

Coupling classical DFT with poromechanics for adsorption-induced swelling quantification in microporous materials

Doctoral school University	Doctoral School of Exact Sciences and their Applications (&web-ED211). University Pau and Pays Adour (&web-UPPA).
Laboratory	Laboratory for the thermodynamics of complex fluids and geological reservoirs
Research team	UMR5150 UPPA/CNRS/TOTAL (&web-LFCR). Geomechanics and Porous Media (&web-G2MP).
PhD supervisors	David Grégoire, Christelle Miqueu & Laurent Perrier

Context

This PhD proposal is part of the I-M-API project, granted by the *Institut Universitaire de France* and focused on the characterization of the influence of an adsorbed phase on the instantaneous deformations in microporous media. Following the IUPAC recommendation, the pore space in porous materials is divided into three groups according to the pore size diameters: macropores of widths greater than 50 nm, mesopores of widths between 2 and 50 nm and micropores of widths less than 2 nm. Zeolites, activated carbon, tight rocks, cement paste or construction materials are among these materials. In recent years, a major attention has been paid on these microporous materials because the surface-to-volume ratio (i.e., the specific pore surface) increases with decreasing characteristic pore size. These materials can trap an important quantity of fluid molecules as an adsorbed phase. This is important for applications in gas storage, gas separation, petroleum and oil recovery, catalysis or drug delivery.

For these microporous materials, a deviation from standard poromechanics is expected. In very small pores, the molecules of fluid are confined. Fluid-fluid and fluid-solid interactions of molecules are modified and this effect may have significant consequences at the macroscale, such as instantaneous swelling deformations. In different contexts, these deformations may be critical. Generally, natural and synthesized porous media are composed of a double porosity: the microporosity where the fluid is trapped as an adsorbed phase and a meso or a macro porosity required to ensure the transport of fluids to and from the smaller pores. If adsorption in nanopores induces instantaneous deformations at a higher scale, the matrix swelling may close the transport porosity, reducing the global permeability of the porous system or annihilating the functionality of synthesized materials.

In recent years, an important effort has been involved in the modelling of the coupling between failure and transport properties in meso and macroporous media but there is still a gap to be filled between the nanoscopic scale of the pores and the macroscopic scale of the global structure in micro-to-macro materials.

Objectives & methodology

The I-M-API project aims at identifying and capturing the key couplings appearing within a nanopore and upscaling them at the scale of a structure through new enhanced poromechanical frameworks.

The final objective of the project is to obtain a robust and physically meaningful numerical simulation tool able to predict instantaneous deformation induced by an adsorbed phase in heterogeneous micro-to-macro-porous media filled with gas mixtures. Within this project, the PhD student will have to quantify and predict adsorption-induced swelling for gas mixtures in homogeneous microporous materials. For this purpose, she/he will estimate pore pressure and confinement state by the classical density functional theory and validate her/his results by using molecular simulations in collaboration with the University of Vigo, Spain. In a second step, she/he will upscale this confinement effects through the pore size distribution in an enhanced poromechanical framework for adsorption-induced swelling estimation in homogeneous materials. Finally, the model will be validated by comparisons with experimental results obtained in the lab.

Candidate's profile

The candidate should hold a master degree in physics, theoretical mechanics or a similar field. Candidates who are finalizing their master's program and will obtain their master degree in the summer of 2019 are also eligible and are strongly encouraged to apply. Previous experience with numerical simulation or modelling (thermodynamics, poromechanics, ...) is an asset as well as the knowledge of different programming languages. The candidate should have a strong interest in performing theoretical development and modelling. Proficiency in English is mandatory.

Job details

The successful candidate will be hosted by the Geomechanics and Porous Media team of the Laboratoire des Fluides Complexes et leurs Réservoirs (LFCR, UMR5150, UPPA-CNRS-Total SA) at the University of Pau & Pays Adour (UPPA) in Anglet, France. The project will be directed by Prof. David Grégoire (Professeur des Universités), co-directed by Dr. Christelle Miqueu (Maître de Conférences HDR) and co-supervised by Dr. Laurent Perrier (Maître de Conférences). The envisioned starting date is 1 October 2019, and the maximum duration is 3 years. The position includes full social security coverage and a gross salary of 1768 € per month.

Evaluation procedure

Candidates are ranked in a first phase based on their submitted application. In a second phase, an interview will be organized with the selected candidates (possibly via Skype).

Applications should include: cover letter, CV, passeport/ID copy, transcripts of diplomas and the lists of courses attended (with grades obtained), recommendation letters, and names and contact details of (at least two) references.

Applications should be submitted before 01/05/2019 by email (david.gregoire[at]univ-pau.fr) with an external link for downloading the application material (wetransfer or other). The interview will take place during the second half of May. Final answer will be provided by the end of May.

Contact

For application or further information about this position, please contact Pr. David Grégoire (david.gregoire[at]univ-pau.fr).