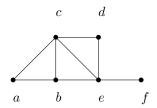
Twin-width One

Hugo Jacob

joint work with Jungho Ahn, Noleen Köhler, Christophe Paul, Amadeus Reinald, and Sebastian Wiederrecht

Twin-width



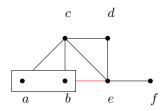
Definition

A d-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width



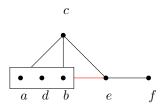
Definition

A d-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width



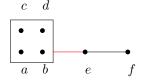
Definition

A d-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width



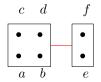
Definition

A d-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width



Definition

A d-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width

Definition

A d-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Motivations for twin-width

Pros:

- ▶ A partial extension of sparsity theory to classes of dense graphs.
- ► Tractability dichotomy for FO in ordered structures.

Cons:

- ▶ Computing the twin-width exactly is NP-hard (already for d = 4).
- ▶ There is no known approximation algorithm

Small values of twin-width

- ightharpoonup d = 0: Cographs = P_4 -free graphs, linear time recognition.
- ▶ $d \le 1$: Polynomial time recognition, have a linear structure.

This talk:

Theorem

Twin-width 1 graphs can be recognized in linear time.

Previous algorithm

Main observation:

Lemma

If a graph admits a 1-contraction sequence, it admits a 1-contraction sequence with at most one red edge per trigraph.

Algorithm sketch:

Perfect graphs

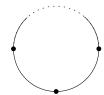
Theorem (Strong perfect graph theorem)

Perfect graphs are exactly the graphs that do not contain odd holes or odd antiholes as induced subgraphs.

Perfect graphs

Theorem (Strong perfect graph theorem)

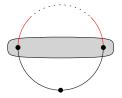
Perfect graphs are exactly the graphs that do not contain odd holes or odd antiholes as induced subgraphs.

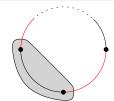


Perfect graphs

Theorem (Strong perfect graph theorem)

Perfect graphs are exactly the graphs that do not contain odd holes or odd antiholes as induced subgraphs.





Perfect graphs

Theorem (Strong perfect graph theorem)

Perfect graphs are exactly the graphs that do not contain odd holes or odd antiholes as induced subgraphs.

Observation

Holes and antiholes have twin-width 2.

Perfect graphs

Theorem (Strong perfect graph theorem)

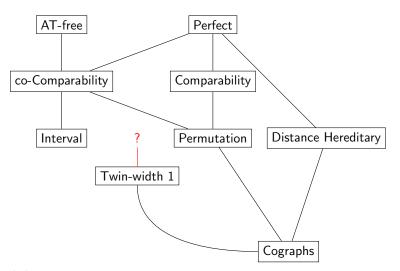
Perfect graphs are exactly the graphs that do not contain odd holes or odd antiholes as induced subgraphs.

Observation

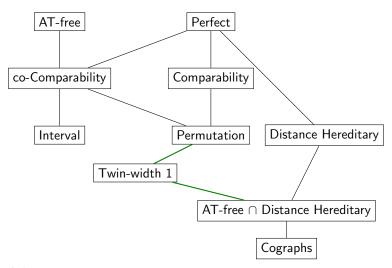
Holes and antiholes have twin-width 2.

In particular, twin-width 1 graphs are perfect.

Classes of perfect graphs



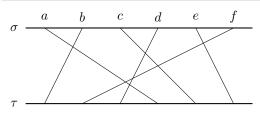
Classes of perfect graphs



Definition

Definition

Given a permutation $\pi:[n] \to [n]$, we define the graph $G[\pi]=([n],E_\pi)$ where E_π is the set of inversions of π (i.e. $xy \in E_\pi$ iff x < y and $\pi(x) > \pi(y)$).



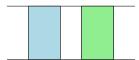
Warm up: Cographs

Lemma

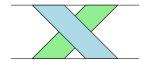
Cographs are permutation graphs.

Induction on the cotree with two cases:

Disjoint union

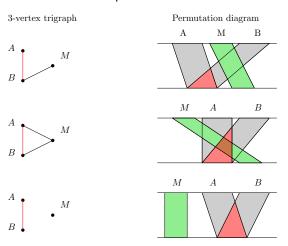


Join



Twin-width 1 graphs are permutation graphs

Induction on the contraction sequence:



Twin-width 1 graphs are permutation graphs

Vertices contracted together are consecutive in the diagram.

Lemma

If G admits a 1-contraction sequence G_n, \ldots, G_1 , then there exists a realizer (σ, τ) such that:

- if x is a vertex of G_i , then vertices of G that are in x form an interval of σ or τ .
- ▶ if xy is a red edge of G_i , then vertices of G that are in xy form an interval of σ or τ

Twin-width 1 graphs are permutation graphs

Vertices contracted together are consecutive in the diagram.

Lemma

If G admits a 1-contraction sequence G_n, \ldots, G_1 , then there exists a realizer (σ, τ) such that:

- ▶ if x is a vertex of G_i , then vertices of G that are in x form an interval of σ or τ .
- if xy is a red edge of G_i , then vertices of G that are in xy form an interval of σ or τ

Corollary

If the graph is prime, an extremal vertex of the diagram can be contracted last. There are only 4 vertices to try!

The algorithm

High level description

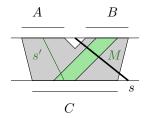
Algorithm sketch:

```
Compute permutation diagram, reject when not permutation graph Compute modular decomposition for each prime node of the decomposition:

Guess last vertex s to be contracted
Try to decompose recursively using s as splitter
```

The algorithm

Prime case description



```
while an endpoint of C is also an endpoint of A or B: Remove it and move indices correspondingly if |A| > 1 and |B| > 1: Reject else if |A| > 1 or |B| > 1: Deduce (M,s') from (A,B) Recurse on (M,s') with s' as splitter else: Accept
```

Conclusion

Going further

Our results:

- ▶ Linear time recognition algorithm for twin-width 1
- Permutation diagram and consecutivity properties

Open questions:

- ► Can we recognize twin-width 2 graphs in polynomial time?
- ► Is recognition of twin-width 3 NP-hard?
- Can we approximate twin-width in XP time?
- Can we compute the twin-width of permutation graphs in polynomial time?

Modular decomposition

Cographs and modular decompositions

Cographs can be characterised in two ways:

- ▶ A cograph is a single vertex graph or a graph G obtained from two cographs H_1 and H_2 by either the disjoint union of H_1 and H_2 or adding all edges between H_1 and H_2 (join).
- A cograph is a graph that admits a twin-elimination ordering.

Both characterisations follow from a top-down or bottom-up description of the $\underline{\text{cotree}}$ of the cograph

Modular decomposition

Cographs and modular decompositions

Definition (Module)

A module M is a subset of vertices such that every vertex not in M is adjacent either to all vertices of M, or no vertex of M.

A graph is prime if it has only trivial modules.

Observation

A contraction in a module creates red edges only within the module.

For every graph, its modular decomposition is a canonical object that recursively decomposes it into prime graphs, disjoint unions, and joins.

Modular decomposition

Modular decomposition and contraction sequence

Lemma

The twin-width of a graph is the maximum twin-width over the prime nodes of its modular decomposition.

Construct the contraction sequence by following the modular decomposition bottom-up. We iteratively contract twins, and contract prime nodes using their optimal sequence.