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Tree-partition

What is a tree-partition?

Width is largest bag size (3 here).
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Tree-partition

Some context

I Introduced independently by Seese (’85) and Halin (’91).

I Work of Ding and Oporowski (’95,’96) on tree-partition-width: its
relationship with treewidth and a characterisation by topological
minor obstructions.

I Mostly studied for ‘structural’ purposes (coloring, layout, ...)

I Recently Bodlaender, Cornelissen, and van der Wegen give
parameterized problems that are FPT parameterized by
tree-partition-width but hard for treewidth.
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Tree-partition

Relation to treewidth
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Ding and Oporowski (’95) and Wood (’09) show tpw = O(∆tw).
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Tree-partition

Missing piece

No known algorithms to efficiently compute a tree-partition of good
width.
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Optimal tree-partition

A naive XP algorithm
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Optimal tree-partition

Hardness

...

Reduction from a variant of Independent Set.
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Optimal tree-partition

Hardness

Theorem

Tree-Partition-Width is XALP-complete.

This means we do not expect a significantly better algorithm to find an
optimal tree-partition to exist.

We can deduce XALP completeness for Domino Treewidth.
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Approximation

Exploiting the topological minor obstructions

I We can find topological minor obstructions in FPT time, using the
algorithm of Grohe, Kawarabayashi, Marx, and Wollan (STOC 2011).

I The result of Ding and Oporowski is constructive and can be turned
into an algorithm.
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Approximation

Scheme

I First check that the treewidth is small and get a tree decomposition.

I Compute some clever auxiliary graph.

I Compute a tree-partition on blocks of the auxiliary graph.

I Combine them and deduce a tree-partition of the original graph.
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Approximation

Auxiliary graphs
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Approximation

Degree in blocks of the reduced graph
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Approximation

Results

The scheme allows to find tree-partitions of width:

I O(k5 log k) in polynomial time; or

I O(k5) in 2O(k2)n + kO(1)n log n time; or

I O(k7) in kO(1)n2.

or conclude that any tree-partition has width more than k.
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Conclusion

Other result

Tree-partition width is polynomially bounded by tree-cut width.
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Conclusion

Further work

I Can we find better approximations ?

I Can we improve the running time of our approximations ?
(f(k)n or kcn log n ?)

I What are the problems that can be solved in FPT time when
parameterized by tree-partition-width ?
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