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Control and verification of probabilistic systems

I Logic (specification): CTL∗[∃,∀,P>0,P=1]

I Automata (compilation): nonzero automata.

I Games (algorithms): global winning condition.



Binary trees

Full binary tree {0, 1}∗ labelled with {a, b}
Random walk, Markov chain

A node = flip fair coin



Trees whose branches have finitely many a

I for sure

I almost-surely

I with positive probability



Nonzero automata [Bojanczyk,16]

A = (Q,≥,Σ,∆,F∀,F1,F>0)

I (Q,≥) ordered finite set of states

I Alphabet Σ

I Transitions ∆ ⊆ Q × Σ× Q × Q

I Acceptance conditions F1 ⊆ F∀ ⊆ Q and F>0 ⊆ Q

Run on input tree t : {0, 1}∗ → Σ

ρ : {0, 1}∗ → Q consistent with ∆

Acceptance condition

I Limsup of a branch Q∞
I Q∞ ∈ F∀ for every branch

I Q∞ ∈ F1 for almost every branch

I Each time the run enters F>0 it stays in F>0 with positive
probability



Example

I Below every a there is a b

I Below every a there is positive probability to never see b

I Almost surely a branch has finitely many b

Q ? ≤ A ≤ B
(?:looks for b, B: found b, A nothing)

∆ (q, a, (?,A)), (q, a, (A, ?)), (q, b, (B,B))

F∀ A,B
(does not look for b forever)

F1 A
(does not see B infinitely often)

F>0 ?,A
positive probability to never see b again



Example

I Below every a there is a b

I Below every a there is positive probability to never see b

I Almost surely a branch has finitely many b

Q ? ≤ A ≤ B
(?:looks for b, B: found b, A nothing)

∆ (q, a, (?,A)), (q, a, (A, ?)), (q, b, (B,B))

F∀ A,B
(does not look for b forever)

F1 A
(does not see B infinitely often)

F>0 ?,A
positive probability to never see b again



Example

I Below every a there is a b

I Below every a there is positive probability to never see b

I Almost surely a branch has finitely many b

Q ? ≤ A ≤ B
(?:looks for b, B: found b, A nothing)

∆ (q, a, (?,A)), (q, a, (A, ?)), (q, b, (B,B))

F∀ A,B
(does not look for b forever)

F1 A
(does not see B infinitely often)

F>0 ?,A
positive probability to never see b again



Example

I Below every a there is a b

I Below every a there is positive probability to never see b

I Almost surely a branch has finitely many b

Q ? ≤ A ≤ B
(?:looks for b, B: found b, A nothing)

∆ (q, a, (?,A)), (q, a, (A, ?)), (q, b, (B,B))

F∀ A,B
(does not look for b forever)

F1 A
(does not see B infinitely often)

F>0 ?,A
positive probability to never see b again



Example

I Below every a there is a b

I Below every a there is positive probability to never see b

I Almost surely a branch has finitely many b

Q ? ≤ A ≤ B
(?:looks for b, B: found b, A nothing)

∆ (q, a, (?,A)), (q, a, (A, ?)), (q, b, (B,B))

F∀ A,B
(does not look for b forever)

F1 A
(does not see B infinitely often)

F>0 ?,A
positive probability to never see b again



Example

I Below every a there is a b

I Below every a there is positive probability to never see b

I Almost surely a branch has finitely many b

Q ? ≤ A ≤ B
(?:looks for b, B: found b, A nothing)

∆ (q, a, (?,A)), (q, a, (A, ?)), (q, b, (B,B))

F∀ A,B
(does not look for b forever)

F1 A
(does not see B infinitely often)

F>0 ?,A
positive probability to never see b again



Example

I Below every a there is a b

I Below every a there is positive probability to never see b

I Almost surely a branch has finitely many b



Deciding Emptiness

Theorem (Bojanczyk,Fournier,Gimbert,Kelmendi,17)

Emptiness of nonzero automata is decidable in np∩conp.

I ptime for F∀-trivial automata (F∀ = Q),

I Equivalent to solving a parity game of exponential size.

I Strategies of the players can be represented concisely.



Alternating nonzero automata

A = (Q,QE ,QA ≤,Σ,∆,F∀,F1,F>0)

I Two players Eve and Adam

I Q partitioned in QE ,QA

I Local transitions (q, a, r) ∈ ∆ (stays in place)

I Split transitions (q, a, q0, q1) ∈ ∆ (moves in the tree)

Acceptance game on input tree t : {0, 1}∗ → Σ

I Vertices = pairs (n, q) with n node in {0, 1}∗ and q ∈ Q,

I Local move: (n, q)→ (n, r) whenever (q, t(n), r) ∈ ∆,

I Split move: (n, q)→ 1
2 (n0, q0) + 1

2 (n1, q1) whenever
(q, t(n), q0, q1) ∈ ∆

Eve wins if Q∞ ∈ F∀ for sure, Q∞ ∈ F1 almost-surely and whenever
the play enters F>0 it stays in F>0 with positive probability.
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Alternating nonzero automata

Closure properties

I Intersection (Adam choice)

I Union (Eve choice)

I Complement ? open

I Emptiness? open

A nice sub-class

I Similar to limited-alternation automata (Kupferman Vardi
Wolper)

I One canonical choice for Adam in each state, other choices
strictly increase the rank.

I =⇒ ultimately only Eve has control



Limited choice

Lemma
The acceptance game is determined: either Eve or Adam has a
winning strategy. Moreover, positional strategies are enough for
Eve to win the acceptance game.

A positional strategy of Eve σ : {0, 1}∗ × QE → ∆ represented as
a tree {0, 1}∗ → ∆QE .

Theorem
The language of positional winning strategies of Eve can be
recognized by a non-deterministic automaton of exponential size.

Corollary: emptiness is decidable in nexptime∩ co-nexptime.



Theorem
The language of positional winning strategies of Eve can be
recognized by a non-deterministic automaton of exponential size.

I Deterministic automata: guess a play with Q∞ 6∈ F∀
I Nonzero automata: check that all probability distributions

that Adam can generate are surely+almost-surely+positively
accepting.

I Technical challenge: checking in parallel several
nonzero-conditions.



Satisfiability of CTL∗[∃,∀,P>0,P=1]

State formulas φ. Path formulas ψ.

φ = a ∈ Σ | ∀ψ | ∃ψ | P>0(ψ) | P=1(ψ)

ψ = Xψ | ψUψ | Gψ | φ
+ boolean connectives.

Conversion from CTL∗[∃,∀,P>0,P=1] to alternating automata.

[∃,∀,P>0,P=1]

CTL∗ 3-nexptime ∩ co-3-nexptime

CTL nexptime ∩ co-nexptime

Known results [Brazdil et al.].
[P>0,P=1]

CTL∗ 3-exptime

CTL exptime
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Conclusion

I Alternating nonzero automata with limited choice.

I Application: satisfiability of CTL∗[∃, ∀,P>0,P=1].

Future work

I Complementing and deciding emptiness in general.

I Games.

I Decidability of MSO?


