Alternating nonzero automata
 Application to the satisfiability of $\mathrm{CTL}^{*}\left[\exists, \forall, \mathbb{P}_{>0}, \mathbb{P}_{=1}\right]$

Hugo Gimbert, joint work with Paulin Fournier

LaBRI, Université de Bordeaux
ANR Stoch-MC

06/07/2017

Control and verification of probabilistic systems

- Logic (specification): CTL* $\left[\exists, \forall, \mathbb{P}_{>0}, \mathbb{P}_{=1}\right]$
- Automata (compilation): nonzero automata.
- Games (algorithms): global winning condition.

Binary trees

Full binary tree $\{0,1\}^{*}$ labelled with $\{a, b\}$
Random walk, Markov chain
A node $=$ flip fair coin

Trees whose branches have finitely many a

- for sure
- almost-surely
- with positive probability

Nonzero automata [Bojanczyk,16]

$A=\left(Q, \geq, \Sigma, \Delta, F_{\forall}, F_{1}, F_{>0}\right)$

- (Q, \geq) ordered finite set of states
- Alphabet Σ
- Transitions $\Delta \subseteq Q \times \Sigma \times Q \times Q$
- Acceptance conditions $F_{1} \subseteq F_{\forall} \subseteq Q$ and $F_{>0} \subseteq Q$

Run on input tree $t:\{0,1\}^{*} \rightarrow \Sigma$
$\rho:\{0,1\}^{*} \rightarrow Q$ consistent with Δ
Acceptance condition

- Limsup of a branch Q_{∞}
- $Q_{\infty} \in F_{\forall}$ for every branch
- $Q_{\infty} \in F_{1}$ for almost every branch
- Each time the run enters $F_{>0}$ it stays in $F_{>0}$ with positive probability

Example

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b

Example

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)

Example

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)
$\Delta(q, a,(?, A)),(q, a,(A, ?)), \quad(q, b,(B, B))$

Example

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)
$\Delta(q, a,(?, A)),(q, a,(A, ?)), \quad(q, b,(B, B))$
$F_{\forall} A, B$ (does not look for b forever)

Example

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)
$\Delta(q, a,(?, A)),(q, a,(A, ?)), \quad(q, b,(B, B))$
$F_{\forall} A, B$
(does not look for b forever)
$F_{1} A$
(does not see B infinitely often)

Example

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)
$\Delta(q, a,(?, A)),(q, a,(A, ?)), \quad(q, b,(B, B))$
$F_{\forall} A, B$
(does not look for b forever)
$F_{1} A$
(does not see B infinitely often)
$F_{>0}$?, A positive probability to never see b again

Example

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b

Deciding Emptiness

Theorem (Bojanczyk,Fournier, Gimbert,Kelmendi,17)
Emptiness of nonzero automata is decidable in NPПconp.

- Equivalent to solving a parity game of exponential size.
- Strategies of the players can be represented concisely.

Alternating nonzero automata

$$
A=\left(Q, Q_{E}, Q_{A} \leq, \Sigma, \Delta, F_{\forall}, F_{1}, F_{>0}\right)
$$

- Two players Eve and Adam
- Q partitioned in Q_{E}, Q_{A}
- Local transitions $(q, a, r) \in \Delta$
- Split transitions $\left(q, a, q_{0}, q_{1}\right) \in \Delta$
(stays in place)
(moves in the tree)

Alternating nonzero automata

$A=\left(Q, Q_{E}, Q_{A} \leq, \Sigma, \Delta, F_{\forall}, F_{1}, F_{>0}\right)$

- Two players Eve and Adam
- Q partitioned in Q_{E}, Q_{A}
- Local transitions $(q, a, r) \in \Delta$
(stays in place)
- Split transitions $\left(q, a, q_{0}, q_{1}\right) \in \Delta$

Acceptance game on input tree $t:\{0,1\}^{*} \rightarrow \Sigma$

- Vertices $=$ pairs (n, q) with n node in $\{0,1\}^{*}$ and $q \in Q$,
- Local move: $(n, q) \rightarrow(n, r)$ whenever $(q, t(n), r) \in \Delta$,
- Split move: $(n, q) \rightarrow \frac{1}{2}\left(n 0, q_{0}\right)+\frac{1}{2}\left(n 1, q_{1}\right)$ whenever $\left(q, t(n), q_{0}, q_{1}\right) \in \Delta$

Eve wins if $Q_{\infty} \in F_{\forall}$ for sure, $Q_{\infty} \in F_{1}$ almost-surely and whenever the play enters $F_{>0}$ it stays in $F_{>0}$ with positive probability.

Alternating nonzero automata

Closure properties

- Intersection (Adam choice)
- Union (Eve choice)
- Complement ? open
- Emptiness? open

A nice sub-class

- Similar to limited-alternation automata (Kupferman Vardi Wolper)
- One canonical choice for Adam in each state, other choices strictly increase the rank.
- \Longrightarrow ultimately only Eve has control

Limited choice

Lemma

The acceptance game is determined: either Eve or Adam has a winning strategy. Moreover, positional strategies are enough for Eve to win the acceptance game.

A positional strategy of Eve $\sigma:\{0,1\}^{*} \times Q_{E} \rightarrow \Delta$ represented as a tree $\{0,1\}^{*} \rightarrow \Delta^{Q_{E}}$.

Theorem
The language of positional winning strategies of Eve can be recognized by a non-deterministic automaton of exponential size.

Corollary: emptiness is decidable in NEXPTIME \cap co-NEXPTIME.

Theorem
The language of positional winning strategies of Eve can be recognized by a non-deterministic automaton of exponential size.

- Deterministic automata: guess a play with $Q_{\infty} \notin F_{\forall}$
- Nonzero automata: check that all probability distributions that Adam can generate are surely+almost-surely+positively accepting.
- Technical challenge: checking in parallel several nonzero-conditions.

Satisfiability of $C^{*}\left[\exists, \forall, \mathbb{P}_{>0}, \mathbb{P}_{=1}\right]$

State formulas ϕ. Path formulas ψ.

$$
\begin{aligned}
& \phi=a \in \Sigma|\forall \psi| \exists \psi\left|\mathbb{P}_{>0}(\psi)\right| \mathbb{P}_{=1}(\psi) \\
& \psi=X \psi|\psi U \psi| G \psi \mid \phi \\
& + \text { boolean connectives. }
\end{aligned}
$$

Satisfiability of CTL* $\left[\exists, \forall, \mathbb{P}_{>0}, \mathbb{P}_{=1}\right]$

State formulas ϕ. Path formulas ψ.

$$
\begin{aligned}
& \phi=a \in \Sigma|\forall \psi| \exists \psi\left|\mathbb{P}_{>0}(\psi)\right| \mathbb{P}_{=1}(\psi) \\
& \psi=X \psi|\psi U \psi| G \psi \mid \phi \\
& + \text { boolean connectives. }
\end{aligned}
$$

Conversion from $\operatorname{CTL}^{*}\left[\exists, \forall, \mathbb{P}_{>0}, \mathbb{P}_{=1}\right]$ to alternating automata.

	$\left[\exists, \forall, \mathbb{P}_{>0}, \mathbb{P}_{=1}\right]$
CTL *	3-NEXPTIME \cap co-3-NEXPTIME
CTL	NEXPTIME \cap co-NEXPTIME

Known results [Brazdil et al.].

	$\left[\mathbb{P}_{>0}, \mathbb{P}_{=1}\right]$
CTL *	3-EXPTIME
CTL	EXPTIME

Conclusion

- Alternating nonzero automata with limited choice.
- Application: satisfiability of $\mathrm{CTL}^{*}\left[\exists, \forall, \mathbb{P}_{>0}, \mathbb{P}_{=1}\right]$.

Future work

- Complementing and deciding emptiness in general.
- Games.
- Decidability of MSO?

