Controlling a Population

Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, Hugo Gimbert

Idealized Setting:

Question: Can we *surely* send all yeasts to State 1 in the same time? (no matter how each yeast react)

Control at each step: same action for every yeast.

e.g.: sorbitol off for all yeast, sorbitol on for all yeast

2 player param. game on NFA: Controller player + Agents resolving non det.

Problem: For all number N of yeasts, does there exist a controller σ_N (σ_N (history) = action to play)

such that no infinite history compatible with σ_N avoiding State (N,0,0)

Basic Properties:

Prop: If controller for N yeasts, then controller for N-1 yeasts.

Idea of the proof: σ_{N-1} plays σ_N simulating a fake yeast.

Either exists a strategy σ_N for all N, or cut-off N₀ with strategy for N< N₀, and no strategy for N > N₀.

Result 1:

Either exists a strategy σ_N for all N, or cut-off N₀ with strategy for N< N₀, and no strategy for N > N₀.

Th1: there exists NFA for which the cut-off is doubly exponential in the size of the NFA

Corollary: using « small model » properties would entail a 2EXPTIME or more complexity.

Playing (ab)* long enough till no token in q2. And then we can play c and reach S. Hence for all N, there is a strategy σ_N leading to S.

Notice that playing a* or b* is not winning: a*: q1 -> q2 -> q1, q3 -> q4 -> q3 b*: counter strategy : q1 -> q1, q3 ->q2+q4, q4 ->q3, q2->q3

Playing positionally on support is not sufficient to win.

Prop:

If winning strategy in the support game, then winning strategy for all N.

Converse not necessarily true: agents strategy can be leaking(cheating)

Change the winning condition in support game: An infinite play is B-winning for controller in support game if reach {⁽ⁱ⁾} or there is an « unbounded leak ».

Defining Leaks

For repeated graph G*: No unbounded leak iff Union of BSCCs

In general state q1,q3 can change.

Look at how each state transform along an infinite play.

Unbounded leak if for all K, exists a time point and state q with K or more entries in the future of q

An infinite play is B-winning for controller in support game if reach {③} or there is an « unbounded leak ».

Prop: for all N, controller has a winning strat for N tokens iff Controller has a B-winning strat in the support game.

But Unbounded condition hard (Colcombet Bojanczik) to check

Defining Leaks

Unbounded leak if for all K, exists a time point and state q with K or more entries in the future of q

Infinite leak if exists a time point and state q with Infinite number of entries in the future of q

time

Unbounded leak not equivalent with infinite leak

 \Rightarrow replace unbounded leak by infinite leak (Buchi condition, easier).

An infinite play is I-winning for controller in support game if reach {③} or there is an « infinite leak ».

For finite memory strategies of Agents, if there is no infinite leak, there is no unbounded leak

Reach-or-Leak

Question: How to solve reach-or-leak game?

Infinite Leaking accepted by a exp. non-determinsitic Buchi automata:

Guess (q,i) and check that (q,i) has an infinite number of entries.

Can determinize it as a doubly exp Parity automaton with exp. Parities

Can run this parity automaton to tell if the play is winning.

 \Rightarrow Doubly exp complexity. Finite memory M is also doubly exp. => Cut-off triple exponential N= 2^{M 2²|A|+1}

Can we do better than **2EXPTIME**?

Easy lower bound: **PSPACE** (using exponentially many supports)

Th: Population control is **EXPTIME-complete**

Exponential size Parity Automaton

Build ad-hoc deterministic automaton:

Compute deterministic parity automaton: exp. size, poly parities

 \Rightarrow EXPTIME, exponential memory, cut-off doubly exponential N= 2^{M 2 |A|}

Main issue: Determinise the choice of starting leak « i »

Separation

Determinise the choice of starting leak « i »

Х

Def: We say that G[i,j]=Gi..Gj separates (x,y) if for some q, (q,y) \in G[i,j] and (q,x) \notin G[i,j]

Lemma: If G[i,j] separates (x,y) then G[k,j] separates (x,y) for k>i

Lemma: Take the minimal i s.t. run is i-leaking. Then exist $(x_j, y_j)_{j \ge i}$ such that :

> G[i,j] separates all $(x_j, y_j)_{j \ge i}$ and G[i-1,k] separates a finite number of $(x_j, y_j)_{j \ge i}$

Exponential size Parity Automaton

Determinise the choice of starting leak « i »

Keep in memory $G[i_1,j]$, $G[i_2,j]$... $G[i_n,j]$ such that $G[i_k,j]$ separates some (x,y) not separated by $G[i_{k'},j]$ for k'<k.

Only $|A|^2$ graphs to keep in memory. => Exp. number of states One parity for each graph, to detect infinite leak from this graph.

EXPTIME, exponential memory, Cut off doubly exponential N= $2^{M} 2^{2|A|+1}$

PSPACE-hardness: Turing machine with polyspace M. NFA (need at least M+2 agents) Control Head positions position state Α, Α, 1 $\mathbf{q}_{\mathbf{0}}$ 1 M Tape symbols

Β,

Μ

 $\mathbf{q}_{\mathbf{n}}$

Β,

PSPACE-hardness:

EXPTIME-hardness:

Alternating Turing machine with polyspace M.

NFA

Same NFA as before + assume 1 token in q_c after init.

Deciding whether for all N, there exists controller σ_N is EXPTIME-complete.

If yes, we have a symbolic controller with finite exponential memory

If not, there exists $N_0 \le 2^{2^{|A|^2} 2^{2|A|+1}}$ such that: controller up to N_0 and no controller after N_0

And there are cases where we have $N_0 = 2^{2|A|/2-10}$