correspond to paths in F with at most K internal vertices. Summing up, F has
at most K(2|X| − 2) + 2|X| − 1 = (K + 1)(2|X| − 2) + 1 vertices. 2

The crucial property preserved by a reduced forest is the following.

Claim 2.3 For F ∈ F (G,X), for each pair of active vertices u and v, there is a path
between them in F (G) if and only if there is a path between them in F . For each label
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symbol, the path in F (G) contains a vertex with this symbol if and only if the path in F
contains a vertex with this symbol.

We immediately deduce the following lemma.

Lemma 2.2 For F ∈ F (G,X), for each pair of active vertices u and v, there is a
path between them in G if and only if there is a path between them in F . For each
type of nontrivial 2-connected component, a u–v path in G goes through at least one such
component if and only if the u–v path in F contains a vertex with the corresponding label
symbol (“internal bipartite” counts for the bipartite subcomponent but also the S-cycle
containing it). There exists a u–v path in G containing an S-vertex if and only if there
exists a u–v path in F containing an S-vertex or a vertex labeled “internal bipartite”. If
there is a u–v path in F , every unlabeled vertex that is on the u–v path in F is also on
all u–v paths in G.

A property that is not preserved by a reduced forest is the length of paths. Since we
are only interested in parity, we maintain a F2-labeling α of edges. We say that α is a
valid F2-labeling of F ∈ F (G,X) if, there exists β a F2-labeling of the edges of F (G)
such that edges incident to vertices labeled “bipartite” or “internal bipartite” are labeled
0 for one side of the bipartition and 1 for the other side, edges incident to other labeled
vertices are labeled 0, and edges between unlabeled vertices are labeled 1, and for each
edge uv of F , its label is the sum of labels on the edges of the u–v path in F (G). During
the application of reduction rules, each edge is given as its label the sum of labels of the
path that was connecting its endpoints.

Lemma 2.3 For F ∈ F (G,X), for each pair of active vertices u and v connected in
G, all u–v paths in G have same parity if and only if the path between u and v in F
contains no vertex with label symbol “odd cycle”, “not bipartite” or “internal bipartite”.
Furthermore, when this condition is satisfied, the parity of the paths in G is given by the
sum of labels on the edges of F .

The main technical engine of our algorithms is the following join operation.

Lemma 2.4 There exists a polynomial-time algorithm that, for every pair of �-cycle-
free graphs G1 and G2 with V (G1)∩V (G2) = X, given on input two reduced forests with
valid F2-labelings (F1, α1) and (F2, α2), with F1 ∈ F (G1, X) and F2 ∈ F (G2, X), decides
whether G1 ∪ G2 is �-cycle-free and, in case of a positive answer, computes a reduced
forest F ∈ F (G1 ∪G2, X) and, except for the SFVS problem, a valid F2-labeling α.

This section is devoted to the proof of Lemma 3.2. Denote H = F1 ∪ F2. Note that
the common vertices of F1 and F2 are exactly the vertices of X and they are unlabeled
vertices.

We start with some claims about the correspondence between H and G1 ∪ G2. We
partition 2-connected components ofH into blobs: a blob is a maximal union of nontrivial
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2-connected components of H such that every two 2-connected components of a blob
can be connected in H with a path whose all cutvertices are labeled vertices of H. The
reason behind this is that although a labeled vertex may be a cutvertex in H, since it is
labeled, it corresponds to a nontrivial 2-connected component of G1 or G2 by definition
of the underlying forest. Observe that if a labeled vertex is in a cycle of H then in the
union of underlying forests (not reduced) the cycle obtained by expanding contracted
paths contains two vertices of the labeled vertex’ corresponding component, meaning
that vertices along this cycle are in the same 2-connected component in G1 ∪G2.

Given a path P between active vertices in Fi, we define a lift of this path in Gi as
follows. Because there is a path between the endpoints of P in Fi, by Lemma 2.2,
there is a path P ′ between the two vertices in Gi. Note that the nontrivial 2-connected
components and cut vertices on the path are already determined. Inside the nontrivial
2-connected components, the path is completed arbitrarily except for the case of odd
cycles in SECT where a path without S-vertices is chosen if it exists. The labeled vertices
of P are not useful to define P ′, however by construction of Fi, they give information
about the lift.

Claim 2.4 Let W be a closed walk in a graph G, such that for every vertex v on W ,
at most one visit of W in v has the property that the in- and out-edge belong to distinct
2-connected components. Then, all edges of W lie in one 2-connected component of G.

Proof. Assume towards a contradiction that W contains edges of at least two
2-connected components, then it contains a cut vertex v of G. v is a vertex of W , so
it is visited once by W going from 2-connected component C1 to C2. Since it is a cut
vertex of G and W is a closed walk, there must be a second visit going back to C1.
We conclude that v violates the property that at most one visit of W in v has in- and
out-edges belonging to distinct 2-connected components. 2

Claim 2.5 If C is a blob of H, then there exists C ′ a nontrivial 2-connected component
of G1∪G2 that contains all unlabeled vertices of C and vertices in components represented
by labeled vertices of C.

Proof. First we consider a cycle C in H, it must consist of a succession of paths in
F1 and paths in F2 because F1 and F2 are forests. From each such maximal path of Fi
we can deduce a lift, now the succession of lifts defines a closed walk W . Let v be a
repeated vertex in W . Because C is a simple cycle in H, v is visited at most once in C
so other visits can only be caused by C visiting a labeled vertex u associated with the
nontrivial 2-connected component containing v. In such other visit, the vertices from
which W enter the 2-connected component represented by u are distinct from v because
it cannot be visited more than once in C. This means that the in- and out-edges of such
visit are in the nontrivial 2-connected component represented by u. We conclude that
conditions of Claim 2.4 are satisfied and deduce that W is contained in one 2-connected
component of G1 ∪G2.
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Now if two cycles C1 and C2 of H are not edge disjoint, then there exist two distinct
vertices a, b contained by both walks W1 and W2 obtained by lifts from C1 and C2. This
means that the 2-connected components of G1 ∪ G2 containing W1 and W2 have two
distinct vertices in common, so it must be the same 2-connected component.

If a labeled vertex u is in a cycle C of H, then all of the vertices that are contained in
the nontrivial 2-connected component B represented by u are inside the same maximal
2-connected component of G1 ∪ G2 as W the walk obtained by lifts from C. Indeed, if
u is in C, then W must contain two distinct vertices of B, and since B is 2-connected it
must be contained in the same 2-connected component of G1 ∪G2 as W .

Finally, if two cycles C1 and C2 of H are edge disjoint but share a labeled vertex u,
then consider the walks W1 and W2 in G1 ∪G2 obtained by lifts from C1 and C2. Each
walk must contain two distinct vertices of the 2-connected subgraph B represented by
u. Hence, the 2-connected component of G1 ∪ G2 containing B also contains W1 and
W2.

We conclude from the previous points that for B a blob of H, all of its vertices
and the vertices contained in its labeled vertices’ associated nontrivial 2-connected
component are in the same maximal 2-connected component of G1 ∪G2. 2

For a cycle C in G1 ∪G2 that contains edges of both G1 and G2, we construct a walk
W in H as follows. Since C contains edges of both G1 and G2, it can be decomposed into
paths P1, P2, . . . , P`, with ` even, and paths P1, P3, P5, . . . lying in G1 and P2, P4, P6 lying
in G2; the path Pi has both endpoints being active vertices, one being also the endpoint
of Pi−1 and one being also the endpoint of Pi+1. By Lemma 2.2, for each Pi there is a
corresponding path P ′i between the same endpoints in F1 or F2. The concatenation of
the paths P ′i is a closed walk in H which we call the contracted walk of C.

Claim 2.6 If C is a cycle of G1 ∪G2 that contains at least one edge of G1 and at least
one edge of G2, then its contracted walk in H visits more than once only labeled vertices.
Furthermore, it is contained in a single blob of H.

Proof. Because vertices of C appear at most once and vertices of the contracted
walk W that are not labeled are vertices of C appearing as many times, we conclude
that only labeled vertices can be visited more than once. Now only labeled vertices
can be cut vertices in W and by definition of blobs they do not separate distinct blobs. 2

We now move to the description of the algorithm of Lemma 3.2. For all problems, start
by computing the 2-connected components of H and blobs. Then, proceed as follows,
depending on the problem at hand.

SFVS. Check that no blob of H contains an S-vertex. Then, return any element of
F (H,X) as the desired forest. (There is no need to compute α for SFVS.)

ECT. For each blob B of H, proceed as follows. Reject if B is not a cycle or contains a
vertex with label “odd cycle”. Also reject if the sum of labels of edges of the cycle
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is 0. Otherwise, the edges of B are removed and a vertex adjacent to all vertices
of B is added, with a label “odd cycle”. The new edges are given label 0.

SOCT. For each blob B of H, proceed as follows. Check if B contains a cycle that does
not sum to 0, if not, compute the bipartition of vertices based on their potential.
Reject if B contains an S-vertex and either a cycle that does not sum to 0 or a
vertex labeled “not bipartite”. Otherwise, the internal edges of B are removed,
a vertex adjacent to unlabeled vertices of B is added, labeled vertices of B are
identified to it. The new vertex is an S-vertex if B contains an S-vertex and is
labeled “bipartite” if B contained no cycle that does not sum to 0 nor vertex labeled
“not bipartite”, otherwise, it is labeled “not bipartite”. If we add a vertex labeled
“bipartite”, two cases arise for edges incident to it. First, if the other endpoint is
in B, it is labeled with the computed potential of this endpoint. Second, if the
other endpoints is not in B, it corresponds to an edge that was incident to a former
labeled vertex v in B, we add the potential of v to the previous label of the edge.
If we add a vertex labeled “not bipartite”, we label all edges with 0.

SECT. For each blob B of H, proceed as follows. First, we consider the case when B
contains no S-vertex. Check with depth-first search if B contains a cycle that does
not sum to 0, if not, compute the bipartition of vertices based on their potential.
Reject if there is more than one vertex labeled “internal bipartite” in B, or there
is a vertex labeled “internal bipartite” and a cycle that does not sum to 0, or
there is a vertex labeled “internal bipartite” and a vertex labeled “not bipartite”.
Otherwise, add a vertex, make it adjacent to unlabeled vertices of B and identify
labeled vertices of B to it. This additional vertex is labeled “bipartite” if B
contained no cycle that does not sum to 0 nor vertex labeled “not bipartite” or
“internal bipartite”, it is labeled “internal bipartite” if it contained a vertex labeled
“internal bipartite”, and it is labeled “not bipartite” otherwise. If we add a vertex
labeled “bipartite” or “internal bipartite”, two cases arise for edges incident to it.
First, if the other endpoint is in B, it is labeled with the computed potential of
this endpoint. Second, if the other endpoints is not in B, it corresponds to an edge
that was incident to a former labeled vertex v in B, we add the potential of v to
the previous label of the edge. If the additional vertex is labeled differently, we
label all edges with 0.

Consider now the case when B contains an S-vertex. Reject if one of the following
cases occur: B contains a vertex labeled “not bipartite”, “odd cycle”, or “internal
bipartite”, there is an S-vertex in B that is of degree more than 2, or there is
a connected component of B − S where the number of edges with exactly one
endpoint in the said component is more than 2. Otherwise, pick some S-vertex v
in B. We define B̃ as the graph obtained from B by subdividing v in two vertices
separated by a new edge labeled 1 and each adjacent to one of the two edges that
were adjacent to v. Check with depth-first search if B̃ contains a cycle that does
not sum to 0, if not, compute the bipartition of vertices based on their potential. If
we did not reject, for each connected component B′ of of B−S, a vertex adjacent
to unlabeled vertices of B′ and labeled “internal bipartite” is added and labeled

27



vertices of B′ are identified with it. Then edges of B incident to its S-vertices are
also removed and a vertex labeled “odd cycle” adjacent to S-vertices of C and to
the new vertices labeled “internal bipartite” is added. For an edge e incident to a
vertex labeled “internal bipartite” but not to a vertex labeled “odd cycle”, either
e is labeled with the computed potential of its other endpoint in B, or the other
endpoint is not in B, so e used to be incident to labeled vertex v in B, then we
add the potential of v to the edge’s previous label. Other edges are labeled 0.

We conclude by reducing the forest obtained from H and denote by F the resulting
forest.

Claim 2.7 The join processing rejects if and only if G1 ∪G2 is not �-cycle-free.

Proof. For SFVS, if the join processing rejects then there is a blob of H containing
an S-vertex, by Claim 2.5, there is a nontrivial 2-connected component containing an
S-vertex in G1 ∪G2 so there is an S-cycle.

Conversely, if G1∪G2 is not S-cycle-free, since G1 and G2 are S-cycle-free, it contains
an S-cycle C. We consider the contracted walk of C in H. By Claim 2.6, this walk is
contains an S-vertex in H and is contained in a blob of H, causing the join to reject.

For ECT, if the join processing rejects one the following happens.

• There is a blob B that is not a cycle in H, then by Claim 2.5, there is a nontrivial
2-connected component C of G1 ∪ G2 containing its vertices and because it each
path in B can be lifted in a walk in C, there is more than one cycle in C.

• There is a blob B that contains a vertex labeled “odd cycle”, then by Claim 2.5,
there is a 2-connected component of G1 ∪G2 containing an odd cycle and a vertex
that is not in this cycle.

• The sum of labels on edges of the cycle is 0 in a blob of H that is a cycle, then there
must be a non trivial 2-connected component containing its vertices in G1 ∪G2 by
Claim 2.5 and it must be bipartite, so there is an even cycle in G1 ∪G2.

In all cases, we conclude that G1 ∪G2 is not even-cycle-free with Lemma 3.1.

Conversely, if there exists an even cycle in G1 ∪G2, since it is not contained in G1 or
G2, it contains edges of both, by Claim 2.6, its contracted walk W visits more than once
only labeled vertices. First, if W contains a labeled vertex it causes a reject. Otherwise,
W must be a cycle of H. Consider the blob containing W , either it is not a cycle,
causing a reject, or it is a cycle, hence it is exactly W which cannot sum to 0 because it
represents an even cycle, this also causes a reject.

For SOCT, if the join processing rejects then there must exist a blob B of H that
contains an S-vertex v and either a cycle that does not sum to 0 or a vertex labeled “not
bipartite”, by Claim 2.5 there is a 2-connected component C of G1 ∪ G2 containing v
but also an odd cycle: if B contains a vertex labeled “not bipartite”, then C contains an
odd cycle contained in G1 or G2, otherwise B contains a cycle that does not sum to 0
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which means that C is not bipartite by Lemma 2.3. From Lemma 3.1 we conclude that
G1 ∪G2 is not odd-S-cycle-free.

Conversely, if G1 ∪G2 contains an odd S-cycle, since it is not contained in G1 or G2,
by Claim 2.5, there must be a corresponding contracted walk W in H, which is contained
by a blob B of H. If the blob B contains a vertex labeled “not bipartite”, it causes a
reject, otherwise the walk W in H encodes parity correctly by Lemma 2.3, so a cycle
that does not sum to 0 will be found, causing a reject.

For SECT, if the join processing rejects then there must exist a blob B of H that does
not respect a condition, let C denote the nontrivial 2-connected component of G1 ∪G2

containing its vertices (Claim 2.5). We first suppose that B contains no S-vertex.

• If B contains two vertices labeled “internal bipartite”, then either C contains only
one odd-S-cycle component but then we added an S-free path between two of
its bipartite subcomponents, or C contains two odd-S-cycle components. In both
cases, C is not of a form that is possible for G1 ∪G2 even-S-cycle-free.

• If B contains a vertex labeled “internal bipartite” and a vertex labeled “not bipar-
tite” or a cycle that does not sum to 0, then C contains an odd-S-cycle component
and an odd cycle (either from the contained component that is not bipartite, or
the cycle that does not sum to 0). In both cases, C is not of a form that is possible
for G1 ∪G2 even-S-cycle-free.

We now suppose that B contains an S-vertex.

• If B contains a vertex labeled “not bipartite” or “odd cycle”, then C cannot be of
the form that is possible for G1 ∪G2 even-S-cycle-free.

• If B contains a vertex labeled internal bipartite then either we have added a path
containing an S-vertex between two vertices of the same bipartite subcomponent
of an odd-S-cycle component contained in G1 or G2, or we have added a path
between two existing bipartite subcomponents. In both cases C cannot be of the
form that is possible for G1 ∪G2 even-S-cycle-free.

• If B contains an S-vertex that is of degree more than two, or a connected com-
ponent of B − S has more than 2 edges with exactly one endpoint in the said
component, then the same holds in C. This contradicts the form of a nontrivial
2-connected component containing an S-vertex for G1 ∪G2 even-S-cycle free

• If B̃ contains a cycle that does not sum to 0, then there must exist an even S-cycle
in G by construction of B̃ and Lemma 2.3. This immediately implies that G1∪G2

is not even-S-cycle-free.

Conversely, if G1 ∪ G2 contains an even S-cycle C, then because G1 and G2 don’t
contain it, by Claim 2.6, the corresponding contracted walk W in H is in a single
blob B of H. B contains an S-vertex from containing W . Either, B contains labeled
vertices that are not labeled bipartite or does not respect the degree conditions,
causing a reject, or it contains only labeled vertices with label “bipartite” which means
that the parity of paths in B is correctly encoded (Lemma 2.3), and all S-cycles
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contain all S-vertices from degree properties, in particular, we can deduce that any
S-vertex chosen to be subdivided in B̃ would be in C, and then the cycle has even length
which will cause a the existence of a cycle that does not sum to 0 in B̃, causing a reject. 2

Claim 2.8 The computed forest is in F (G1 ∪G2, X) and the computed F2-labeling α of
its edges is valid for it, if G1 ∪G2 is �-cycle-free.

Proof. Consider a nontrivial 2-connected component C of G1∪G2, it may be contained
in G1 or G2, in this case its active vertices have already been connected to a labeled
vertex representing C so there is nothing more to do. If C contains edges from both G1

and G2 then there must be a blob B in H that contains part of the active vertice of C.
By construction, active vertices of C will be adjacent to the labeled vertex representing
their component: they can only be in B or adjacent to a labeled vertex in B and labeled
vertices were identified to the new vertex. Furthermore, one can check that the choice of
labels correspond to the forms of the components of G1 ∪G2 based on the information
stored in the labels of F1 and F2, and no information can be missing (Lemmata 2.2 and
2.3).

The vertices that were removed in F (G1) and in F (G2) to obtain F1 and F2 must
still be removed in F (G1 ∪G2). In particular when a path of inactive vertices of degree
2 leads to the creation of a cycle, its inactive vertices become leaves and can then all
be simplified. Because after producing a forest we reduce it, there cannot be additional
reductions to be performed, hence the computed forest is in F (G1 ∪G2, X).

It is straightforward to check that α is a valid F2-labeling of F . 2

We conclude the proof of Lemma 3.2 with an observation that it is straightforward to
implement the discussed algorithm to run in time polynomial in the input size. Finally,
note that the input size is of size O(|X|). 2

Proof of Lemma 3.3. By induction on T .

1. If t is a leaf node, then choosing U = ∅ we have that (t,∅,∅,∅) is admissible.

2. If t is an introduce vertex node with child t′, introducing vertex v, then for
(t, Y, F, α) a reachable state, there exists the state that gave it optimal value
(t′, Y ′, F ′, α′). By induction hypothesis applied to (t′, Y ′, F ′, α′), there exists U ′

such that Y ′ = Xt′ \ U ′, Gt′ − U ′ is �-cycle-free, F ′ is a forest description of a
member F (Gt′ −U ′, Y ′), α′ is a valid F2-labeling of F ′ and d[t′, Y ′, F ′, α′] = c(U ′).
If v /∈ Y , then we can deduce the transition that was used, we set U = U ′ ∪ {v},
since Y ′ = Xt′ \ U ′ and Xt = Xt′ ∪ {v}, we have Y = Xt \ U . We also have
d[t, Y, F, α′] = d[t′, Y ′, F ′, α′] + c(v) = c(U ′) + c(v) = c(U). Gt − U = Gt′ − U ′,
F ′ = F , Y ′ = Y , so Gt−U is �-cycle-free, F is a forest description of a member of
F (Gt−U, Y ) and α is a valid F2-labeling of F . If v ∈ Y , then we deduce the transi-
tion and set U = U ′. then Y = Y ′∪{v} and since Y ′ = Xt′ \U ′ and Xt = Xt′∪{v},
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we have Y = Xt \ U . We also have d[t, Y, F, α] = d[t′, Y ′, F ′, α′] = c(U ′) = c(U).
Gt−U is �-cycle-free because Gt′−U ′ is and v is isolated. F is a forest description
of F (Gt −U, Y ) by construction, and α is a valid F2-labeling of F because v is an
isolated vertex.

3. If t is a forget vertex node with child t′, forgetting vertex v, then for (t, Y, F, α) a
reachable state, there exists the state that gave it optimal value (t′, Y ′, F ′, α′). By
induction hypothesis applied to (t′, Y ′, F ′, α′), there exists U such that Y ′ = Xt′\U ,
Gt′−U is �-cycle-free, F ′ is a forest description of a member of F (Gt′−U, Y ′), α′ is a
valid F2-labeling of F ′ and d[t′, Y ′, F ′, α′] = c(U). In all cases, d[t, Y, F, α] = c(U).
If v /∈ Y ′, then we can deduce the transition that was used, and there is nothing
to show since Y = Y ′, Gt − U = Gt′ − U , F = F ′ and α = α′. If v ∈ Y ′, then
we can deduce the transition that was used. We have Y = Y ′ \ {v} = Xt \ U .
Gt−U = Gt′ −U ∪H so, by Claim 2.7, Gt−U is �-cycle-free. By Claim 2.8, F is
a forest description of a member of F (Gt−U, Y ) and α is a valid F2-labeling of F .

4. If t is a join node with children t1 and t2, then for (t, Y, F, α) a reachable state,
there exist states that gave it the optimal value (t1, Y, F1, α) and (t2, Y, F2, α2).
By induction hypothesis applied to these states, for i ∈ {1, 2}, there exists Ui such
that Y = Xti \ Ui, Gti − Ui is �-cycle-free, Fi is a forest description of a member
of F (Gti −Ui, Y ), αi is a valid F2-labeling of Fi and d[ti, Y, Fi, αi] = c(Ui). We set
U = U1 ∪ U2, then Gt − U = Gt1 − U1 ∪ Gt2 − U2 and since Xt = Xt1 = Xt2 , we
have Y = Xt \U . By Claim 2.7, Gt−U is �-cycle-free. By Claim 2.8, F is a forest
description of a member of F (Gt − U, Y ) and α is a valid F2-labeling of F .

2

Proof of Lemma 3.4 By induction on T .

1. If t is a leaf node, then for U ⊆ V (Gt), we have U = ∅ and Gt − U is the
empty graph which is �-cycle-free. we have a reachable state (t,∅,∅,∅) with
d[t,∅,∅,∅] = 0 ≤ c(U).

2. If t is an introduce vertex node with child t′ introducing vertex v, then for U ⊆
V (Gt) such that Gt−U is �-cycle-free, we set U ′ = U \{v} = U ∩V (Gt′). Gt′−U ′
is an induced subgraph of Gt−U , hence it is �-cycle-free. By induction hypothesis,
there exist F ′, α′ such that (t′, Xt′\U ′, F ′, α′) is reachable and d[t′, Xt′\U ′, F ′, α′] ≤
c(U ′). There are two cases, either v ∈ U or v /∈ U and a transition for each case so
there exist F, α such that (t,Xt \U,F, α) is reachable and d[t,Xt \U,F, α] ≤ c(U).

3. If t is a forget vertex node with child t′ forgetting vertex v, then for U ⊆ V (Gt)
such that Gt−U is �-cycle-free, Gt′−U is a subgraph of Gt−U so it is �-cycle-free.
By induction hypothesis, there exist F ′, α′ such that (t′, Xt′ \U,F ′, α′) is reachable
and d[t′, Xt′ \U,F ′, α′] ≤ c(U). By Claim 2.7, there is a transition producing F, α
such that (t,Xt \ U,F, α) is reachable and d[t,Xt \ U,F, α] ≤ c(U).

4. If t is a join node with children t1 and t2, then for U ⊆ V (Gt) such that Gt −U is
�-cycle-free, we set U1 = U ∩ V (Gt1) and U2 = U ∩ V (Gt2). Hence, Gt1 − U1 and
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Gt2 − U2 are induced subgraphs of Gt − U so they are �-cycle-free. By induction
hypothesis, for i ∈ {1, 2}, there exist Fi, αi such that (ti, Xti\Ui, Fi, αi) is reachable
and d[ti, Xti \Ui, Fi, αi] ≤ c(Ui). By Claim 2.7, there is a transition producing F, α
such that (t,Xt \U,F, α) is reachable and d[t,Xt \U,F, α] ≤ d[t1, Xt1 \U1, F1, α1]+
d[t2, Xt2 \ U2, F2, α2] ≤ c(U1) + c(U2) = c(U).

2

Node Multiway Cut

Algorithm and auxiliary graph A state in our dynamic programming will consist of
a near-partition P of labels according to the expected evolution of their connectivity,
where two subsets have a special role : P∅ will denote labels that contain no vertex, Pf
will denote labels that will only be joined to empty labels in the future, other subsets
P1, . . . , Pk represent labels that may form a connected component in the future, together
they form P∗; and a function φ : [k] → {0, 1} indicating if the component contains a
terminal.

Given a labeled graph G = (V,E, γ) and a near-partition P of labels, we define the
auxiliary graph

HP(G) :=

V,E ∪ {uv | u, v ∈ ⋃
j∈Pi

Vj(G), u 6= v, Pi ∈ P∗}, γ


In HP(G), for each Pi ∈ P∗,

⋃
j∈Pi Vj(G) is completed to form a clique.

We say that X ⊆ V (Gt) is admissible for state (t,P, φ) if :

• ∀j ∈ P∅, Vj(Gt) ⊆ X (or equivalently Vj(Gt −X) = ∅)

• for u ∈ Vα(Gt −X), v ∈ Vβ(Gt −X) with α ∈ Pi, β ∈ Pj , i 6= j, there is no path
from u to v in Gt −X

• for each Pi ∈ P∗, if the connected component of vertices
⋃
j∈Pi Vj(Gt − X) in

HP(Gt −X) contains a terminal, φ(i) = 1

• each connected component of HP(Gt −X) contains at most one terminal

The minimum solution to Node Multiway Cut is stored in d[r,Pf , 0̃] where r is the
root of the expression, Pf contains all labels in Pf , 0̃ is the constant function with value
0.

Computations for each operation of the k-expression :

1. Gt = i(v): For non-terminals, enumerate all possible (P, 0̃) and put value c(v) if i
is in P∅ and 0 otherwise. For other all other states, put value +∞.

For terminals, enumerate all possible (P, φ) and put value 0 if i is not in P∅ and
φ(j) = 1 with Pj ∈ P∗ containing i, and otherwise value +∞.
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2. Gt = Gt1 ⊕Gt2 : The value for each state of t is computed by d[t,P, φ] :=

min{d[t1,P, φ1]+d[t2,P, φ2] | ∀Pi ∈ P∗, φ1(i) = 0 or φ2(i) = 0, φ(i) = φ1(i)+φ2(i)}

3. Gt = ηi×j(Gt′): For each state (t′,P, φ) such that i ∈ P∅ or j ∈ P∅ or ∃α, i, j ∈ Pα,
we apply the following transitions:

d[t,P ′, φ′]← d[t′,P, φ]

with P ′ describing all possible near-partitions obtained from P by moving i, j ac-
cording to the automaton described in figure 3 and φ′ obtained from φ by changing
to 0 the values for α such that Pα becomes empty in P ′.

4. Gt = ρi→j(Gt′): For each state (t′,P, φ) such that i ∈ P∅ or j ∈ Pf or ∃α, i, j ∈ Pα,
we apply the transitions:

d[t,P ′, φ′]← d[t′,P, φ]

with P ′ describing all possible near-partitions obtained from P by moving i to any
of P∅, P1, . . . , Pk, Pf and φ′ obtained from φ by changing to 0 the values for α such
that Pα becomes empty or contains only i in P ′.

Transitions preserve admissibility We will call empty a label that is in P∅.

1. Gt = i(v): Only admissible states have finite value.

2. Gt = Gt1 ⊕Gt2 : If there exist X1 and X2 admissible for (t1,P, φ1) and (t2,P, φ2)
s.t. ∀Pi ∈ P∗, φ1(Pi) = 0 or φ2(Pi) = 0, then X := X1 ∪ X2 is admissible for
(t,P, φ) for φ s.t. φ = φ1 + φ2 :

•
⋃
j∈P∅

Vj(Gt) =
(⋃

j∈P∅
Vj(Gt1)

)
∪
(⋃

j∈P∅
Vj(Gt2)

)
⊆ X1 ∪X2

• for u ∈
⋃
j∈Pα Vj(Gt −X), v ∈

⋃
j∈Pβ Vj(Gt −X) with α 6= β, if they are not

from the same subtree, there cannot be a path between them in Gt −X. If
they are from the same subtree, there is no path between them because X1

and X2 are admissible.

• the conditions on φ ensure that if the connected component of Pi(Vt \ X)
contains a terminal, φ(A) = 1.

• since only one of φ1 and φ2 is positive on each i, the corresponding connected
component of H(Gt −X) contains at most one terminal.

3. Gt = ηi×j(Gt′): If X is admissible for (t′,P ′, φ′) and i and j that are in the same
Pα ∈ P ′∗, then X is admissible for (t,P ′, φ) because HP ′(Gt−X) = HP ′(Gt′−X).
If P is obtained from P ′ by putting i and/or j in Pf , X is admissible for (t,P, φ):

•
⋃
j∈P∅

Vj(Gt) =
⋃
j∈P∅

Vj(Gt′) ⊆ X
• for u ∈

⋃
j∈Pα Vj(Gt−X), v ∈

⋃
j∈Pβ Vj(Gt−X) with α 6= β, suppose towards

a contradiction that there is a u-v path in Gt−X, then there is a u-v path in
HP(Gt−X) which contains a subset of edges of HP ′(Gt−X) = HP ′(Gt′−X),
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but then we get a u-v path in Gt′ − X with u ∈
⋃
j∈P ′α Vj(Gt

′ − X), v ∈⋃
j∈P ′β

Vj(Gt′ −X) so X is not admissible for (t′,P ′, φ′).

• If φ(i) = 0 then the corresponding component in HP ′(Gt − X) contains no
terminal so its vertices form components in HP(Gt −X) that do not contain
terminals.

• Connected components in HP(Gt−X) are subdivisions of those in HP ′(Gt−
X) so they cannot contain more than 1 terminal.

Moving a label from P∅ to some Pα ∈ P∗ does not affect HP(Gt −X) so it does
not affect admissibility.

4. Gt = ρi→j(Gt′): If X is admissible for (t′,P ′, φ′), if i and j are in the same Pα ∈ P ′∗
or i ∈ P∅, then HP(Gt −X) = HP ′(Gt′ −X). If j ∈ Pf then we apply the same
arguments as in the previous case, to show that X is admissible.

All possible cuts are considered Consider X ⊆ V (G) a node multiway cut, we will
show states such that X ∩ V (Gt) is admissible, that are linked by our transitions. We
construct such states by descending from the final state (r,Pf , 0̃), where r is the root of
the k-expression tree.

We will call empty a label i such that Vi(Gt −X) = ∅.

Suppose we are in t with state (t,P, φ).

We describe the partition for children nodes by giving the operations to perform on P
to obtain P ′. Connected components C of G −X are attributed indices δ(C) greedily,
for connected component C, PC denotes Pδ(C). Note that there cannot be more than
k indices used because there are only k labels and, when Pα becomes empty, α may be
attributed again.

For PC ∈ P ′∗, we put φ(δ(C)) = 1 if C ∩ V (Gt) contains a terminal and φ(δ(C)) = 0
otherwise.

If Gt = ηi×j(Gt′), for each α ∈ {i, j}, if Vα(Gt) ⊆ X then α is put in P ′∅, if Vα(Gt−X)
is contained in only one connected component C of G−X, put α in PC ∈ P ′∗.

If Gt = ρi→j(Gt′), if Vi(Gt′ −X) is empty, put it in P ′∅ else put i where j is.

If Gt = Gt1⊕Gt2 , the partition is left unchanged for each branch and φ1, φ2 are defined
as mentionned earlier for the children of the node.

This constructions uses only transitions of our algorithm :

• Join: Moving an affected label from P∅ to anywhere else is considered so putting
such label in P ′∅ in the construction is fine. The vertices contained in labels do
not change in this node, so some non empty label in PC ∈ P will necessarily be in
P ′C ∈ P ′∗. Affected labels can be moved to Pf . If none of the labels is empty, then
the joined labels can’t be in different components of G −X because G is defined
by the expression so G−X contains edges {uv : u ∈ Vi(Gt−X), v ∈ Vj(Gt−X)}.
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Moving labels to P∗ is only done when the labels are empty so φ will satisfy the
transition conditions.

• Relabel: Label i can be put anywhere so, in the construction, it does not matter
where it is in P (at this point it contains nothing). The labels always satisfy the
transition conditions. Vertices remain in the same element of P so φ is unaffected.

• Disjoint union: Since connected components of G − X contain at most one ter-
minal, and the vertices in the children are disjoint, the new functions satisfy the
conditions.

X is admissible for the final state (r,Pf , φ∅) :

•
⋃
j∈P∅

Vj(Gr) = ∅ ⊆ X
• all vertices are in labels of Pf .

• P∗f = ∅
• HPf (Gt−X) = Gt−X is such that each component contains at most one terminal

since X is a node multiway cut.

If X ∩ Vt is admissible for constructed state (t,P, φ), we show that X ′ := X ∩ V (Gt′)
is admissible for constructed state (t′,P ′, φ′) of some children t′.

It is clear that
⋃
j∈P ′∅

Vj(Gt′) ⊆ X since only empty labels are added to P ′∅.

For relabel, HP(Gt −X) = HP ′(Gt −X) because only an empty label moves to form
P ′ and φ′ = φ, so X is admissible for (t′,P ′, φ′).

For disjoint union :

• for u ∈
⋃
j∈Pα Vj(Gt′ − X), v ∈

⋃
j∈Pβ Vj(Gt′ − X) with α 6= β, suppose towards

a contradiction that there is no u-v path in Gt′ −X ′, then there is a u-v path in
Gt −X but then X can’t be admissible for (t,P, φ).

• for PC ∈ P∗, if the connected component of
⋃
j∈PC Vj(Gt′ − X) in HP(Gt′ − X)

contains a terminal, then C∩V (Gt′) contains it and, since its a terminal, φ(δ(C)) =
1.

• connected components of HP(Gt′ − X) contain less terminals because we only
remove edges and vertices from HP(Gt −X), thus they also contain at most one
terminal.

For join node, HP∗(Gt −X) = HP∗(Gt′ −X) because we use transitions of the algo-
rithm. Moving empty labels has no effect on H(Gt −X) and moving labels to P∗ that
are contained in the same connected component changes graph H but not its connected
components which is enough for the desired properties.

Therefore, the construction yields admissible states for the leaves where all admissible
states are enumerated so the algorithm cannot miss them. We can conclude that all
node multiway cuts will be found.
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We can conclude that the root contains the size of a minimal node multiway cut (the
last property of admissibility for the final state is exactly what we want).

Complexity There are less than (k+ 2)k2k states per node. For merge nodes, there are
less than 2k transitions per state, and for other nodes there are less than k2 transitions
per state. Thus we achieve O((k + 2)k+24kn) time complexity, with n the size of the
k-expression.

This is 2O(k log k)n) which meets the lower bound.

Subset Feedback Vertex Set

We describe a dynamic programming algorithm to solve Subset Feedback Vertex
Set on clique-width expressions. With a bottom-up computation, it builds small la-
beled forests that describe the graphs that can be obtained by vertex deletion but also
incorporate some guesses on the evolution of the graph.

A state of our dynamic programming will consist of a node of the k-expression,
a partially labeled forest, and a label state assignment P : [k] → Q, with Q =
{Q∅, Q1, Q

∗
1, Q2, Qw, Q

∗
w, Qf} the set of label states.

Now, considering an S-cycle-free graph G̃ obtained by vertex deletion, we will say that
a label i is compatible with label state:

• Q∅ if no vertex of G̃ is labeled i;

• Q1 if exactly one vertex of G̃ is labeled i, and it is not in S;

• Q∗1 if exactly one vertex of G̃ is labeled i, and it is in S;

• Q2 if at least two vertices of G̃ are labeled i, they are not in S, and no S-path in
G̃ has both its endpoints labeled i;

• Qw if at least two vertices of G̃ are labeled i, at least one S-vertex is labeled i, and
no S-path in G̃ has both its endpoints labeled i;

• Q∗w if at least two vertices of G̃ are labeled i, no path in G̃ has both its endpoints
labeled i; and

• Qf if at least two vertices of G̃ are labeled i.

These conditions, together with the constraints on joins that are expressed above, aim
to capture cases for which a join between labels of pairs of label states will not create
S-cycles—this will be explicited in proofs and illustrated in Figure 5. In the following,
we say that a label state assignment P is compatible with G̃ if each label is compatible
with its state in this graph. Note that looking at the properties of vertices in a label in
part gives the label state assignment that it should have: the conflicts are for choosing
between Qf , Q∗w and, based on the presence or not of an S-vertex, either Qw or Q2.
This is expected because these states contain the information on a guess on what will
later be added to the graph.
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A B

(a) Case 1: |A| ≥ 2, |B| ≥ 2,
and |A ∩ S|+ |B ∩ S| ≥ 1.

A B

(b) Case 2: |A| ≥ 1, |B| ≥ 2, and there
is an S-path with endpoints in B.

A B

(c) Case 3: |A| ≥ 1, |B| ≥ 1,
and there is an S-path con-
necting a vertex of A to one
of B.

Figure 5.: The three cases when a join (depicted in green) creates an S-cycle. The figures
illustrate the smallest number of vertices of S required. Thus, up to symmetry,
the vertices depicted in red have to be in S while the vertices in white may
or may not be in S.

Let us now introduce an auxiliary partially labeled graph which will conveniently
represent the connectedness implied by guesses we made so far when assigning labels to
label states, while simplifying the manipulation of labels. We point that this auxiliary
graph will not be computed by the algorithm: it shall only be used in the proofs. Given
a labeled graph G̃ and a label state assignment P, we denote by H(G̃,P) the partially
labeled graph obtained from G̃, by conducting the following modifications for each label
i:

• if i is in state Q2 or Qw, we add a vertex labeled i, connect it to other vertices
labeled i, and unlabel these vertices, making the added vertex the only vertex
labeled i;

• if i is in state Q∗w, we add an S-vertex labeled i, connect it to other vertices labeled
i, and unlabel these vertices, making the added vertex the only vertex labeled i;
and

• if i is in state Qf , we unlabel vertices labeled i.

Note that in the auxiliary graph, we add vertices that are not part of the original graph.
The role of these vertices—for states Q2, Qw, and Q∗w—is to represent the label i as
if it was connected (which will eventually be the case as we guessed a later join), as
well as manipulating nonempty labels as single vertices: for G̃ compatible with P, each
nonempty label i contains exactly one vertex in H(G̃,P), which we call representative
of i in H(G̃,P), and that we denote by h(i).

Recall that, when P is compatible with G̃, some connectedness conditions are satisfied
by label states. We say that a partially labeled multigraph F̂ expresses the connectedness
in H(G̃,P), for G̃ and P compatible, if:

• for each label i, there is at most one vertex labeled i in F̂ ;
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• to every vertex h(i) in H(G̃,P) corresponds a vertex r(i) labeled i in F̂ : we call it
the representative of label i in F̂ , and r(i) is an S-vertex if and only if h(i) is an
S-vertex; and

• for any two vertices h(i), h(j) in H(G̃,P), there exists a h(i)–h(j) path in H(G̃,P)
if and only if there exists a r(i)–r(j) path in F̂ , and there exists a h(i)–h(j) S-path
in H(G̃,P) if and only if there exists a r(i)–r(j) S-path in F̂ .

We are now ready to introduce reduction rules which, when applied on the multigraph
F̂ expressing the connectedness in H(G̃,P), will produce the aforementioned partially
labeled forest. The idea behind this forest is that, to check the existence of (S-)paths
linking representatives of labels i and j, unlabeled vertices of degree at most two in such
(S-)paths may be “contracted” as long as we do not remove all (S-)vertices on these
paths. In the following for a partially labeled multigraph F̂ , we denote by Red(F̂ ) the
forest obtained from F̂ by applying the following reduction rules:

• for each nontrivial 2-connected component C, we introduce an unlabeled vertex,
call it central vertex of C, connect it to vertices of C, and remove all other edges
inside the component;

• we iteratively remove unlabeled vertices of degree at most one;

• for each maximal S-path with internal unlabeled vertices of degree two, we replace
it by connecting the endpoints to a single new unlabeled S-vertex; and

• for each maximal path with internal unlabeled vertices of degree two that is not
an S-path, we replace it by a single edge between its endpoints.

It is easily seen that the produced graph is indeed a forest as the graph of nontrivial 2-
connected components of any graph is a tree, and each nontrivial 2-connected component
is replaced by a star.

Claim 2.9 Red(F̂ ) has O(k) vertices.

Lemma 2.5 Let G̃ be a labeled graph, and P be a label state assignment compatible
with G̃. If H(G̃,P) is S-cycle-free and F̂ expresses the connectedness in H(G̃,P), then
F = Red(F̂ ) expresses the connectedness in H(G̃,P).

Proof. Note that according to the reduction rules, no labeled vertex is removed nor
added to F̂ when computing F = Red(F̂ ). Hence the first two conditions on expressing
the connectedness in H(G̃,P) are fulfilled by F , whenever they are by F̂ . It remains
to show that the existence of (S-)paths between labeled vertices of F̂ is preserved in
F . First, note that any path P of F̂ going through a nontrivial 2-connected component
C can be turned into a 3-vertex path of F going through the central vertex of the
component, and having the first and last vertices of P restricted to C as endpoints.
Hence the first reduction rule preserves the desired property. Second, no unlabeled
vertex of degree at most one lies on a path linking two labeled vertices. Hence the
second reduction rule preserves the desired property, and the same conclusion is
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straightforward for the last two reduction rules. 2

A state of the dynamic programming algorithm is a tuple (t, F,P), where t ∈ V (T ),
F is a partially labeled forest, and P : [k]→ Q is a label state assignment. We say that
(t, F,P) is admissible if there exists X ⊆ V (G) such that P is compatible with Gt −X,
H(Gt −X,P) is S-cycle-free, and F expresses the connectedness in H(Gt −X,P). Our
dynamic programming algorithm will not consider all possible states, but compute a
value d[t, F,P] for some states (t, F,P). We call reachable a state that is considered
by the algorithm. We will show that reachable states are admissible, that for every
t ∈ V (T ), for each X ⊆ V (Gt), if Gt −X is S-cycle-free, then there exists a reachable
state (t, F,P) such that d[t, F,P] ≤ |X|, and that the optimal value for SFVS on the
given instance is the minimum of values d[r, F,P] where r is the root of the k-expression.

Computations and Correctness First, let us slightly modify our clique-width expres-
sion in order to simplify the description of our computations. We double the set of labels,
denoting them by {1, ..., k, 1′, ..., k′}, and replace each disjoint union node t with children
t1, t2 by the following subexpression: ρ1′→1(. . . ρk′→k(Gt1 ⊕ (ρ1→1′(. . . ρk→k′(Gt2))))).
This gives the property that in disjoint union nodes, each label is used by at most one
of the children nodes.

We now describe the bottom-up computation of reachable states for each possible type
of node in the clique-width expression.

Leaf node. If t is a leaf node with Gt = i(v), two cases arise. Either v is deleted which
is described by state (t, F∅,P∅) initialized with value c(v), where F∅ is the empty
graph, and P∅ is the function that maps every i ∈ [k] to Q∅. Otherwise we keep
v, which is described by state (t, F,P) where F consists of the isolated vertex v,
P(i) = Q∗1 if v ∈ S, P(i) = Q1 otherwise, and, for all j 6= i, P(j) = Q∅.

Join node. Let t be a join node with Gt = ηi×j(Gt′). For each reachable state (t′, F ′,P ′),
we proceed as follows. If the representatives of i and j are connected by an S-path
in F ′, we do nothing. Otherwise, we will construct states (t, F,P) defined in the
following cases, depending on P ′(i) and P ′(j), starting with F := F ′ and P := P ′:

• if one of i and j is in state Q∅, we do not modify F nor P;

• if i and j are in states Q1 or Q∗1, we add an edge between the representatives
of i and j in F ;

• if i and j are in states Q1 or Q2, we add an edge between the representatives
of i and j in F , and if i or j are in state Q2 they are allowed to change to
Qf in P, if they do we also unlabel their representative: we enumerate all
possibilities here;

• if i and j are in states Q∗1 and Q∗w, we identify their representative in F : the
resulting vertex has its label in state Q∗1, and the label in state Q∗w is assigned
state Qf in P; and
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• if i and j are in states Q1 and Qw, we identify their representative in F : the
resulting vertex has its label in state Q1, and the label in state Qw is assigned
state Qf in P.

For each such cases, we reduce F and propagate the value d[t′, F ′,P ′] to the states
(t, F,P), where P is the modified label state assignment.

Renaming label node. Let t be a renaming label node with Gt = ρi→j(Gt′). For each
reachable state (t′, F ′,P ′), we construct states (t, F,P) starting with P := P and
F := F ′ by first setting P(i) = Q∅, and proceeding as follows depending on P ′(i)
and P ′(j):

• if i and j are in a state among {Qf , Q1, Q
∗
1}, we unlabel the representatives

of i and j in F ′, and set P(j) = Qf ;

• if one of i and j is in state Q∅, then either i is in state Q∅ and we do nothing,
or j is in state Q∅, we assign it to the other label state, and the vertex of F
labeled i is relabeled j;

• if i and j are in state Q1, and the representatives of i and j are not connected
by a path in F ′, in F , we add an S-vertex labeled j, connect it to these
vertices, and unlabel them. Label j is then assigned state Q∗w in P;

• if one of i and j is in state Q∗1, the other is in state Q1 or Q∗1, and the
representatives of i and j are not connected by a path in F ′, we consider two
possibilities depending on whether they will be joined to a vertex of S, or to
a vertex of V (G) \ S. First, in F , we add a new vertex labeled j, connect
it to the representatives of i and j, and unlabel the representatives of i and
j. Then, if the new vertex is chosen to be in S, j is assigned state Q∗w in P.
Otherwise, j is assigned state Qw in P;

• if i and j are in states Qα and Qβ, for α, β ∈ {1, 2, w}, and the representa-
tives of i and j are not connected by an S-path in F ′, in F , we identify the
representatives of i and j: the resulting vertex is of label j, and j is assigned
state Qδ in P with δ := max

1<2<w
{2, α, β};

• if one of i and j is in state Q∗1, the other is in state Qw or Q2, and the
representatives of i and j are not connected by a path in F ′, in F , we add
an edge between the representatives of i and j, and the representative of the
label in state Q∗1 becomes unlabeled, while the other vertex is given label j.
Label j is assigned state Qw in P; and

• if one of i and j is in state Q∗w, the other is in state Q1 or Q∗1, and the
representatives of i and j are not connected by a path in F ′, in F , we add
an edge between the representatives of i and j, and the representative of the
label in state Q1 or Q∗1 becomes unlabeled, while the other vertex is given
label j. Label j is assigned state Q∗w in P.

For each such cases, we reduce F , and we propagate the value d[t′, F ′,P ′] to the
state (t, F,P), where P is the modified label state assignment.
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Disjoint union node. If t is a disjoint union node with Gt = Gt1 ⊕ Gt2 , for each pair
of reachable states (t1, F1,P1), (t2, F2,P2), since they use disjoint sets of labels,
we can simply define F = F1 ⊕ F2. The label state assignment P is defined
by P(i) = P1(i) for i ∈ [k] and P(i′) = P2(i′) for i′ ∈ {1′, . . . , k′}. The value
d[t1, F1,P1] + d[t2, F2,P2] is propagated to state (t, F,P).

We now prove the correctness of the algorithm.

Lemma 2.6 For each reachable state (t, F,P), there exists X ⊆ V (Gt) such that P is
compatible with Gt−X, H(Gt−X,P) is S-cycle-free, F expresses the connectedness in
H(Gt −X,P), and d[t, F,P] = c(X).

Proof. We proceed by induction on T . For convenience in the following, let us denote
by H and H ′ the graphs H(Gt − X,P) and H(Gt′ − X,P ′), by h(i) and h′(i) the
representative of label i in H and H ′, and by r(i) and r′(i) the representative of label i
in F and F ′, respectively. By an abuse of notation, we will denote by F both the graph
expressing the connectedness in H and its reduced forest Red(F̂ ); we may do so as a
reduction of F is computed at each transition of our algorithm, and by Lemma 2.5, the
obtained forest expresses the connectedness in H.

1. If t is a leaf node, the property is trivial.

2. Let t be a join node with Gt = ηi×j(Gt′) and (t, F,P) be a reachable state. Then
there exists a reachable state (t′, F ′,P ′) which gave the optimal value to (t, F,P),
i.e., such that d[t, F,P] = d[t′, F ′,P ′]. By induction hypothesis, there exists X
such that P ′ is compatible with Gt′ − X, H ′ is S-cycle-free, F ′ expresses the
connectedness in H ′, and d[t′, F ′,P ′] = c(X). Hence d[t, F,P] = c(X). It remains
to show that the properties for P, H(Gt − X,P), and F hold for each of the
transitions, depending on the label states assigned to i and j in P ′. The following
observation will be convenient.

Observation 2.1 Let G̃ be a graph, P be a label state assignment, i be a label
such that P(i) ∈ {Q2, Qw}, and j be a label such that P(j) = Q∗w. Then there is
an S-cycle containing h(i) in H(G̃,P) whenever there is a S-path having elements
of i as its endpoints in G̃, and then there is an S-cycle containing h(j) in H(G̃,P)
whenever there is a path having elements of j as its endpoints in G̃.

• If one label is in state Q∅, by compatibility of P ′ and Gt′ −X, we know that
the join added no edge to the graph, i.e., Gt−X = Gt′−X. By the described
transitions, P = P ′ and F = F ′. Hence H = H ′, and the conclusion follows.

• We now deal with the two next cases: these cases do not involve waiting
states. From the transition we know that there is no S-path between i and
j in F ′, and since F ′ expresses the connectedness in H ′, there is no S-path
between representatives of i and j in H ′. Let us show that H is S-cycle-free.
Consider the graph H ′ + A, where A = E(Gt − X) \ E(Gt′ − X) is the set
of edges added by the join. We note that, according to the transitions, either
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P = P ′, or P ′ differs from P by assigning one of i and j to Qf . In both cases,
H is a subgraph of H ′ + A. Recall that H ′ is S-cycle-free, and no S-path
connects the representatives of i and j. Hence if H ′ +A contains an S-cycle,
it must be contained in A, which is excluded by the compatibility of P ′ and
Gt′−X, more particularly by the constraints induced by compatibility on the
two joined labels: a join between labels of Q1 and Q∗1, or labels of Q1 and Q2,
cannot create a cycle. Hence H is S-cycle-free. The claim that Gt−X and P
are compatible follows from Observation 2.1 for the connectivity constraints,
and on the fact that either P = P ′ or P assigns one of i and j to Qf , for the
vertex constraints. Finally, note that any path having its endpoints in i and
j after the join has its “connectedness” expressed by F after adding the edge
r(i)r(j). This concludes that case.

• The other transitions involve a label in state Q1 or Q∗1, joined with a label in a
waiting state Qw or Q∗w, respectively. W.l.o.g., let us assume that i is in state
Q1 or Q∗1 and j in state Qw or Q∗w. Let v = h′(i) and w = h′(j). Consider the
graph H ′/vw, and denote by u the vertex obtained by identification of v and w,

where u has label i. We show that H = H ′/vw. By the transitions, i stays in
his state, and j is assigned state Qf in P. Hence in H, label i consists of the
single element v, and label j has no representative. Thus Vi(H) = Vi(H

′
/vw)

and Vj(H) = Vj(H
′
/vw). Now, the performed join on G′t − X adds every

edge between v and Vj(Gt′). Since NH′(w) = Vj(Gt′), these added edges
are exactly those incident to u in H ′/vw and that were not already present

in H ′. We conclude that H = H ′/vw as desired. Since H ′ is S-cycle-free,
an S-cycle of H must contain one of the identified vertices. However these
vertices are not connected by an S-path, by the first condition expressed in
the decription of the transitions. Consequently H is S-cycle-free, and the
compatibility of Gt − X and P then follows from Observation 2.1 for the
connectivity constraints, and from the fact that P only differs on P ′ on the
fact that it assigns j to Qf , for the vertex constraints. Clearly, identifying
the the representatives in F ′ preserves expressing the connectedness in H ′/vw,
and the conclusion follows.

3. Let t be a relabel node with Gt = ρi→j(Gt′), and (t, F,P) be a reachable state.
Then there exists a reachable state (t′, F ′,P ′) which gave the optimal value to
(t, F,P), i.e., such that d[t, F,P] = d[t′, F ′,P ′]. By induction hypothesis, there
exists X such that P ′ is compatible with Gt′ −X, H ′ is S-cycle-free, F ′ expresses
the connectedness in H ′, and d[t′, F ′,P ′] = c(X). Hence d[t, F,P] = c(X). We
show that the properties for P, H(Gt−X,P), and F hold for each of the transitions,
depending on the label types of i and j. We stress that in the following, Gt −X
and Gt′ −X are isomorphic: they only differ by their label assignments.

• We consider the first case where i and j are in a state among {Qf , Q1, Q
∗
1}.

Since P ′ is compatible with Gt′ − X, and the transition assigns i and j to
Q∅ and Qf , it is easily seen that P is compatible with Gt − X: after the

42



relabeling, Vi(Gt−X) is empty, and |Vj(Gt−X)| ≥ 2. Furthermore, as labels
i and j have no representative in H, and the representative of i and j in H ′, if
they exist, are vertices of Gt−X, we conclude that H and H ′ are isomorphic.
Consequently H is S-cycle-free. At last, as F only differs with F ′ on i and j
being unlabeled, and H has no representative for labels i and j, F expresses
the connectedness in H.

• The transition with one of i and j being in state Q∅ either corresponds to
doing nothing, or to swapping labels i and j in Gt−X and F : the conclusion
follows.

• We now consider the transition with both i and j in state Q1. Since their
representatives in F ′ are not connected by a path, their representatives in H ′

are not connected either. Since Gt′ −X and P ′ are compatible, labels i and
j are nonempty in Gt′ − X, and hence |Vj(Gt − X)| ≥ 2. Consequently, j
is compatible with state Q∗w in Gt − X after relabeling. As Vi(Gt − X) is
empty, we conclude that P and Gt −X are compatible. By construction, H
contains one representative for label j, and it is an S-vertex. The same holds
for F from the transition. Since F ′ expresses the connectedness in H ′, and
given that h(j) and r(j) are connected to Vj(Gt −X), and to r′(i) and r′(j),
respectively, it is easily checked that for any two representatives h(α), h(β) in
H, there is a h(α)–h(β) path going through h(j) in H if and only if there is
a r(α)–r(β) path going through r(j) in F . We deduce that F expresses the
connectedness in H. At last, H is S-cycle-free because H ′ is S-cycle-free, and
no path of H ′ links two vertices labeled j in Gt′ −X.

• We now consider the transition with a label in state Q∗1, and the other in
state Q1 or Q∗1. Since the representatives of i and j are not connected by
a path in F ′, and since F ′ expresses the connectedness in H ′, they are not
connected in Gt − X. As Vi(Gt′ − X) and Vj(Gt′ − X) are nonempty, we
deduce that j is compatible with state Q∗w or Qw, depending on whether j
is a S-vertex or not. As Vi(Gt −X) is empty, we conclude that Gt −X and
P are compatible. The fact that F expresses the connectedness in H follows
from the same arguments as in the previous case: the new representative of
j in F corresponds exactly to the new representative of j in H. Similarly, we
deduce that H is S-cycle-free because H ′ is S-cycle-free, and no path of H ′

links two vertices labeled j in Gt′ −X.

• We now consider the transition with labels in states Qα and Qβ, for α, β ∈
{1, 2, w}. From the transition, we also know that the representatives of i, j in
F ′ are not connected by an S-path. By the compatibility of P ′ and Gt′ −X,
labels i and j have a representative in H ′, and no pair of vertices in such
labels in Gt −X are connected by an S-path. Hence after relabeling, no pair
of vertices labeled j in Gt − X is connected by an S-path. If the new label
state is Q2, then the previous states were forcing j to contain no S-vertex.
If the new label state is Qw, then one of the previous states was Qw, which
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also requires i to contain at least one S-vertex. Now as Vi(Gt −X) is empty,
P and Gt −X are compatible. Note that the vertices that were put to label
j when relabeling are now connected in H. Identifying r′(i) and r′(j) in F ′

thus produces the desired result of expressing the connectivity in H. At last,
H is S-cycle-free because the new connections induced by the relabeling are
between vertices that were not connected by S-paths in H ′.

• We now consider the transition with a label in state Q∗1, and the other in
state Qw or Q2. Representatives of i, j are not connected by a path in F ′.
As one label is in state Q∗1, by compatibility of P ′ and Gt′ − X, it contains
an S-vertex. From F ′ expressing the connectedness in H ′, we conclude that
j is compatible with Qw. Since Vi(Gt − X) is empty, we have that P and
Gt − X are compatible. Then, the fact that F expresses the connectedness
in H follows from the fact that new connections created by h(j) in H are
expressed by an edge between r′(i) and r′(j) in F . At last, H is S-cycle-
free because H ′ is S-cycle-free, and vertices labeled i, j in Gt′ −X were not
connected by a path in H ′.

• We now consider the transition with a label in state Q∗w, and the other in
Q1 or Q∗1. We in addition know that the representatives of i, j in F ′ are
not connected by a path, and because F ′ expresses the connectedness in H ′,
the same holds in H ′. As one label is assigned Q∗w in P ′, we deduce from
compatibility that there is no path in H ′ between its vertices of Gt′−X. Since
Vi(Gt −X) is empty, we get that P and Gt −X are compatible. The same
argument as in the previous case show that F expresses the connectedness
in H, and that H is S-cycle-free: new connections created by h(j) in H are
expressed by an edge between r′(i) and r′(j) in F .

4. Let t be a disjoint union node with Gt = Gt1 ⊕ Gt2 , and (t, F,P) be a reachable
state. Then (t, F,P) was constructed by a transition from some (t1, F1,P1) and
(t2, F2,P2). By induction hypothesis applied to (t1, F1,P1) and (t2, F2,P2) and
the fact that the union is disjoint, there exist X1 and X2 such that, for X :=
X1 ∪X2, H(Gt −X,P) is S-cycle-free, P is compatible with Gt −X, F expresses
the connectedness in H(Gt−X,P), and d[t, F,P] = c(X1) + c(X2) = c(X). Hence
the conclusion.

2

In the following, we say that graph G is less connected than graph G′ if E(G) ⊆ E(G).
For auxiliary graphs H = H(G,P) and H ′ = H(G′,P) with V (G) = V (G′), denote by
R and R′ their accessibility relation restricted to V (G) = V (G′) (paths through other
vertices are allowed), we say that H is less connected than H ′ if R ⊆ R′.

Lemma 2.7 For each t ∈ V (T ), for each X ⊆ V (Gt), and for each label state assign-
ment P that is compatible with Gt−X and such that H(Gt−X,P) is S-cycle-free, there
exists F such that F expresses the connectedness in H(Gt−X,P), (t, F,P) is reachable
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and d[t, F,P] ≤ |X|.

Proof. We proceed by induction on T .

1. If t is a leaf node, then the statement holds by construction.

2. Let t be a join node with Gt = ηi×j(Gt′), X ⊆ V (Gt), and P be a label state
assignment such that P is compatible with Gt−X and H(Gt−X,P) is S-cycle-free.
First note that if label ` is compatible with P(`) in Gt −X, then it is compatible
with P(`) in Gt′−X. This allows us for labels ` ∈ [k]\{i, j} to keep label state P(`)
in the label state assignments P ′ and P ′′ that we will construct, while preserving
compatibility. In the following, we will only justify the compatibility for i and
j. For the transitions with a label in state Q∅, we immediately conclude that
the forest given by the transition expresses the connectedness in H(Gt − X,P)
from the induction hypothesis. For other transitions, by comparing paths that
appear when constructing F from F ′ with paths that are in H(Gt−X,P) but not
H(Gt′ −X,P ′), we deduce that F expresses the connectedness in H(Gt −X,P),
this is already done in detail in the previous lemma. We consider the following
cases based on the states of i and j:

• We first consider the case where P(i),P(j) ∈ {Q2, Qw, Q
∗
w, Qf}. Since P

is compatible with Gt − X, |Vi(Gt − X)| ≥ 2, |Vj(Gt − X)| ≥ 2. Then as
H(Gt−X,P) is S-cycle-free, it must be that none of the vertices in Vi(Gt′−X)
and Vj(Gt′ − X) are S-vertices, that no S-path connects a vertex of i to a
vertex of j in Gt′ − X, and that no S-path connects two vertices from i, or
two vertices from j, in Gt′ −X. Under these constraints, labels i and j are
compatible with state Q2 in Gt′ − X. We set P ′(i) = P ′(j) = Q2, P ′ is
compatible with Gt′ − X. Let us show that H(Gt′ − X,P ′) is S-cycle-free.
Suppose toward a contradiction that there is an S-cycle C in H(Gt′ −X,P ′).
Since C is not a subgraph of H(Gt−X,P), it must contain at least one of the
representatives of i and j. Suppose w.l.o.g. that C contains the representative
i. Then, if C contains an element of Vj(Gt′ − X), we deduce the existence
of an S-path connecting i and j in H(Gt′ −X,P ′), which can be completed
to form an S-cycle in H(Gt −X,P) using one of the edges added by the join
operation. This contradicts the fact that H(Gt −X,P) is S-cycle-free. If C
does not contain any vertex from Vj(Gt′−X), replacing the representative of i
by an arbitrary vertex in Vj(Gt′ −X) also yields an S-cycle in H(Gt−X,P),
and leads to the same contradiction. We conclude that H(Gt′ − X,P ′) is
S-cycle-free, as desired.

By induction hypothesis with, there exists F ′ such that F ′ expresses the
connectedness in H(Gt−X,P), (t′, F ′,P ′) is reachable, and d[t′, F ′,P ′] ≤ |X|.
Since the join connected vertices of Vi(Gt′ − X) to vertices of Vj(Gt′ − X),
Gt −X would not be compatible with P if P(i) = Q∗w or P(j) = Q∗w. Since
Vi(Gt −X) and Vj(Gt −X) are of size at least two, i and j are assigned Q2

or Qf in P. Both cases are covered by the transitions. We deduce that there
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exists F such that F expresses the connectedness in H(Gt −X,P), (t, F,P)
is reachable, and that d[t, F,P] ≤ d[t′, F ′,P ′] ≤ |X|.

• If P(i) = Q∅ or P(j) = Q∅, then Gt −X = Gt′ −X from compatibility and
join definition. So we can apply induction hypothesis with P and follow the
transition corresponding to Q∅ to conclude.

• If P(i),P(j) ∈ {Q1, Q
∗
1}, P is compatible with Gt′ −X and H(Gt′ −X,P) ⊆

H(Gt−X,P) so H(Gt−X,P) contains no S-cycle and no S-path between the
representatives of i and j. The induction hypothesis applied with P provides
F ′ such that F ′ expresses the connectedness in H(Gt′ −X,P ′), (t′, F ′,P) is
reachable and d[t′, F ′,P] ≤ |X|. Since H(Gt′ − X,P) contains no S-path
between representatives of i and j, and F ′ expresses the connectedness in
H(Gt′ −X,P), we can follow the transition to get F such that F expresses
the connectedness in H(Gt − X,P), (t, F,P) is reachable and d[t, F,P] ≤
d[t′, F ′,P ′] ≤ |X|.

• If {P(i),P(j)} = {Q1, Qf}, w.l.o.g. let us assume that P(i) = Q1 and P(j) =
Qf . We define P ′ and P ′′ obtained from P with P ′(j) = Qw and P ′′(j) = Q2.

If label j contains no S-vertex in Gt′ − X then it is compatible with P ′′,
and H(Gt′ −X,P ′′) is S-cycle-free because H(Gt −X,P) is S-cycle-free and
we can transform paths of H(Gt′ − X,P ′) as described in the key observa-
tion. By applying the induction hypothesis with P ′′, we get F ′′ such that F ′′

expresses the connectedness in H(Gt′ −X,P ′′), (t′, F ′′,P ′′) is reachable and
d[t′, F ′′,P ′′] ≤ |X|. We can then follow the transition that accepts types Q1

and Q2 and conclude.

Otherwise, Gt′ − X is compatible with P ′ and H(Gt′ − X,P ′) is S-cycle-
free because H(Gt − X,P) is S-cycle-free and we can transform paths of
H(Gt′−X,P ′) as described in the key observation. By applying the induction
hypothesis with P ′, we get F ′ such that F ′ expresses the connectedness in
H(Gt′ −X,P ′), (t′, F ′,P ′) is reachable and d[t′, F ′,P ′] ≤ |X|. We can then
follow the transition that accepts types Q1 and Qw and conclude.

• If {P(i),P(j)} = {Q∗1, Qf}, w.l.o.g. let us assume that P(i) = Q∗1 and P(j) =
Qf . Consider P ′ obtained from P by setting P ′(j) = Q∗w. Since H(Gt−X,P)
is S-cycle-free, we get that P ′ is compatible with Gt −X and that H(Gt′ −
X,P ′) is S-cycle-free. By induction hypothesis, there exists F ′ such that F ′

expresses the connectedness in H(Gt′ − X,P ′), (t, F ′,P ′) is reachable and
d[t, F ′,P ′] ≤ |X|. We can follow the transition for types Q∗1 and Q∗w and
conclude.

• If one of i and j is in state Q1 and the other is in state Q∗w or Qw, the newly
added path with endpoints in the label in state Q∗w makes it impossible for P
to be compatible with Gt −X.

• If {P(i),P(j)} = {Q1, Q2}, we apply the induction hypothesis with P and
follow the transition for types Q1 and Q2 to conclude.
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• If one of i and j is in state Q∗1 and the other is in state Q2, Qw or Q∗w, then
the join adds an S-path in Gt − X with endpoints in the label in state Q2,
Qw or Q∗w which makes it impossible for P to be compatible with Gt −X.

3. Let t be a renaming label node with Gt = ρi→j(Gt′), let X ⊆ V (Gt) and P ∈ Qk
such that P is compatible with Gt − X and H(Gt − X,P) is S-cycle-free. Note
that P(i) = Q∅ by compatibility. In the following, by comparing paths that
appear when constructing F from F ′ with paths that are in H(Gt−X,P) but not
H(Gt′ −X,P ′), we deduce that F expresses the connectedness in H(Gt −X,P),
this is already done in detail in the previous lemma. We consider the following
cases based on P(j):

• If P(j) = Qf , then consider P ′ where P ′(i) and P ′(j) are determined by the
type of the vertex with the corresponding label if it is unique in Gt′ − X
and are equal to Qf otherwise. Thus, P ′ is compatible with Gt′ − X and
H(Gt′ −X,P ′) is S-cycle-free because only labels change with H(Gt−X,P).
By induction hypothesis, we have F ′ such that F ′ expresses the connectedness
in H(Gt′−X,P ′), (t′, F ′,P ′) is reachable and d[t′, F ′,P ′] ≤ |X|. We can thus
use the corresponding transition and conclude.

• If P(j) = Q1 or P(j) = Q∗1, then only one of i and j contains a vertex in
Gt′ −X. We obtain P ′ from P by setting P ′(i) and P ′(j) according to which
label contains the vertex (note that one of them will be Q∅). Again, P ′ is
compatible with Gt′−X and H(Gt′−X,P ′) is S-cycle-free because only labels
change with H(Gt − X,P). By induction hypothesis, we have F ′ such that
F ′ expresses the connectedness in H(Gt′ −X,P ′), (t′, F ′,P ′) is reachable and
d[t′, F ′,P ′] ≤ |X|. We can follow the transition associated to type Q∅ and
conclude.

• If P(j) = Q2, then the vertices labeled i and j in Gt′ − X cannot contain
S-vertices by compatibility. We obtain P ′ from P by setting P ′(i) and P ′(j)
to Q∅, Q1 or Q2 based on the number of vertices with the corresponding
label in Gt′ −X. Again, P ′ is compatible with Gt′ −X and H(Gt′ −X,P ′)
is S-cycle-free. There cannot be an S-path between representatives of i and
j in H(Gt′ −X,P ′) because H(Gt −X,P) contains no S-cycle but has them
connected by an additional path. By induction hypothesis, we get F ′ such
that F ′ expresses the connectedness in H(Gt′−X,P ′), (t′, F ′,P ′) is reachable
and d[t′, F ′,P ′] ≤ |X|. We can then follow a transition and conclude.

• If P(j) = Qw, then consider P ′ obtained from P by setting P ′(i) and P ′(j)
to Q∅, Q1, Q∗1, Q2 or Qw based on the vertices with corresponding label
in Gt′ − X. P ′ is compatible with Gt′ − X, H(Gt′ − X,P ′) is S-cycle-free
because it is less connected than H(Gt − X,P) and H(Gt′ − X,P ′) cannot
have an S-path between representatives of i and j because H(Gt −X,P) is
S-cycle-free. By induction hypothesis, we get F ′ such that F ′ expresses the
connectedness in H(Gt′ − X,P ′), (t′, F ′,P ′) and d[t′, F ′,P ′] ≤ |X|. We can
then follow a transition and conclude.
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• Finally, if P(j) = Q∗w, then consider P ′ obtained from P by setting P ′(i) and
P ′(j) to Q∅, Q1, Q∗1 or Q∗w based on the vertices with corresponding label in
Gt′ −X. P ′ is compatible with Gt′ −X because a path between its vertices
labeled i or j would contradictH(Gt−X,P) being S-cycle-free, H(Gt′−X,P ′)
is S-cycle-free because it is less connected than H(Gt−X,P) and there is no
path between the representatives of i and j in H(Gt′−X,P ′) because it would
also contradict H(Gt−X,P) being S-cycle-free. By induction hypothesis, we
get F ′ such that F ′ expresses the connectedness in H(Gt′−X,P ′), (t′, F ′,P ′)
is reachable and d[t′, F ′,P ′] ≤ |X|. We can then follow a transition and
conclude.

4. Let t be a disjoint union node with Gt = Gt1⊕Gt2 , let X ⊆ V (Gt) and P ∈ Qk such
that P is compatible with Gt−X and H(Gt−X,P) is S-cycle-free. We define X1 =
X ∩V (Gt1) and X2 = X ∩V (Gt2), and construct P1 and P2 by taking the value of
P for their respective used labels, and taking value Q∅ otherwise. We immediately
get that, for i ∈ {1, 2}, Pi is compatible with Gti − Xi and H(Gti − Xi,Pi)
because used labels are disjoint. By induction hypothesis, we get F1 and F2 such
that F1 and F2 express the connectedness in H(Gt1 −X,P1) and H(Gt2 −X,P2)
respectively, (t1, F1,P1) and (t2, F2,P2) are reachable, d[t1, F1,P1] ≤ |X1| and
d[t2, F2,P2] ≤ |X2|. We can follow the transition and conclude.

2

Lemma 2.8 The minimum value of a reachable state of the root of the expression is
equal to the minimum size of a subset feedback vertex set.

Proof. For X∗ a subset feedback vertex set of minimum size, we define P∗ by
P∗(i) = Q∅ is Gr − X∗ has no vertex labeled i, P∗(i) = Qf if there are at least
2 vertices labeled i in Gr − X∗ and P∗(i) = Q1 or P∗(i) = Q∗1 based on the type
of vertex labeled a if there is exactly one. P∗ is compatible with Gr − X∗ and
H(Gr −X,P) = Gr −X contains no S-cycle. By Lemma 2.7, there is a state (r, F ∗,P)
such that d[r, F ∗,P] ≤ |X∗|. By Lemma 2.6, every reachable state has a value
that corresponds to a subset feedback vertex set so by minimality of |X∗|, we have
d[r, F ∗,P] = |X∗| and d[r, F ∗,P∗] ≤ d[r, F,P] for any other reachable state (r, F,P). 2

Proof of Theorem 3.2. From Lemma 2.8 we know that the algorithm computes the
solution to SFVS on G, For each t ∈ T , the number of states (t, F,P) is 2O(k log k) since
the forests have O(k) vertices by claim 2.9. Note that enumerating pairs of states for

disjoint union nodes takes time
(
2O(k log k)

)2
= 2O(k log k). Summing for all nodes of T (at

most n), we conclude that the values for all states can be computed in time 2O(k log k)·n. 2
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Odd Cycle Transversal

We describe a dynamic programming algorithm for Odd Cycle Transversal param-
eterized by clique-width. In the following, we consider a k-labeled graph G, and assume
that it comes with a k-expression of size n and its associated tree T with root r ∈ V (T ).

A state in our dynamic programming algorithm is a tuple (t,x) where t is a node of T ,
and x ∈ {0, 1, 2, 3}k is a vector. It is called admissible if there exists a triple (X,A,B)
with X an OCT of Gt and (A,B) an ordered bipartition of Gt − X, called compatible
with (t,x), such that

• Vi(Gt) ⊆ X for every i ∈ [k] with x[i] = 0;

• Vi(Gt −X) ⊆ A for every i ∈ [k] with x[i] = 1; and

• Vi(Gt −X) ⊆ B for every i ∈ [k] with x[i] = 2.

We call category of label i with respect to vector x the integer x[i]. Labels from category
3 may contain any vertex of Gt. Hence X is not characterized by x. In particular, two
OCTs for a same graph Gt may witness the admissibility of a single state (t,x): in d[t,x]
will be stored the size of one such OCT. We will later prove that the minimum size of
an OCT for G is found by iterating through the different values of states (r,x).

For convenience in the following, let us define the poset on ground set {0, 1, 2, 3} with
comparabilities 0 < 1, 0 < 2, 1 < 3, and 2 < 3, and consider the supremum and infimum
operations ∨ and ∧ on such a poset: a∨b denotes the unique minimal element c such that
both a ≤ c and b ≤ c, a∧b denotes the unique element c′ such that both a ≥ c′ and b ≥ c′.
We extend the order relation to pairs of vectors x,y ∈ {0, 1, 2, 3} by defining x ≤ y if
x[i] ≤ x[j] for all i, j ∈ [k]. Similarly, the supremum of pairs of vectors x,y ∈ {0, 1, 2, 3}k
is obtained by performing the supremum on each of their coordinates.

We describe a bottom-up computation of the values of states, handling each type
of node in T . First, we initialize d[t,x] = +∞ for every node t ∈ V (T ) and vector
x ∈ {0, 1, 2, 3}k. We then proceed to the computation of some states, called reachable
in the remaining of the section, going trough the following transitions:

• Leaf node. If t is a leaf node with Gt = i(v) for some vertex v and label i ∈ [k],
we set d[t, {0}k] = c(v), d[t,x] = 0, and d[t,y] = 0, where x[i] = 1, y[i] = 2, and
x[j] = y[j] = 0 for i 6= j ∈ [k]. These states correspond to either placing v into an
OCT we are constructing, or placing it into one of the two sides of a bipartition
we are setting.

• Disjoint union node. Let t be a disjoint union node with children t1, t2 such
that Gt = Gt1 ⊕ Gt2 . For each x ∈ {0, 1, 2, 3}k, we put

d[t,x] = min
x1∨x2≤x

d[t1,x1] + d[t2,x2].

• Join node. Let t be a join node with child t′ such that Gt = ηi×j(Gt′). We
do not modify states but only let through those whose join can only preserve the
bipartition induced by categories 1 and 2 in Gt′ . Such states are those (t′,x) which
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satisfy x[i] ∧ x[j] = 0, for which we put

d[t,x] = d[t′,x].

• Renaming label node. Let t be a renaming label node with child t′ such that
Gt = ρi→j(Gt′). For each reachable state (t′,x′) we create a vector x by setting
x[i] = 0, x[j] = x′[i] ∨ x′[j], and x[`] = x′[`] for ` 6∈ {i, j}. We then put

d[t,x]← d[t′,x′].

We show in the following lemma that reachable states are admissible and contain the
value of a compatible OCT.

Lemma 2.9 For every reachable state (t,x) there exists a compatible triple (X,A,B)
such that c(X) = d[t,x].

Proof. We proceed by induction on T .

Let t be a leaf node with Gt = i(v) for some vertex v and label i ∈ [k], then three
different states are initialized depending on whether v is placed in the OCT, or in one
of the two sides of the bipartition. Each of these states satisfies the conclusion.

Let t be a disjoint union node with children t1, t2 such that Gt = Gt1 ⊕ Gt2 , and
(t,x) be a reachable state. By the described transitions, there exist reachable states
(t1,x1) and (t2,x2) such that x ≥ x1 ∨x2 and d[t,x] = d[t1,x1] + d[t2,x2]. By induction
hypothesis, for i ∈ [2], there exist triples (Xi, Ai, Bi) compatible with (ti,xi) such that
c(Xi) = d[ti,xi]. As Gt = Gt1 ⊕ Gt2 , X = X1∪X2 is an OCT of Gt and (A1∪A2, B1∪B2)
defines a bipartition of Gt − X. Furthermore as x ≥ x1 ∨ x2, it is straightforward to
check that (X,A1 ∪ A2, B1 ∪ B2) are compatible with (t,x). We conclude noting that
c(X) = c(X1) + c(X2) = d[t1,x1] + d[t2,x2] = d[t,x].

Let t be a join node with child t′ such that Gt = ηi×j(Gt′), and (t,x) be a reachable
state. By the described transitions (t′,x) is also a reachable state satisfying one of the
conditions x[i] = 0, or x[j] = 0, or (x[i] = 1 and x[j] = 2), or (x[i] = 2 and x[j] = 1).
Furthermore, d[t,x] = d[t′,x]. By induction hypothesis, there exists a triple (X,A,B)
compatible with (t′,x) such that c(X) = d[t′,x], and hence such that c(X) = d[t,x].
According to the transition, as (X,A,B) and (t′,x) are compatible, every edge added
to Gt′ when performing the join operation either has an endpoint in X, or one in A and
the other in B. We deduce that X is also an OCT of Gt, and that (A,B) also defines a
bipartition of Gt. Hence, (X,A,B) is compatible with (t,x).

Let t be a renaming label node with child t′ such that Gt = ρi→j(Gt′), and let (t,x)
be a reachable state. By the described transitions there exists x′ such that x[i] = 0,
x[j] = x′[i] ∨ x′[j], and x[`] = x′[`] for ` 6∈ {i, j}, and such that d[t,x] = d[t′,x′]. By
induction hypothesis, there exists a triple (X,A,B) compatible with (t′,x′) such that
c(X) = d[t′,x′], and hence such that c(X) = d[t,x]. As Gt and Gt′ are isomorphic, X
is also an OCT of Gt, and (A,B) also defines a bipartition of Gt − X. As x[i] = 0
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and x[j] = x′[i] ∨ x′[j] are the only modifications made to x′, it is easy to check that
(X,A,B) is compatible with (t,x). 2

Lemma 2.10 For every node t ∈ V (T ), for every OCT X of Gt and bipartition (A,B)
of Gt − X, there exists x ∈ {0, 1, 2, 3}k such that (t,x) is reachable, compatible with
(X,A,B), and satisfies c(X) ≥ d[t,x].

Proof. We proceed by induction on T .

Let t be a leaf node with Gt = i(v) for some vertex v and label i ∈ [k], then three
different cases arise depending on whether v is placed in the OCT, or in one of the two
sides of the bipartition. For each of these cases, a compatible state is constructed and a
value satisfying c(X) ≥ d[t,x] is initialized.

Let t be a disjoint union node with children t1, t2 such that Gt = Gt1 ⊕ Gt2 , X be
an OCT of Gt, and (A,B) be a bipartition of Gt − X. As Gt = Gt1 ⊕ Gt2 , X1 =
X ∩ V (Gt1) and X2 = X ∩ V (Gt2) are OCTs of Gt1 and Gt2 , and the ordered pairs
(A1 = A ∩ V (Gt1), B1 = B ∩ V (Gt1)) and (A2 = A ∩ V (Gt2), B2 = B ∩ V (Gt2)) define
bipartitions of Gt1 − X1 and Gt2 − X2, respectively. By induction hypothesis, there
exist reachable states (t1,x1) and (t2,x2) with d[t1,x1] ≤ c(X1) and d[t2,x2] ≤ c(X2)
that are compatible with (X1, A1, B1) and (X2, A2, B2), respectively. By the described
transitions, the state (t,x) defined by x := x1∨x2 is computed, and it is compatible with
(X,A,B). Since c(X) = c(X1) + c(X2) we deduce d[t,x] ≤ d[t1,x1] + d[t2,x2] ≤ c(X) as
desired.

Let t be a join node with child t′ such that Gt = ηi×j(Gt′), X be an OCT of Gt, and
(A,B) be a bipartition of Gt −X. Since E(Gt′ −X) ⊆ E(Gt −X), X is also an OCT
of Gt′ −X, and (A,B) is also a bipartition of Gt′ −X. By induction hypothesis, there
exists a reachable state (t′,x) that is compatible with (X,A,B), and which satisfies
d[t′,x] ≤ c(X). Since (A,B) is a bipartition of Gt − X, the edges that were added to
Gt′ by the join operation either had an endpoint in X, or one in A and the other in
B. Hence, either one of the labels i and j is empty (category 0), or i and j are on
distinct sides of the partition. We conclude to a transition from (t′,x) to (t,x), and
hence d[t,x] ≤ d[t′,x] ≤ c(X).

Let t be a renaming label node with child t′ such that Gt = ρi→j(Gt′), X be an
OCT of Gt and (A,B) be a bipartition of Gt − X. Since Gt and Gt′ are isomorphic,
X is also an OCT of Gt′ , and (A,B) is also a bipartition of Gt′ − X. By induction
hypothesis, there exists a reachable state (t′,x′) that is compatible with (X,A,B), and
which satisfies d[t′,x′] ≤ c(X). The transition from this state gives us a reachable state
(t,x) such that d[t,x] ≤ d[t′,x′] ≤ c(X). The obtained state (t,x) is still compatible
with (A,B), as its modification exactly translates the change of label of the concerned
vertices. 2

We deduce the correctness of our algorithm.
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Lemma 2.11 The minimum size of an OCT for G is equal to the minimum, among
x ∈ {0, 1, 2, 3}k, of d[r,x].

Proof. Let X∗ be an OCT of G of minimum size, and (A,B) be a bipartition of G−X∗.
By Lemma 2.10, there exists a reachable state (r,x) compatible with (X∗, A,B) such
that c(X∗) ≥ d[r,x]. By Lemma 2.9, for every other state (r,y), either (r,y) is not
reachable and d[r,y] = +∞, or it is reachable and there exists an OCT Y of G such
that c(Y ) = d[r,y]. We conclude by noting that c(X∗) ≤ c(Y ) for every such set Y . 2

We conclude the section with the time analysis.

Lemma 2.12 There are at most O(4k · n) possible states in total, and computing all
reachable states takes O(4k · k · n) time.

Proof. There are 4k states per node of the k-expression, hence there are at most
O(4k · n · k2) possible states in total in the algorithm.

The computation of a leaf node takes O(1) time, and the computations of a join or
renaming label node is done within O(4k) time. Let us show that the computation of a
disjoint union node t takesO(4k ·k) time. We first compute δi(x) = min{d[ti,x

′] : x′ ≤ x}
for i ∈ [2] and every x ∈ {0, 1, 2, 3}k. This is done in O(4k · k) time starting from
δi({0}k) = d[ti, {0}k], and computing the other values from bottom to top, observing
that, by monotonicity of δi, δi(x) = min{d[ti,x], δi(x

′) : x′ ∈ pred(x)}, where pred(x)
denote the immediate predecessors of x in {0, 1, 2, 3}k with respect to ≤. Now, note that
by definition of the supremum, we have the following identity:

min
x1∨x2≤x

d[t1,x1] + d[t2,x2] = min
x1≤x

d[t1,x1] + min
x2≤x

d[t2,x2].

We deduce that d[t,x] = δ1(x) + δ2(x).

Summing up, our algorithm runs in time O(4k · k · n). 2

The lower bound Our construction follows the line of the ones for Independent Set
and Odd Cycle Transversal in [LMS11]. Let ϕ be an instance of SAT on n variable
and m clauses. Note that we may assume that n is even, as otherwise we can add a
single extra dummy variable to the instance with no impact on the satisfiability of ϕ. We
denote by ρ the sum of the sizes of the clauses in ϕ, i.e., the total number of occurrences
of literals in ϕ.

Let us first describe a gadget introduced in [LMS11, Section 7]. For two vertices u, v
we call arrow from u to v and denote by A(u, v) the graph consisting of a path ua1a2a3v
on five vertices, together with the additional four vertices b1, b2, b3, b4 and eight edges
ub1, b1a1, a1b2, b2a2, a2b3, b3a3, a3b4, b4v. This graph is illustrated in Figure 6. Note that
such a graph has a unique smallest OCT of size 2, which is {a1, a3}: we call passive OCT

52



of the arrow such an OCT. In A(u, v) \ {u}, {a2, v} is a smallest OCT: we call it active
OCT of the arrow.

b1 b2 b3 b4

a1 a3u a2 v

Figure 6.: The arrow A(u, v). Vertices in blue form the passive OCT of A(u, v), and
those in red form the active OCT of A(u, v) \ {u}.

For a clause C = {`1, . . . , `t} with t an odd integer greater than 2, let us denote by
Ĉ the graph consisting of a simple cycle on vertex set {c1, . . . , ct} with ci representing
literal `i, and with edges linking ci’s in the natural way: cici+1 for every i ∈ [t− 1], and
ctc1. For a clause C of even size t ≥ 2, we proceed similarly but subdivide an arbitrary
edge so that the obtained graph Ĉ is an odd cycle. For a clause C of size one, we simply
create a triangle Ĉ, one of its vertices representing the unique literal of the clause.

We construct a graph G1 as follows. We create n paths P1, . . . , Pn each of length 2m,
and denote by pi,j the jth vertex on path Pi. Each Pi will be referred to as the path of
variable xi in the following. We add “crossing” edges as follows: for every odd i ∈ [n−1]
and even j ∈ [2m − 1], we add edges pi,jpi+1,j+1 and pi+1,jpi,j+1; this is illustrated in
Figure 7. Crossing edges will serve no other purpose than allowing to construct these
paths with n/2 labels. At this stage, paths of G1 may be seen as rows representing
variables of ϕ, and vertices

⋃
i∈[n]{pi,2j , pi,2j−1} for j ∈ [m] may be seen as columns

grouped two by two representing the two possible values variables xi may take in clause
Cj . For every clause Cj = {`1, . . . , `|Cj |} in ϕ, we add cycle Ĉj to G1, and make the
following connections. If variable xi appears positively in Cj on position p, i.e., `p = xi,
then we add arrow A(pi,2j−1, cp) to G1. If xi appears negatively in Cj on position p,
then we add arrow A(pi,2j , cp) to G1. This concludes the construction of the graph G1.

We now consider n + 1 copies of G1 that we name G1, . . . , Gn+1. Let us denote by
P k1 , . . . , P

k
n the n paths of Gk, p

k
i,j the jth vertex of P ki , and Ck the cycle representing

clause C in Gk, for every k ∈ [n + 1]. We link consecutive graphs Gk, Gk+1, k ∈ [n] by
adding edges pki,2mp

k+1
i,1 for every i ∈ [n], and denote by P ∗i the resulting path of length

2m · (n + 1) obtained by concatenating P 1
i , . . . , P

n+1
i in such a way. In addition, we

add crossing edges pki,2mp
k+1
i+1,1 and pki+1,2mp

k+1
i,1 for every k ∈ [n] and odd i ∈ [n]. We

complete our construction by creating a biclique of bipartition {A,B} with A and B of
size α + 1 = (n + 1)(nm + 2ρ) + 1, by connecting every vertex of A to every vertex of
P ∗i for odd i ∈ [n], and by connecting every vertex of B to every vertex of P ∗i for even
i ∈ [n]. We call G the obtained graph.
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Figure 7.: The crossing edges on paths P1, . . . , Pn in G1.

Lemma 2.13 If ϕ is satisfiable, then there exists an OCT of size α = (n+ 1)(nm+ 2ρ)
in G.

Proof. Let τ be a satisfying truth assignment of ϕ. We construct an OCT T of G as
follows. If τ(xi) is true, then we add pki,j to T for every k ∈ [n + 1] and odd j ∈ [2m].

Otherwise we add pki,j to T for every k ∈ [n + 1] and even j ∈ [2m]. For each of the
ρ · (n+ 1) arrows A(u, v) in G, we add its active OCT if u is part of T , and its passive
OCT otherwise, each of size two. The obtained set T is of size α.

Since each clause C is satisfied by τ , at least one of its literals is satisfied. Thus for
each cycle in Ĉk, k ∈ [n + 1] there exists an arrow A(u, v) having an endpoint u being
part of T . Hence that arrow is active and we conclude that v as well is part of T . We
conclude that every (odd) cycle Ĉ1, . . . , Ĉn+1 corresponding to C is hit by T . Since T
is a vertex cover of the paths P ∗i , i ∈ [n] every remaining edge in G− T that is not part
of a clause cycle nor an arrow is either a crossing edge, or an edge incident to a vertex
of A or B. Since these edges do not induce odd cycles, we conclude that T is an OCT
of G, as desired. 2

Lemma 2.14 If there exists an OCT of size α = (n + 1)(nm + 2ρ) in G, then ϕ is
satisfiable.

Proof. First note that an OCT of G must either contain a vertex cover of each P ∗i , i ∈ [n]
or contain all of A or B. Since |A| = |B| > α, we can assume the existence of an OCT
T of size α satisfying the first condition. Hence T contains at least half of the vertices
of paths P ∗i , i ∈ [n], that is, at least nm · (n+ 1) vertices in total. Since we need at least
two additional vertices to intersect the odd cycles of every arrow (even if an endpoint
of the arrow is part of T ), and that there are ρ of them, we conclude that T contains
precisely nm · (n+ 1) vertices from P ∗1 , . . . , P

∗
n , and 2ρ · (n+ 1) vertices from the arrows.

Now, observe that a vertex cover of size k in a path of size 2k may contain at most once
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two consecutive vertices. Since P ∗i ’s are made from n + 1 repetitions of n paths, there

exists Gj , j ∈ [n+1] for which none of the paths P ji , i ∈ [n] contains consecutive vertices
from T . We construct a truth assignment τ for ϕ out of these paths as follows. For a
variable xi, i ∈ [n] we set τ(xi) to true if the vertices of T coincide with odd vertices of
P ji , and τ(xi) to false otherwise.

Since every clause cycle in Gj has to be hit by T , and T already contains α vertices
from P ∗1 , . . . , P

∗
n and the arrows, we conclude that each clause cycle in Gj contains at

least one incoming arrow A(u, v) with v ∈ T . Hence T contains at least three vertices
from that arrow; see Figure 6. Since T intersects A(u, v)− {u} on at most two vertices,
the only way to hit every cycle of A(u, v) that way is for T to contain {u, a2, v}: the
arrow is active and T contains u. By construction, the variable corresponding to vertex
u satisfies the clause in ϕ. We conclude to a satisfying truth assignment of ϕ as desired. 2

Lemma 2.15 The constructed graph G satisfies cw(G) ≤ lcw(G) ≤ n/2 + 10.

Proof. We describe a construction of G by a linear K-expression with K = n/2 + 10
labels. This proves lcw(G) ≤ K, and cw ≤ lcw follows from definition.

During the construction, n/2 labels will be used to maintain the current path ex-
tremities, grouped two by two. These labels are indexed by [n/2]. Two labels will be
dedicated to build clause cycles, denoted a and b. No more than five labels will be used
to build arrows, and to prolongate current paths extremities. These labels are referred
to as working labels in the following. At last, two labels will be used for the biclique
induced by A and B, and one final label indexed by 0 will contain the rest of the graph:
no further modifications will be made to vertices once they are put in that label. We
first construct the biclique with its two dedicated labels. Then, we will construct the
rest of G from G1 to Gn+1, column after column (recall that columns consist of groups
of two vertices from each P ∗i , i ∈ [n]), with each column constructed from top to bottom
two rows at a time. At each step, four vertices are added to the P ∗i ’s, and the gadgets
are constructed along the way.

Let us focus on the graph G1 and assume that we are currently constructing the
column described by indices j, j + 1 for an odd j ∈ [2m], and are willing to construct
rows i, i + 1 of that column for an odd i ∈ [n]. First, we create vertices pi,j and pi+1,j

using one distinct working label for each, call them y1 and y2, respectively. If one of pi,j
and pi+1,j , name it u, participates to an arrow A(u, ck) linking u to a clause cycle Ĉ on
vertex ck, k ∈ [|C|], we construct that arrow using other working labels. Clearly, three
additional labels suffice to proceed with the construction of the arrow (not counting
label 0). The vertices of the clause cycles will in fact be constructed by adding arrows
one after the other. When creating arrow A(u, ck), ck is joined with label a, the vertex
labeled a is relabeled 0, and ck is relabeled a. We point out that the order of the vertices
in the cycle does not matter. Note that to this extent, we only need three labels for Ĉ:
two labels a and b for the extremities of paths that constitute the cycle for now, and
label 0 for internal vertices in these path (they will not be joined anymore). We point
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out that during the construction of the column described by j, j+1, only the clause cycle
Ĉ is constructed. When finishing to build the column, the possible extra vertices that
were added to Ĉ so that it is of odd size are added by joins between a and a working
label, emptying label a, and labeling them a. Once all vertices of Ĉ have been added,
the cycle is closed by joining labels a and b, which are then relabeled to 0 and hence,
labels a and b are free to be used for the next column.

When constructing an arrow, we move every internal vertex in A(u, v)\{u, v} that has
edges to all of its neighbours into label 0. Then, we join pi,j and pi+1,j to the extremities
of paths P ∗i ,P ∗i+1 if they exist by joining label di/2e (containing the extremities of these
paths only) to y1 and y2. This yields the crossing edges described in Figure 7. We then
rename label di/2e to 0. Lastly, we join pi,j and pi+1,j accordingly to A and B.

The creation of vertices pi,j+1 and pi+1,j+1 follows the same principle regarding the
gadgets. Only we join them to pi,j and pi+1,j using working labels z1 and z2 for pi,j+1

and pi+1,j+1, respectively, and joining y1 to z1 and y2 to z2. This is followed by renaming
y1 and y2 to 0. The vertices labeled z1 and z2 can each be renamed to di/2e as soon as
joins to y1 and y2 respectively, and to neighbours in the possible arrow are done.

Repeating this process to the next row, column, until Gn+1 is constructed yields our
graph G with the desired number of labels. 2
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