Uniform control of a population of identical MDPs Ongoing work – Preliminary report

Nathalie Bertrand

ANR STOCH-MC meeting - 4 March 2015

STOCH-MC meeting - LIAFA - 4 March 2015, 1/9

Family of identical MDPs

Motivation: Modelisation of the reaction of a population of cells to which the same amount of drug is applied.

PFA natural model for an infinite population What about handling large but finite populations?

Family of identical MDPs

Motivation: Modelisation of the reaction of a population of cells to which the same amount of drug is applied.

PFA natural model for an infinite population What about handling large but finite populations?

- ▶ \mathcal{P}_n : population of n identical MDPs
- Controller: based on the whole configuration chooses an action that is applied uniformly to each MDP
- Goal: control \mathcal{P}_n so as to achieve a given global objective
- Global objective: the maximum probability that a given proportion of MDPs stay in/reach a target set of states meets a threshold.

Parameterized verification

Fixed n

one can build the product MDP for \mathcal{P}_n , identify good configurations and decide whether a controller exists.

Parameterized verification

Fixed n

one can build the product MDP for \mathcal{P}_n , identify good configurations and decide whether a controller exists.

Parameter n

verify a global objective for all sizes n

Global objective: the maximum probability that a given proportion of MDPs stay in/reach a target set of states meets a threshold.

 $\forall n \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_n \models \text{Always at least 80\% of MDPs in T}) \geq .7$

three P's: property (Always/Eventually), proportion and probability

Solving always proportion 100% with probability 1

Amounts to solving a safety question almost-surely on the individual MDP viewed as a PFA.

 $\forall n \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_n \models \text{Always all MDPs in T}) = 1$

Rk: in this case, the PFA can be continuously approximated by \mathcal{P}_n for increasing sizes *n*.

Solving eventually proportion 100% with probability 1

The limit behaviour when n tends to infinity does not coincide with viewing the MDP as a PFA transforming distributions!

- For every n, there exists a strategy that ensures eventually all MDPs in T with probability 1.
- > In the PFA, the maximum probability to reach T is .5.

Solving eventually proportion 100% with probability 1

for |Q| the number of states of the (individual) MDP

Solving eventually proportion 100% with probability 1

$$\forall n \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_n \models \text{Eventually all MDPs in T}) = 1$$

$$\Leftrightarrow \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_{|Q|} \models \text{Eventually all MDPs in T}) = 1$$

for |Q| the number of states of the (individual) MDP

Proof idea

Monotonicity property: max_σ P_σ(P_{n+1} ⊨ Eventually all MDPs in T) = 1 ⇒ max_σ P_σ(P_n ⊨ Eventually all MDPs in T) = 1
Cutoff: max_σ P_σ(P_{|Q|} ⊨ Eventually all MDPs in T) = 1 ⇒ max_σ P_σ(P_{|Q|+1} ⊨ Eventually all MDPs in T) = 1 Solving eventually positive proportion with probability 1

Solving eventually positive proportion with probability 1

Proof idea

- Monotonicity property: $\max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_{n} \models \text{Eventually at least one MDP in T}) = 1$ $\Rightarrow \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_{n+1} \models \text{Eventually at least one MDP in T}) = 1$
- Other direction by contradiction.

Quantitative questions on examples

 $\forall n \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_n \models \text{Eventually at least 50\% of MDPs in T}) = 1$

Quantitative questions on examples

 $\forall n \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_n \models \text{Eventually at least 50\% of MDPs in T}) = 1$

 $\forall p \; \forall n \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_n \models \text{Eventually at least } p\% \text{ of MDPs in T}) = 1$

Future work

- Identify subcases for which the discrete approximation of PFA by family of MDP works.
- Move towards quantitative questions.

 $\forall n \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{P}_n \models \text{Always at least 80\% of MDPs in T}) \geq .7$

M1 intern from CMI this summer