Exploring the class XNLP

Hugo Jacob

Supervised by Carla Groenland and Hans L. Bodlaender

Utrecht University

Hugo Jacob 2/16

Utrecht University

Utrecht University

Hugo Jacob 2/16

Utrecht University

Parameterized complexity

Goal Understanding what makes problems tractable/intractable
Tools Algorithmic techniques and simple hardness proofs using reductions

In my work, focus on combinatorial problems.

Hugo Jacob 3/16

Basics on parameterized complexity

- ▶ Parameter : a value that is added to the instance, usually a metric on the instance
- ► Most common parameter is solution size
- ► Reductions must control parameter growth
- Kernel : reduced equivalent instance of size bounded by the parameter obtained in poly time

Hugo Jacob 4/16

Different levels of hardness

From easiest to hardest:

- ► Admits polynomial kernel
- Admits a kernel = FPT: can be solved in time $f(k)n^c$
- ► W[1] = reducible to CLIQUE
- ► W[2] = reducible to Dominating Set
- ightharpoonup XP: can be solved in time $n^{f(k)}$
- ▶ para-NP : is NP-hard for some constant value of the parameter

Hugo Jacob 5/16

Common questions

Does my parameterized problem:

- ► Admit a polynomial kernel ?
- ► Admit an FPT algorithm ?
- ► Admit an XP algorithm ?

For each of these questions, there are tools to show negative answers under reasonable assumptions.

Hugo Jacob 6/16

What is XNLP?

XNLP: Class of problems that can be solved nondeterministically in time $f(k)n^c$ and space $f(k)\log(n)$.

These problems can be solved in time $n^{f(k)}$.

Conjecture on XNLP-hard problems: they cannot be solved in time $n^{f(k)}$ without using $n^{f(k)}$ space.

Hugo Jacob 7/16

Relation to other common classes

- ► FPT
- ightharpoonup W[t] for all t>0
- ► XNLP
- XP

Hugo Jacob 8/16

XNLP-complete problems

Usually XNLP-complete problems exhibit some form of linear structure. A lot of local choices have to be made, the corresponding local problem is at least W[1]-hard.

Hugo Jacob 9/16

Interest of XNLP

Simple definition.

Many complete problems for several standard parameters.

A very important standard linear structure parameter: pathwidth

Results

- ► Many more XNLP-complete problems
- ► XALP: a simple extension of XNLP to tree-like structures

XALP lifts results on pathwidth to results on treewidth "for free".

Hugo Jacob 11/16

Tree-partitions

Definition

Tree-partitions

Hardness

Computing exactly the tree-partition-width is XALP-complete.

Main gadget: "clique-chains"

Tree-partitions

Approximation

- ► First compute a tree decomposition
- Find highly connected pairs of vertices
- Compute tree partitions on convenient auxiliary graphs
- ► Combine them into a final tree-partition

Conclusion

Results

- ► More XNLP-complete problems
- ► XALP for the more common tree-like structures
- ► Found problems that do not fit into XNLP/XALP
- ► Renewed interest for tree-partition-width

Hugo Jacob 15/16

Conclusion

Questions

Hugo Jacob 16/16