Controlling a Population

Nathalie Bertrand, Miheer Dewaskar,
Blaise Genest, Hugo Gimbert

Idealized Setting:

Question: Can we surely send all yeasts to

 State 1 in the same time?(no matter how each yeast react)

Control at each step: same action for every yeast.
e.g.: sorbitol off for all yeast, sorbitol on for all yeast
sorbitol off/on

2 player param. game on NFA: Controller player +
Agents resolving non det.

Problem: For all number N of yeasts, does there exist a controller σ_{N}

$$
\text { (} \sigma_{N} \text { (history) = action to play) }
$$

such that no infinite history compatible with σ_{N} avoiding State ($\mathrm{N}, \mathrm{O}, 0$)

Basic Properties:

> Prop: If controller for N yeasts, then controller for $\mathrm{N}-1$ yeasts.

Idea of the proof: σ_{N-1} plays σ_{N} simulating a fake yeast.

Either exists a strategy σ_{N} for all N, or cut-off N_{0} with strategy for $\mathrm{N}<\mathrm{N}_{0}$, and no strategy for $\mathrm{N}>\mathrm{N}_{0}$.

Result 1:

Either exists a strategy σ_{N} for all N, or cut-off N_{0} with strategy for $\mathrm{N}<\mathrm{N}_{0}$, and no strategy for $\mathrm{N}>\mathrm{N}_{0}$.

Th1: there exists NFA for which the cut-off is doubly exponential in the size of the NFA

Corollary: using « small model » properties would entail a 2EXPTIME or more complexity.

Solving control problem symbolically

Use support NFA?
Strategy for all N.
No strategy in the support NFA.

Solving control problem symbolically

No strategy in the support NFA.
play ab:

Playing (ab)* long enough till no token in q2.
And then we can play c and reach \odot. Hence for all N , there is a strategy σ_{N} leading to \odot.

Solving control problem symbolically

Notice that playing a^{*} or b^{*} is not winning:
a*: q1 -> q2 -> q1, q3 -> q4 -> q3
b^{*} : counter strategy : q1 -> q1, q3 ->q2+q4, q4 ->q3, q2->q3

Playing positionally on support is not sufficient to win.

Solving control problem symbolically

Prop:

If winning strategy in the support game, then winning strategy for all N .

Converse not necessarily true: agents strategy can be leaking(cheating)

Change the winning condition in support game:
An infinite play is B-winning for controller in support game if reach $\{\odot\}$ or there is an « unbounded leak».

Defining Leaks

For repeated graph G*: No unbounded leak iff Union of BSCCs

In general state q1, 93 can change.
Look at how each state transform along an infinite play.
Unbounded leak if for all K, exists a time point and state q with K or more entries in the future of q

Solving control problem symbolically

An infinite play is B-winning for controller in support game if reach $\{\odot\}$ or there is an « unbounded leak ».

Prop: for all N , controller has a winning strat for N tokens iff Controller has a B-winning strat in the support game.

But Unbounded condition hard (Colcombet Bojanczik) to check

Defining Leaks

Unbounded leak if for all K, exists a time point and state q with K or more entries in the future of q

Infinite leak if exists a time point and state q with Infinite number of entries in the future of q

time

Unbounded leak not equivalent with infinite leak

Solving control problem symbolically

\Rightarrow replace unbounded leak by infinite leak (Buchi condition, easier).

An infinite play is I-winning for controller in support game if reach $\{\odot\}$ or there is an «infinite leak».

For finite memory strategies of Agents,
if there is no infinite leak, there is no unbounded leak

Reach-or-Leak

Question: How to solve reach-or-leak game?

Infinite Leaking accepted by a exp. non-determinsitic Buchi automata:

Guess (q, i) and check that (q, i) has an infinite number of entries.

Can determinize it as a doubly exp Parity automaton with exp. Parities

Can run this parity automaton to tell if the play is winning.
\Rightarrow Doubly exp complexity. Finite memory M is also doubly exp. => Cut-off triple exponential $\mathrm{N}=2^{\mathrm{M}} 2^{2 \mid \mathrm{Al+1}}$

Can we do better than 2EXPTIME?

Easy lower bound: PSPACE (using exponentially many supports)

Th: Population control is EXPTIME-complete

Exponential size Parity Automaton

Build ad-hoc deterministic automaton:

Compute deterministic parity automaton: exp. size, poly parities
\Rightarrow EXPTIME, exponential memory, cut-off doubly exponential $N=2^{\mathrm{M}} 2^{|\mathrm{A}|}$

Main issue: Determinise the choice of starting leak «i"

$G[2,4]=G 2{ }^{\circ} \mathrm{G} 3 \circ \mathrm{G} 4$ leaks at G5
$i=2$

Separation

Determinise the choice of starting leak «i»
Def: We say that $\mathrm{G}[\mathrm{i}, \mathrm{j}]=\mathrm{Gi} . . \mathrm{Gj}$ separates (x, y) if for some q , $(q, y) \in G[i, j]$ and $(q, x) \notin G[i, j]$
q

Lemma: If $\mathrm{G}[\mathrm{i}, \mathrm{j}]$ separates (x, y) then $\mathrm{G}[\mathrm{k}, \mathrm{j}]$ separates (x, y) for $\mathrm{k}>\mathrm{i}$

Lemma: Take the minimal i s.t. run is i-leaking.
Then exist $\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right)_{\mathrm{j} \geq i}$ such that :
$\mathrm{G}[\mathrm{i}, \mathrm{j}]$ separates all $\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right)_{\mathrm{j} \geq i}$ and $G[i-1, k]$ separates a finite number of $\left(x_{j}, y_{j}\right)_{j \geq i}$

Exponential size Parity Automaton

Determinise the choice of starting leak «i»

Keep in memory
$G\left[i_{1}, j\right], G\left[i_{2}, j\right] \ldots G\left[i_{n}, j\right]$ such that
$G\left[i_{k}, j\right]$ separates some (x, y) not separated by $G\left[i_{k^{\prime}, j}\right]$ for $k^{\prime}<k$.

Only $|A|^{2}$ graphs to keep in memory. => Exp. number of states One parity for each graph, to detect infinite leak from this graph.

PSPACE-hardness:

Turing machine with polyspace M .

NFA (need at least $\mathrm{M}+2$ agents)

PSPACE-hardness:

Rule $r: q_{i}$, head==A then head:=B, pos++, goto q_{j}
\square
M transitions $\left(\mathrm{t}_{\mathrm{r}, \mathrm{k}}\right)_{\mathrm{k}=1 . \mathrm{M}}$

EXPTIME-hardness:

Alternating Turing machine with polyspace M.

NFA
Same NFA as before + assume 1 token in q_{c} after init.

EXPTIME-hardness:

In general, more complex construction:

Sum-up

Deciding whether for all N, there exists controller σ_{N} is EXPTIME-complete.

If yes, we have a symbolic controller with finite exponential memory

If not, there exists $\mathrm{N}_{0} \leq 2^{2|\mathrm{~A}|^{2}} 2^{2|\mathrm{~A}|+1}$ such that: controller up to N_{0} and no controller after N_{0}
And there are cases where we have $N_{0}=2^{2|A| / 2-10}$

