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Idealized Setting: 

Question: Can we surely send all yeasts to  
State 1 in the same time?  
        (no matter how each yeast react) 
 
Control at each step: 
 same action for every yeast. 
 
e.g.:      sorbitol off for all yeast,  
 sorbitol on for all yeast 

Problem: For all number N of yeasts, does there exist a controller N 

( N (history) = action to play) 
such that no infinite history compatible with N avoiding State (N,0,0) 
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2 player param. game on NFA: 
Controller player + 

Agents resolving non det. 



Basic Properties: 

Prop: If controller for N yeasts,  
then controller for N-1 yeasts. 

Idea of the proof: N-1 plays N simulating a fake yeast. 

Either exists a strategy N for all N,  or cut-off N0 with  
      strategy for N< N0, and no strategy for N > N0. 
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Result 1: 

Either exists a strategy N for all N,  or cut-off N0 with  
      strategy for N< N0, and no strategy for N > N0. 
 
 
 
Th1: there exists NFA for which the cut-off is  
      doubly exponential in the size of the NFA 
 
 
Corollary: using « small model » properties would entail  
a 2EXPTIME or more complexity. 



Solving control problem symbolically 

Use support NFA? 
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Strategy for all N. 
No strategy in the support NFA. 



Solving control problem symbolically 

  
 
play ab:    
 
Playing (ab)* long enough till no token in q2. 
And then we can play c and reach . 
Hence for all N, there is a strategy N leading to . 

 

 
c 

c 

c 

q4 q2 q1 q3 
leak 

Strategy for all N. 
No strategy in the support NFA. 



Solving control problem symbolically 

Notice that playing a* or b* is not winning: 
a*: q1 -> q2 -> q1, q3 -> q4 -> q3 
b*: counter strategy : q1 -> q1,  q3 ->q2+q4, q4 ->q3, q2->q3 
 
 Playing positionally on support is not sufficient to win. 
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No strategy in the support NFA. 



Solving control problem symbolically 

Prop: 
If winning strategy in the support game, then winning strategy for all N. 
 
Converse not necessarily true: agents strategy can be leaking(cheating) 
 
 

Change the winning condition in support game: 
  An infinite play is B-winning for controller in support game if 
  reach {} or there is an « unbounded leak ». 



Unbounded leak if for all K, exists a time point and state q with  
K or more entries in the future of q 

Defining Leaks 
 
   
 
 
         In general state q1,q3 can change. 
                     Look at how each state transform along an infinite play. 

q4 q2 q1 q3 
leak 
  to 
  q3 

leak 
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For repeated graph G*: 
No unbounded leak iff 
       Union of BSCCs 
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Solving control problem symbolically 

  
 
Prop: for all N, controller has a winning  strat for N tokens iff  
Controller has a B-winning strat in the support game. 

But Unbounded condition hard (Colcombet Bojanczik) to check 

  An infinite play is B-winning for controller in support game if 
  reach {} or there is an « unbounded leak ». 



Infinite leak if exists a time point and state q with  
Infinite number of  entries in the future of q 

Defining Leaks 

time 
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 Unbounded leak 

not equivalent with 
infinite leak 

Unbounded leak if for all K, exists a time point and state q with  
K or more entries in the future of q 
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K=infinity 



Solving control problem symbolically 

replace unbounded leak by infinite leak (Buchi condition, easier). 
 
 
 
 
 
 
 
 For finite memory strategies of Agents,  
 if there is no infinite leak, there is no unbounded leak 

  An infinite play is I-winning for controller in support game if 
  reach {} or there is an « infinite leak ». 



Reach-or-Leak 

Question: How to solve reach-or-leak game? 

Infinite Leaking  accepted by a exp. non-determinsitic Buchi automata: 
 
Guess (q,i) and check that (q,i) has an infinite number of entries. 
 
Can determinize it as a doubly exp Parity automaton with exp. Parities 
 
Can run this parity automaton to tell if the play is winning. 
 

Doubly exp complexity. Finite memory M is also doubly exp.  
  => Cut-off triple exponential N= 2M 22|A|+1 



Can we do better than 2EXPTIME? 

Easy lower bound: PSPACE (using exponentially many supports) 

Th: Population control is EXPTIME-complete 



Exponential size Parity Automaton 

Build ad-hoc deterministic automaton: 
 
Compute deterministic parity automaton:  exp. size, poly parities 
 

EXPTIME, exponential memory, cut-off doubly exponential N= 2M 2|A| 

Main issue: Determinise the choice of starting leak « i » 
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i=2 

G2 G3      G4    …. 

G[2,4]=G2◦G3◦G4 leaks at G5 



Separation 

Def: We say that G[i,j]=Gi..Gj separates (x,y) if for some q, 
     (q,y)  G[i,j] and (q,x)  G[i,j] 
 
 
Lemma: If G[i,j] separates (x,y) then G[k,j] separates (x,y) for k>i 
 
 
Lemma: Take the minimal i s.t. run is i-leaking.  
Then exist (xj,yj)j ≥i such that : 
 
 G[i,j] separates all (xj,yj) j ≥i  and 
 G[i-1,k] separates a finite number of (xj,yj) j ≥i  

Determinise the choice of starting leak « i » 
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Keep in memory  
G[i1,j], G[i2,j]… G[in,j] such that  
G[ik,j] separates some (x,y) not separated by G[ik’,j] for k’<k. 
 
 
Only |A|² graphs to keep in memory. => Exp. number of states 
One parity for each graph, to detect infinite leak from this graph. 

EXPTIME, exponential memory, Cut off doubly exponential N= 2M 22|A|+1 

Determinise the choice of starting leak « i » 

Exponential size Parity Automaton 



PSPACE-hardness: 

Turing machine with polyspace M. 
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(need at least M+2 agents) 



PSPACE-hardness: 

Rule r: qi, head==A then head:=B, pos++, goto qj 
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EXPTIME-hardness: 

Alternating Turing machine with polyspace M. 

NFA 

Same  NFA as before + assume 1 token in qC after init.   
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EXPTIME-hardness: 

In general, more complex construction: 



Sum-up 

Deciding whether for all N, there exists controller N is 
  EXPTIME-complete. 
 
 
If yes, we have a symbolic controller with finite exponential memory 
 
 
If not, there exists N0 ≤ 22|A|² 22|A|+1 such that: 
  controller up to N0 and no controller after N0 

 

And there are cases where we have N0 = 22|A|/2-10 


