Why and How to use DBNs for biopathways?

Blaise Genest, SUMO

TRAIL-induced apoptosis: complex system

The « usual » Method

ODE or stochastic equations

TRAIL-induced apoptosis in spheroids

Multiscale problem: modeling and simulation is not efficient

TRAIL-induced apoptosis in spheroids

Multiscale problem: modeling and simulation is not efficient

(Approximate)
abstraction
of the low level
biochemical model

TRAIL-induced apoptosis in spheroids

Multiscale problem: modeling and simulation is not efficient

DBN = Approximate abstraction of the low level (biochemical) model

Dynamic Bayesian Networks (DBN)

Discrete time: Finite number of time points (1 every 15 min).

Set of Nodes: each Node correspond to a biological species.

Dont need to have all species.

Each node associated with a small set of values (« low/medium/high concentration »)

Conditional Probability Table (CPT)

X1 ^{t0}	X 2 ^{t0}	X3 ^{t0}	$P(X_1^{t_0+1} = \cdot X_1^{t_0}, X_2^{t_0}, X_3^{t_0})$		
			low	med	high
low	low	low	0.1	0	0.9
low	low	med	0.1	0.4	0.5
low	low	high	0.7	0.1	0.2
low	med	low	0.2	0.02	0.78

ODE vs DBN

(stochastic) ODE

Continuous time (simulation => every ms).

Biophysical model (All species)

Continuous values (concentration...)

1 trajectory

DBN

Discrete time (1 time point every 15 min).

Dont need to have all species.

small set of values
(« low/medium/high concentration »)

Distribution/ Population of trajectory

DBN: high level abstraction

How to build a DBN?

Semantic of DBN = Large Markov Chain

 We can use the CPTs to inductively compute the joint probability (a la Markov Chain):

$$P(\mathbf{X}^t = \mathbf{x}) = \sum_{\mathbf{u}} P(\mathbf{X}^{t-1} = \mathbf{u}) \Big(\prod_i C_i^t(\mathbf{x}_i \mid \mathbf{u}_{\hat{i}}) \Big)$$
 CPT for node i at time t

• $\mathbf{u}, \mathbf{x} \in V^n => 5^{2n}$ computations to do.

=>Unfeasible. Resort to approximated computations.

Talk of Matthieu

Statistics and Mutual Information

Analyzing precisely the ODE simulations in term of mutual information

- -Which pairs of stochastic variables are more correlated?
- => Help building DBN (Suchee).
- -Which subset of correlations to keep s.t. no big correlation is lost
- => Help the approximate computation to be accurate (Matthieu)

Talk of Eric now