On the parameterized complexity of computing tree-partitions

Hans L. Bodlaender, Carla Groenland, Hugo Jacob

école _____ normale _____ supérieure _____ paris – saclay _____

What is a tree-partition?

Some context

- ▶ Introduced independently by Seese ('85) and Halin ('91).
- Work of Ding and Oporowski ('95,'96) on tree-partition-width: its relationship with treewidth and a characterisation by topological minor obstructions.
- ▶ Mostly studied for 'structural' purposes (coloring, layout, ...)
- Recently Bodlaender, Cornelissen, and van der Wegen give parameterized problems that are FPT parameterized by tree-partition-width but hard for treewidth.

Relation to treewidth

Relation to treewidth

Ding and Oporowski ('95) and Wood ('09) show $tpw = O(\Delta tw)$.

Missing piece

No known algorithms to efficiently compute a tree-partition of good width.

A naive XP algorithm

Hardness

Reduction from a variant of INDEPENDENT SET.

Hardness

Theorem

TREE-PARTITION-WIDTH is XALP-complete.

This means we do not expect a significantly better algorithm to find an optimal tree-partition to exist.

Hardness

Theorem

TREE-PARTITION-WIDTH is XALP-complete.

This means we do not expect a significantly better algorithm to find an optimal tree-partition to exist.

We can deduce XALP completeness for DOMINO $\operatorname{TREEWIDTH}.$

Exploiting the topological minor obstructions

- We can find topological minor obstructions in FPT time, using the algorithm of Grohe, Kawarabayashi, Marx, and Wollan (STOC 2011).
- The result of Ding and Oporowski is constructive and can be turned into an algorithm.

Scheme

- First check that the treewidth is small and get a tree decomposition.
- Compute some clever auxiliary graph.
- Compute a tree-partition on blocks of the auxiliary graph.
- Combine them and deduce a tree-partition of the original graph.

Auxiliary graphs

Degree in blocks of the reduced graph

Results

The scheme allows to find tree-partitions of width:

- $O(k^5 \log k)$ in polynomial time; or
- $O(k^5)$ in $2^{O(k^2)}n + k^{O(1)}n\log n$ time; or
- ► $O(k^7)$ in $k^{O(1)}n^2$.

or conclude that any tree-partition has width more than k.

Other result

Tree-partition width is polynomially bounded by tree-cut width.

Conclusion

Further work

- Can we find better approximations ?
- ► Can we improve the running time of our approximations ? (f(k)n or k^cn log n ?)
- What are the problems that can be solved in FPT time when parameterized by tree-partition-width ?