
Controlling a Population

Nathalie Bertrand, Miheer Dewaskar,

Blaise Genest, Hugo Gimbert

Idealized Setting:

Question: Can we surely send all yeasts to
State 1 in the same time?
 (no matter how each yeast react)

Control at each step:
 same action for every yeast.

e.g.: sorbitol off for all yeast,
 sorbitol on for all yeast

Problem: For all number N of yeasts, does there exist a controller N

(N (history) = action to play)
such that no infinite history compatible with N avoiding State (N,0,0)

2

1 3

sorbitol off/on

2 player param. game on NFA:
Controller player +

Agents resolving non det.

Basic Properties:

Prop: If controller for N yeasts,
then controller for N-1 yeasts.

Idea of the proof: N-1 plays N simulating a fake yeast.

Either exists a strategy N for all N, or cut-off N0 with
 strategy for N< N0, and no strategy for N > N0.

2

1 3

sorbitol off/on

Result 1:

Either exists a strategy N for all N, or cut-off N0 with
 strategy for N< N0, and no strategy for N > N0.

Th1: there exists NFA for which the cut-off is
 doubly exponential in the size of the NFA

Corollary: using « small model » properties would entail
a 2EXPTIME or more complexity.

Solving control problem symbolically

Use support NFA?

c

c

c

Strategy for all N.
No strategy in the support NFA.

Solving control problem symbolically

play ab:

Playing (ab)* long enough till no token in q2.
And then we can play c and reach .
Hence for all N, there is a strategy N leading to .

c

c

c

q4 q2 q1 q3
leak

Strategy for all N.
No strategy in the support NFA.

Solving control problem symbolically

Notice that playing a* or b* is not winning:
a*: q1 -> q2 -> q1, q3 -> q4 -> q3
b*: counter strategy : q1 -> q1, q3 ->q2+q4, q4 ->q3, q2->q3

 Playing positionally on support is not sufficient to win.

c

c

c

No strategy in the support NFA.

Solving control problem symbolically

Prop:
If winning strategy in the support game, then winning strategy for all N.

Converse not necessarily true: agents strategy can be leaking(cheating)

Change the winning condition in support game:
 An infinite play is B-winning for controller in support game if
 reach {} or there is an « unbounded leak ».

Unbounded leak if for all K, exists a time point and state q with
K or more entries in the future of q

Defining Leaks

 In general state q1,q3 can change.
 Look at how each state transform along an infinite play.

q4 q2 q1 q3
leak
 to
 q3

leak
from
 q4

For repeated graph G*:
No unbounded leak iff
 Union of BSCCs

K=4

0 1 2 3 4 5 … Time points

st
at

es

Solving control problem symbolically

Prop: for all N, controller has a winning strat for N tokens iff
Controller has a B-winning strat in the support game.

But Unbounded condition hard (Colcombet Bojanczik) to check

 An infinite play is B-winning for controller in support game if
 reach {} or there is an « unbounded leak ».

Infinite leak if exists a time point and state q with
Infinite number of entries in the future of q

Defining Leaks

time

st
at

e
 Unbounded leak

not equivalent with
infinite leak

Unbounded leak if for all K, exists a time point and state q with
K or more entries in the future of q

0 1 2 3 4 5 …

K=infinity

Solving control problem symbolically

replace unbounded leak by infinite leak (Buchi condition, easier).

 For finite memory strategies of Agents,
 if there is no infinite leak, there is no unbounded leak

 An infinite play is I-winning for controller in support game if
 reach {} or there is an « infinite leak ».

Reach-or-Leak

Question: How to solve reach-or-leak game?

Infinite Leaking accepted by a exp. non-determinsitic Buchi automata:

Guess (q,i) and check that (q,i) has an infinite number of entries.

Can determinize it as a doubly exp Parity automaton with exp. Parities

Can run this parity automaton to tell if the play is winning.

Doubly exp complexity. Finite memory M is also doubly exp.
 => Cut-off triple exponential N= 2M 22|A|+1

Can we do better than 2EXPTIME?

Easy lower bound: PSPACE (using exponentially many supports)

Th: Population control is EXPTIME-complete

Exponential size Parity Automaton

Build ad-hoc deterministic automaton:

Compute deterministic parity automaton: exp. size, poly parities

EXPTIME, exponential memory, cut-off doubly exponential N= 2M 2|A|

Main issue: Determinise the choice of starting leak « i »

st
at

e

0 1 2 3 4 5 …

i=2

G2 G3 G4 ….

G[2,4]=G2◦G3◦G4 leaks at G5

Separation

Def: We say that G[i,j]=Gi..Gj separates (x,y) if for some q,
 (q,y) G[i,j] and (q,x) G[i,j]

Lemma: If G[i,j] separates (x,y) then G[k,j] separates (x,y) for k>i

Lemma: Take the minimal i s.t. run is i-leaking.
Then exist (xj,yj)j ≥i such that :

 G[i,j] separates all (xj,yj) j ≥i and
 G[i-1,k] separates a finite number of (xj,yj) j ≥i

Determinise the choice of starting leak « i »

q
y

x

Keep in memory
G[i1,j], G[i2,j]… G[in,j] such that
G[ik,j] separates some (x,y) not separated by G[ik’,j] for k’<k.

Only |A|² graphs to keep in memory. => Exp. number of states
One parity for each graph, to detect infinite leak from this graph.

EXPTIME, exponential memory, Cut off doubly exponential N= 2M 22|A|+1

Determinise the choice of starting leak « i »

Exponential size Parity Automaton

PSPACE-hardness:

Turing machine with polyspace M.

NFA

q0

qn

1

M

Control
state

Head
position

A,
1

A,
M

B,
1

B,
M

positions
Ta

p
e

 s
ym

b
o

ls

(need at least M+2 agents)

PSPACE-hardness:

Rule r: qi, head==A then head:=B, pos++, goto qj

q0

qn

1

M

Control
state

Head
position

A,
1

A,
M

B,
1

B,
M

positions
Ta

p
e

 s
ym

b
o

ls

M transitions (tr,k) k=1..M

k

k+
1

qi qj

A,
K

B,
K

EXPTIME-hardness:

Alternating Turing machine with polyspace M.

NFA

Same NFA as before + assume 1 token in qC after init.

qt qt q0 qC

init
ax,k

at,k

qt ax≠t,k

qt qt q0 qu

store

init
ax,p

win

restart

restart

win, ax,p
storex

at,p

Storex≠t

qt

ax≠t,p

EXPTIME-hardness:

In general, more complex construction:

Sum-up

Deciding whether for all N, there exists controller N is
 EXPTIME-complete.

If yes, we have a symbolic controller with finite exponential memory

If not, there exists N0 ≤ 22|A|² 22|A|+1 such that:
 controller up to N0 and no controller after N0

And there are cases where we have N0 = 22|A|/2-10

