
First Order Model Checking in sparse classes

Hugo Jacob

AlGCo, LIRMM, Université de Montpellier

Introduction

Vocabulary

▶ Vocabulary Σ: The set of symbols used for the relations and their
arity

▶ Structure A: A vocabulary, a vertex set, and a relation for each
symbol of the vocabulary

▶ Formula: A first order formula over a vocabulary is inductively
defined as either an atomic formula: x = y or R(x1, . . . , xk); or a
combination of formulae by boolean connectives and quantifiers:
¬φ φ ∨ ψ φ ∧ ψ ∀x.φ(x) ∃x.ψ(x)

▶ Variables: bound/free

▶ Gaifman graph: edge between vertices with a common tuple of a
relation

Hugo Jacob 1/30

Introduction

Basic algebra

φ ∧ ψ → ¬(¬φ ∨ ¬ψ)

∀x.φ(x) → ¬∃x.¬φ(x)

(A ∨B) ∧ C → (A ∧ C) ∨ (B ∧ C)

Hugo Jacob 2/30

Introduction

First Order Model Checking

The goal:

Theorem

For every Σ-structure A in C, for any FO[Σ] sentence φ, we can decide
A ⊨ φ in time f(C, φ) · |A|O(1).

Hugo Jacob 3/30

Introduction

Roadmap

Algorithm for:

▶ Forests of bounded depth

▶ Structures of bounded treedepth

▶ Structures of bounded expansion

Further results:

▶ Nowhere dense structures

▶ Extensions to the dense setting

Hugo Jacob 4/30

Introduction

Roadmap

Algorithm for:

▶ Forests of bounded depth

▶ Structures of bounded treedepth

▶ Structures of bounded expansion

Further results:

▶ Nowhere dense structures

▶ Extensions to the dense setting

Hugo Jacob 4/30

Algorithm

Forests of bounded depth

Forests: We consider relations of arity at most one (decorations on
vertices) and the parent function.

Plan:

▶ Induction on formula

▶ Consider formulae in normal form

▶ Enrich the forest with decorations.

▶ Dynamic programming to compute decorations.

Hugo Jacob 5/30

Algorithm

Induction statement

Lemma

In the class of forests of depth d, for any forest F and any FO formula φ,
in time f(d, φ) · ||F||, we can compute a quantifier-free formula φ̂
together with a ‘decorated’ forest Fφ̂ such that:

F, a ⊨ φ(a) ⇔ Fφ̂, a ⊨ φ̂(a)

Hugo Jacob 6/30

Algorithm

Simple cases

▶ ¬: Set (̂φ) := ¬ψ̂ and keep the decorated forest used for ψ

▶ ∨: Set φ̂ := ψ̂1 ∨ ψ̂2 and Fφ̂ = F
ψ̂1

∪ F
ψ̂2

.

▶ atomic formulae: Already quantifier free, we keep φ and F.

Hugo Jacob 7/30

Algorithm

Quantification

We consider the case φ(x) = ∃y.ψ(x, y).
Induction hypothesis: ψ̂ and Fψ̂.
ψ̂ is quantifier-free, we can consider an equivalent ψ′:

ψ′ =
∨

P ⊨ ψ̂

ψP

A pattern P is a small structure induced by the ancestors of the variables.
We enumerate all possible structures that can satisfy ψ̂

Hugo Jacob 8/30

Algorithm

Quantification

We consider the case φ(x) = ∃y.ψ(x, y).
Induction hypothesis: ψ̂ and Fψ̂.
ψ̂ is quantifier-free, we can consider an equivalent ψ′:

ψ′ =
∨

P ⊨ ψ̂

ψP

z

x

z x z

x

Patterns of depth 2 satisfying:

ψ̂ = (z = parent(z) ∧ ¬(z = x))

P1 P2 P3 ψ′ = (ψP1
∨ ψP2

∨ ψP3
)

Hugo Jacob 8/30

Algorithm

Quantification continued

If y is an ancestor of a vertex x of x in P, then replace y by parenti(x)

in ψ̂ to obtain φ̂.

x1 x2

x3

x4y

x5

P

Hugo Jacob 9/30

Algorithm

Quantification continued

If y has a common ancestor z with a vertex of x in P,

x1 x2

x3

x4 x5

y

P 1

P 2

P 3

z

x6

P 2

P 3

P

Hugo Jacob 9/30

Algorithm

Quantification continued

If y has a common ancestor z with a vertex of x in P,

x1 x2

x3

x4 x5

y

P 1

P 2

P 3

z

x6

P 2

P 3

P 2

P 1

P 3

P 2

P 3

P 1

P 2

P 3

P Fψ̂

Hugo Jacob 9/30

Algorithm

Quantification continued

If y has a common ancestor z with a vertex of x in P,

x1 x2

x3

x4 x5

y

P 1

P 2

P 3

z

x6

P 2

P 3

P 2

P 1

P 3

P 2

P 3

P 1

P 2

P 3

P
n

P
n

P
n

Pn
1 Pn

2 Pn
0

P Fψ̂

Hugo Jacob 9/30

Algorithm

Quantification continued

x1 x2

x3

x4 x5

P 1z

x6

P 2

P 3

P 2

P 1

P 3

P 2

P 3

P 1

P 2

P 3

P
n

P
n

P
n

Pn
1 Pn

2 Pn
0Pn

2

P
n

P Fψ̂

Hugo Jacob 9/30

Algorithm

Quantification continued

If y has no common ancestor with vertices of x in P,

x1 x2

x3

x4

y

P

Hugo Jacob 9/30

Algorithm

Dynamic programming on (rooted) forests

To compute the new predicates, we can use simple dynamic programming
on the decorated forest F̂. We are always looking for a fixed decorated
path (y = p0, p1, . . . , pℓ = z) (from P). Let n be the depth of y and m
be the depth of z.
We compute the boolean function C : V → {⊥,⊤} defined by:

▶ At depth n: C(v) = ⊤ iff v satisfies exactly the same predicates as y
in P.

▶ At depth i ∈ [m,n[: C(v) = ⊤ iff there is a child w of v such that
C(w) = ⊤ and v satisfies exactly the same predicates as pi−n

This is easily computed in time f(φ, d) · |V |

Hugo Jacob 10/30

Algorithm

Running time

For each case of the induction, we use at most f(φ, d) · |V | time.

We conclude that we can perform model-checking on forests of depth d
in time f(φ, d) · ||F||.

Hugo Jacob 11/30

Extending to bounded treedepth

Structures of bounded treedepth

Definition

The treedepth of a graph is the minimum depth of a forest whose
ancestor-descendent relation covers all edges.

We now consider a structure A of bounded treedepth: its Gaifman graph
has bounded treedepth.

Hugo Jacob 12/30

Extending to bounded treedepth

Structures of bounded treedepth

Definition

The treedepth of a graph is the minimum depth of a forest whose
ancestor-descendent relation covers all edges.

We now consider a structure A of bounded treedepth: its Gaifman graph
has bounded treedepth.

Hugo Jacob 12/30

Extending to bounded treedepth

Obtaining a forest

Any Depth First Search tree of the Gaifman graph is a valid
decomposition.

A graph of treedepth k contains no path on 2k vertices

Let d be the depth of our computed forest.

Hugo Jacob 13/30

Extending to bounded treedepth

Obtaining a forest

Any Depth First Search tree of the Gaifman graph is a valid
decomposition.

A graph of treedepth k contains no path on 2k vertices

Let d be the depth of our computed forest.

Hugo Jacob 13/30

Extending to bounded treedepth

Translating the formula

We now reduce to the setting of the previous algorithm.

All we need to do is to translate the relations of any arity as unary
relations on the forest.

Hugo Jacob 14/30

Extending to bounded treedepth

Translating the formula

We fix a relation R, and a tuple (v1, . . . , vk) ∈
R and we want to replace this information with
unary relations.

v1

v2

v3

δ(1) = 3, δ(2) = 1, δ(3) = 0

(v1, v2, v3) ∈ R

Hugo Jacob 14/30

Extending to bounded treedepth

Translating the formula

distance vector δ : [1, k] → [0, d] s.t.
∃i ∈ [1, k]. δ(i) = 0

v ∈ Rδ := (parentδ(1)(v), . . . , parentδ(k)(v)) ∈ R

R(x) →
∨
δ

Rδ(v) ∧ k∧
j=1

parentδ(j)(v) = xj



v1

v2

v3

δ(1) = 3, δ(2) = 1, δ(3) = 0

(v1, v2, v3) ∈ R

Hugo Jacob 14/30

Extending to bounded treedepth

Running time

We perform model-checking on a forest F of depth f(d), satisfying
||F|| ≤ f(d) · ||A||

Using the previous algorithm, this can be done in time f(φ, d) · ||A||.

Hugo Jacob 15/30

Sparse graph classes

Bounded expansion graphs

Definition

An r-shallow minor H of G is a graph obtained from G by contracting
connected subgraphs of radius at most r and removing some edges and
vertices.

C∇r : the set of shallow minors of graphs of C.

Definition

A class of graphs C has bounded expansion if at every distance the
average number of neighbours is bounded.

Hugo Jacob 16/30

Sparse graph classes

Bounded expansion graphs

Definition

An r-shallow minor H of G is a graph obtained from G by contracting
connected subgraphs of radius at most r and removing some edges and
vertices.

C∇r : the set of shallow minors of graphs of C.

Definition

A class of graphs C has bounded expansion if, for every r ≥ 0,

sup
G∈C∇r

|E(G)|
|V (G)|

<∞

Hugo Jacob 16/30

Sparse graph classes

Nowhere dense graphs

Definition

An r-shallow minor H of G is a graph obtained from G by contracting
connected subgraphs of radius at most r and removing some edges and
vertices.

C∇r : the set of shallow minors of graphs of C.

Definition

A class of graphs C is nowhere dense if at every distance there is no
large clique.

Hugo Jacob 17/30

Sparse graph classes

Nowhere dense graphs

Definition

An r-shallow minor H of G is a graph obtained from G by contracting
connected subgraphs of radius at most r and removing some edges and
vertices.

C∇r : the set of shallow minors of graphs of C.

Definition

A class of graphs C is nowhere dense if, for every r ≥ 0,

sup
G∈C∇r

ω(G) <∞

Hugo Jacob 17/30

Sparse graph classes

Nowhere dense graphs

Definition

An r-shallow minor H of G is a graph obtained from G by contracting
connected subgraphs of radius at most r and removing some edges and
vertices.

C∇r : the set of shallow minors of graphs of C.

Definition

A class of graphs C is nowhere dense if, for every r ≥ 0,

sup
G∈C∇r

ω(G) <∞

A class C is:
▶ nowhere dense when limr→+∞ supG∈C∇r

log |E(G)|
log |V (G)| = 1

▶ somewhere dense when limr→+∞ supG∈C∇r
log |E(G)|
log |V (G)| = 2

Hugo Jacob 17/30

Sparse graph classes

Polynomial expansion

Definition

A graph class C has bounded expansion if at every distance the average
amount of neighbours is bounded.

Hugo Jacob 18/30

Sparse graph classes

Polynomial expansion

Definition

A graph class C has polynomial expansion if at every distance the
average amount of neighbours is bounded by a polynomial in the
distance.

Hugo Jacob 18/30

Sparse graph classes

Polynomial expansion

Definition

A graph class C has polynomial expansion if there is a polynomial
function p s.t. for every r ≥ 0,

sup
G∈C∇r

|E(G)|
|V (G)|

≤ p(r)

Hugo Jacob 18/30

Sparse graph classes

Polynomial expansion

Definition

A graph class C has polynomial expansion if there is a polynomial
function p s.t. for every r ≥ 0,

sup
G∈C∇r

|E(G)|
|V (G)|

≤ p(r)

A monotone class C has polynomial expansion if and only if it has
(balanced) separators of size O(|V |1−δ) for some δ > 0.

Hugo Jacob 18/30

Sparse graph classes

Treedepth Coloring

Lemma

For C a class of bounded expansion and p ∈ N, there exists M = f(C, p)
such that for any G ∈ C, in linear time, we can find a coloring of G using
at most M colors such that any subgraph induced by at most p color
classes has treedepth at most p.

Such a coloring is called a k-treedepth coloring.

Hugo Jacob 19/30

Sparse graph classes

Treedepth Coloring

Lemma

For C a class of bounded expansion and p ∈ N, there exists M = f(C, p)
such that for any G ∈ C, in linear time, we can find a coloring of G using
at most M colors such that any subgraph induced by at most p color
classes has treedepth at most p.

Such a coloring is called a k-treedepth coloring.

Hugo Jacob 19/30

Sparse graph classes

Treedepth Coloring

Lemma

For C a class of bounded expansion and p ∈ N, there exists M = f(C, p)
such that for any G ∈ C, in linear time, we can find a coloring of G using
at most M colors such that any subgraph induced by at most p color
classes has treedepth at most p.

Such a coloring is called a k-treedepth coloring.

Hugo Jacob 19/30

Sparse graph classes

Hierarchy of sparse classes

Polynomial expansion

Bounded expansion

Nowhere dense

PTAS for IS,DS

O(1)-approx for IS,DS

O(nε)-approx for IS,DS

Hugo Jacob 20/30

Extending the algorithm to bounded expansion

Another induction on the formula

We now consider a structure A belonging to a class C of bounded
expansion: the class of Gaifman graphs has bounded expansion.

We once again extend our algorithm to this setting.

Hugo Jacob 21/30

Extending the algorithm to bounded expansion

Another induction on the formula

Induction on the input formula φ → quantifier-free φ̂.

The cases of atomic formulae, negation, and disjunction are easy, we
focus on quantifiers.

This will be done by using the previous algorithm as a black box!

Hugo Jacob 22/30

Extending the algorithm to bounded expansion

Another induction on the formula

Induction on the input formula φ → quantifier-free φ̂.

The cases of atomic formulae, negation, and disjunction are easy, we
focus on quantifiers.

This will be done by using the previous algorithm as a black box!

Hugo Jacob 22/30

Extending the algorithm to bounded expansion

Treedepth Coloring

Lemma

For C a class of bounded expansion and p ∈ N, there exists M = f(C, p)
such that for any G ∈ C, in linear time, we can find a coloring of G using
at most M colors such that any subgraph induced by at most p color
classes has treedepth at most p.

Such a coloring is called a k-treedepth coloring.

Hugo Jacob 23/30

Extending the algorithm to bounded expansion

Concluding

Consider a formula ∃y.ψ(x, y), and let k = |x|+ |y|.
In linear time, we compute a k-treedepth coloring λ of G(A).

Check ψ: guess colors of the variables in satisfying assignments.

For each Γ (subset of k colors): compute quantifier-free ψΓ.

φ̂(x) =
∨
Γ

(
λ(x) ⊆ Γ ∧ ψΓ(x)

)
The total running time is f(C, φ) · ||A||

Hugo Jacob 24/30

Extending the algorithm to bounded expansion

Concluding

Consider a formula ∃y.ψ(x, y), and let k = |x|+ |y|.
In linear time, we compute a k-treedepth coloring λ of G(A).

Check ψ: guess colors of the variables in satisfying assignments.

For each Γ (subset of k colors): compute quantifier-free ψΓ.

φ̂(x) =
∨
Γ

(
λ(x) ⊆ Γ ∧ ψΓ(x)

)
The total running time is f(C, φ) · ||A||

Hugo Jacob 24/30

Extending the algorithm to bounded expansion

Concluding

Consider a formula ∃y.ψ(x, y), and let k = |x|+ |y|.
In linear time, we compute a k-treedepth coloring λ of G(A).

Check ψ: guess colors of the variables in satisfying assignments.

For each Γ (subset of k colors): compute quantifier-free ψΓ.

φ̂(x) =
∨
Γ

(
λ(x) ⊆ Γ ∧ ψΓ(x)

)

The total running time is f(C, φ) · ||A||

Hugo Jacob 24/30

Extending the algorithm to bounded expansion

Concluding

Consider a formula ∃y.ψ(x, y), and let k = |x|+ |y|.
In linear time, we compute a k-treedepth coloring λ of G(A).

Check ψ: guess colors of the variables in satisfying assignments.

For each Γ (subset of k colors): compute quantifier-free ψΓ.

φ̂(x) =
∨
Γ

(
λ(x) ⊆ Γ ∧ ψΓ(x)

)
The total running time is f(C, φ) · ||A||

Hugo Jacob 24/30

Extending to nowhere dense

Limits of previous algorithm

Lemma

For C a nowhere dense class, ε > 0, and p ∈ N, there exists
M = f(C, p, ε) such that for any G ∈ C, in time f(C, r, ε) · |G|1+ε, we
can find a coloring of G using at most M · |G|ε colors such that any
subgraph induced by at most p color classes has treedepth at most p.

Repeatedly guessing colors now gives an algorithm running in time

f(C, φ, ε) · |G|1+εf(φ)

Hugo Jacob 25/30

Extending to nowhere dense

Improved algorithm

Theorem (Grohe, Kreutzer, Siebertz)

For every nowhere dense class C, and every ε > 0, any first order
sentence φ, given a structure A ∈ C, testing φ in A can be done in time
f(C, φ, ε) · |A|1+ε.

The strategy is to compute a normal form that does not increase the
quantifier rank, and which consists of local formulae and independence
predicates.

Hugo Jacob 26/30

Extending to nowhere dense

Optimality for monotone classes

We saw that FO model checking is FPT in nowhere dense classes.

Theorem

FO model checking is AW[∗]-hard on the class of all graphs.

If a class of graphs is somewhere dense, it contains all graphs as
t-subdivisions for some constant t.

Hugo Jacob 27/30

Beyond monotone classes

Hereditary classes

In a monotone class (closed by subgraph), containing a clique is sufficient
to contain every graph.

In a hereditary class (closed by induced subgraph), there are simple
classes that contain cliques.

C = {Kk : k > 0} is hereditary.

Hugo Jacob 28/30

Beyond monotone classes

Hereditary classes

In a monotone class (closed by subgraph), containing a clique is sufficient
to contain every graph.

In a hereditary class (closed by induced subgraph), there are simple
classes that contain cliques.

C = {Kk : k > 0} is hereditary.

Hugo Jacob 28/30

Beyond monotone classes

Sparsity and games

Sparse classes can be characterized via games:

▶ Cops and robber strategies for a robber of bounded speed

▶ Splitter game

Both games have been generalized to the hereditary setting by replacing
vertex removal by flips.

Flipping a pair of sets of vertices A,B consists in complementing the set
E(A,B) of edges with one endpoint in A and one endpoint in B.

Hugo Jacob 29/30

Beyond monotone classes

Sparsity and games

Sparse classes can be characterized via games:

▶ Cops and robber strategies for a robber of bounded speed

▶ Splitter game

Both games have been generalized to the hereditary setting by replacing
vertex removal by flips.

Flipping a pair of sets of vertices A,B consists in complementing the set
E(A,B) of edges with one endpoint in A and one endpoint in B.

Hugo Jacob 29/30

Beyond monotone classes

Extensions to the dense setting

Bounded treedepth

Bounded pathwidth

Bounded treewidth

Bounded shrubdepth

Bounded linear cliquewidth

Bounded cliquewidth

Bounded expansion

Bounded twin-width

Bounded flip-width

Nowhere dense Almost bounded flip-width

Hugo Jacob 30/30

	Introduction
	Algorithm
	Extending to bounded treedepth
	Sparse graph classes
	Extending the algorithm to bounded expansion
	Extending to nowhere dense
	Beyond monotone classes

