Error bounds

General Idea

Approximate the values.

Instead of e.g. Probability = 0.3, we answer e.g. Proba in [0.2,0.4]. If question was: is probability < 0.5, then sufficient.



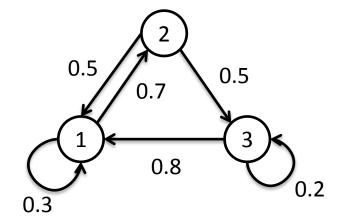
Multiple frameworks:

- Bounded Model Checking of big Dynamic Bayesian Networks
- Model Checking of Markov Chains vs distribution based logics
- Model Checking of MDP vs distributions? [Chada et al.'11]

Bounded model checking of DBN

Irreducible aperiodic chains

$$M = \begin{pmatrix} 0.3 & 0.7 & 0 \\ 0.5 & 0 & 0.5 \\ 0.8 & 0 & 0.2 \end{pmatrix}$$

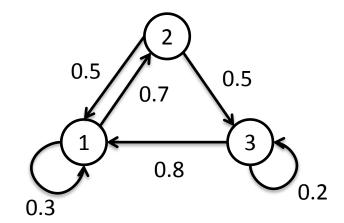


M is irreducible aperiodic because:

$$M^2 = \begin{pmatrix} .44 & .21 & .35 \\ .55 & .35 & 0.1 \\ .4 & .56 & .04 \end{pmatrix}$$

Contracting Factor

$$M = \begin{pmatrix} 0.3 & 0.7 & 0 \\ 0.5 & 0 & 0.5 \\ 0.8 & 0 & 0.2 \end{pmatrix}$$



If M is irreducible aperiodic, then

$$||Mu - Mv|| \le \alpha ||u - v||$$

Where α <1 is the contracting factor

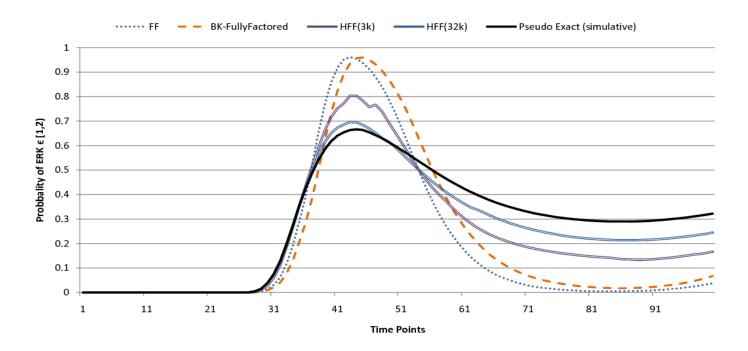
and ||.|| is L1 (for instance) norm.

An error made at time t for M^t u has limited influence over M^t+t' u

Approx. For bounded model checking

What we already have:

1) Very Large Markov Chains encoded as Dynamic Bayesian Networks + statistics or approximated inference (bounded paths).



Parametrized algorithms to compute more and more accurate probabilities. Not accurate enough in reasonable time. No full error analysis.

What we already have:

2) Computation of bound on error made in the approximated inference. => some result will be certain. But proving Proba=1 not possible.

Factored Frontier (Murphy and Weiss), BK (Boyen and Koller), Hybrid FF...

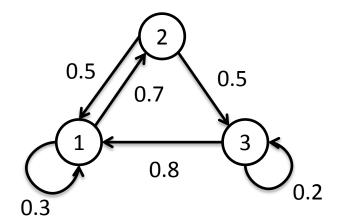
One step error, depend on algo $\Delta^t \leq \epsilon_0 (\sum_{j=0}^t \beta^j) \leq \epsilon_0 (\sum_{j=0}^\infty \beta^j) = \frac{\overset{}{\epsilon_0}}{1-\beta}$ Factor depending on the

underlying Markov Chain

model checking of MC against distribution based logics

Contracting Factor

$$M = \begin{pmatrix} 0.3 & 0.7 & 0 \\ 0.5 & 0 & 0.5 \\ 0.8 & 0 & 0.2 \end{pmatrix}$$



If M is irreducible aperiodic, then

- unique stationary distribution **f** = M**f**
- each trajectory converges towards **f**

Set Init given by interval of probabilities over each state.

Ex: a[sunny] \in [0.7,1]; a[rainy] \in [0,0.3].

Question: For all a \in Init, «for all t, M^t a[1] \geq 0.7»

First Idea to solve question:

- 1) Extract intervals: I=[0,0.3], J=(0.3,0.7), K=[0.7,1].
- 2) Look at symbolic trajectories ex: C^{*}, DC^{*}, DDC^{*} with C=(K,I) and D=(J,J)
- 3) Build symbolic language L^Init_M \in ({I,J,K}^2)* of M, that is D_1...D_k \in L_M iff there exists a \in Init with M^i a[j] \in d_i[j] here: L^Init_M = {C*}

If L^Init_M is regular, then we can answer the question

If L^Init_M is regular, then we know how to proceed.

Result: L^Init_M is not regular for some irreducible aperiodic MC with 3 states, even with a unique initial configuration (=> symbolic trajectory not ultimately periodic)

[Agrawal, Akshay, G., Thiagarajan, JACM'14]

$$M = \begin{pmatrix} 0.6 & 0.1 & 0.3 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{pmatrix}$$
 Discretization I=[0,1/3], J=(1/3,1]. (Question : Is M^t[1]>1/3 for some t?)

$$M = \begin{pmatrix} 0.6 & 0.1 & 0.3 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{pmatrix}$$
 Init: (1/4,1/4,1/2)
Discretization I=[0,1/3], J=(1/3,1].

```
 \begin{array}{l} \textbf{u} = (1/3,1/3,1/3), \ \textbf{v} = (-1\text{-sqrt}(3) \ \textbf{i}, \ -1\text{+sqrt}(3) \ \textbf{i}, \ 2), \ \textbf{w} = (-1\text{+sqrt}(3) \ \textbf{i}, \ -1\text{-sqrt}(3) \ \textbf{i}, \ 2) \\ \textbf{M} \ \textbf{u} = \textbf{u} \\ \textbf{M} \ \textbf{v} = \rho \ e^{\{\textbf{i} \ \theta\}\}} \ \textbf{v} \\ \textbf{M} \ \textbf{w} = \rho \ e^{\{\textbf{i} \ \theta\}\}} \ \textbf{w} \\ \textbf{Where} \ \rho = \text{sqrt}(19)/10 \ \text{and} \ \theta = \text{cos}^{-1}(4/\text{sqrt}(19)). \end{array}
```

We decompose Init = $(1/4,1/4,1/2) = \alpha u + \beta v + \gamma w$.

```
M^n init[1] ∈J iff (α u + β ρ^n e^{i nθ} v + γ ρ^n e^{-i n θ} w) [1] ∈J iff 1/3 α+ (-1-sqrt(3) i) ρ^n e^{i n θ} β + (-1+sqrt(3) i) ρ^n e^{-i n θ} γ >1/3 iff sqrt(3) sin(n θ) > cos (n θ)
```

$$M = \begin{pmatrix} 0.6 & 0.1 & 0.3 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{pmatrix}$$
 Init: (1/4,1/4,1/2)
Discretization I=[0,1/3], J=(1/3,1].

We have: M^n init[1] \in J iff sqrt(3) sin(n θ) > cos (n θ)

By contradiction: if trajectory is utlimately periodic, let k be a period after r first steps.

Now use $\{k \ n \ \theta \ mod \ 2pi \ | \ n \ in \ N\}$ is dense in [0,2pi] cause $\theta = \cos^{-1}(4/\operatorname{sqrt}(19))$ is not a rational multiple of pi (using algebraic integers).

 \Rightarrow Can find n,n'>r such that sqrt(3) sin(kn θ) > cos (kn θ) and sqrt(3) sin(kn' θ) < cos (kn' θ). Hence M^kn init[1] \in J but M^kn' init[1] not in J, contradiction with ultimate periodicity

→ Hence the language L_M^init is not regular.

Results on distribution based logics:

L_M^init is not regular in general even with 3 states. [Agrawal, Akshay, G., Thiagarajan, JACM'14]

L_M^init is regular for 2 states.

Conjecture: L_M^init regular if all eigen values are roots of real number (and distincts). Not easy for set of initial distrib.

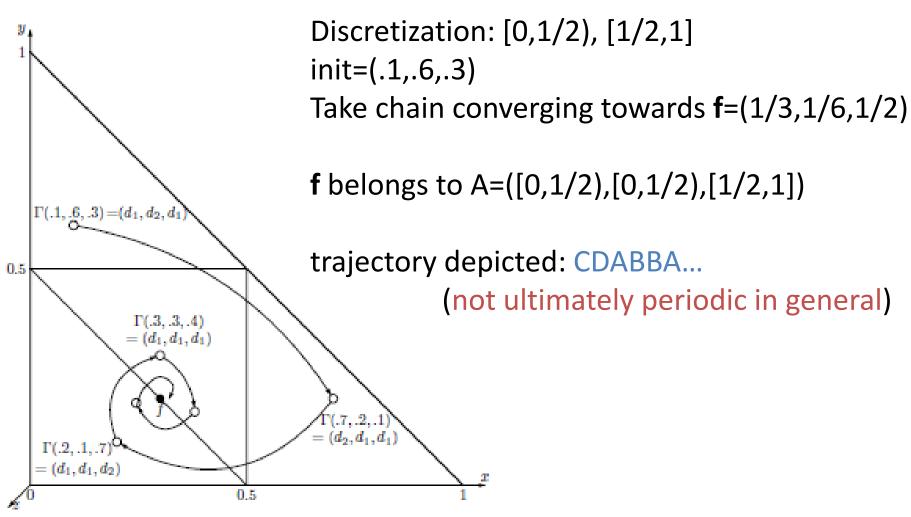
```
[Ouaknine-Worrel'14]:
```

«Eventually always X[i] >=p» is decidable for Markov Chains
with 6 states

(comes from decidability of ultimate positivity of the Skolem problem).

In case all eigen values of M are distinct, decidable for all Markov Chains.

Sum-up of trajectories for irred. aper. chains:



f at distance 0 of B= ([0,1/2),[0,1/2),[0,1/2))

Approximation for Markov Chains.

Approximations for irreducible aperiodic chains:

Fix epsilon => K such that $|M^k \mathbf{u} - \mathbf{f}|$ < epsilon for all distribution \mathbf{u} .

 $A_1...A_n$ is an epsilon approximate symbolic trajectory of a concrete distribution trajectory $d_1...d_n$ if $d_i \in A_i$ for all $i \in K$ and d_i is espilon close to A_i for $i \in K$.

Exact symbolic trajectory from init: CDABBA...

Epsilon => K=4,

Approx symbolic trajectories:

CDABAA..., CDABAB..., CDABBA..., CDABBB....

=> CDAB (A or B)* is regular.

Approximations for irreducible aperiodic chains:

Th: Given MC + Init (set), it is decidable [AAGT, LICS'12] whether:

If for some concrete trajectory w, there does not exists a symbolic approx trajectory satisfying \phi, then w does not satisfies \phi. => system does not satisfy \phi.

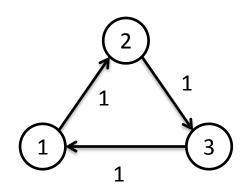
If for all concrete trajectory w, all symbolic approx trajectories satisfying \phi, then all w satisfies \phi.

=> system satisfies \phi.

Undetermined: for all concrete trajectory, there exists symbolic approx satisfying \phi, but not for all.

=> Refine \epsilon to reduce number of approx trajectories.

Irreducible Periodic chains

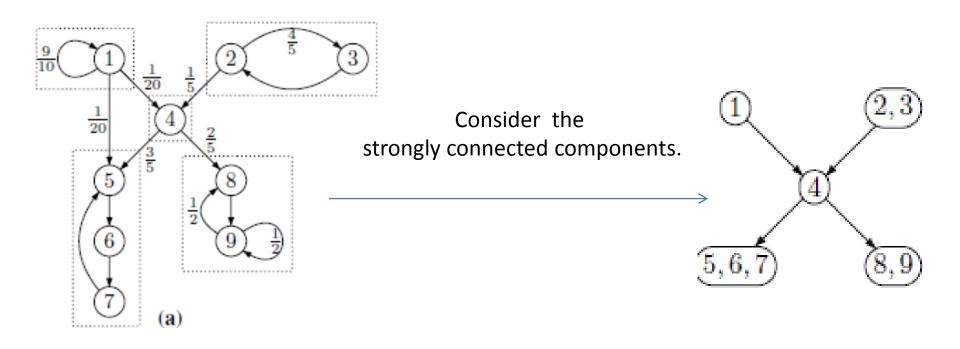


M is periodic of period 3.

M³ is irreducible aperiodic on partition of nodes.

Consider M^3 from Init,
Consider M^3 from M Init,
Consider M^3 from M^2 Init

Not irreducible chains



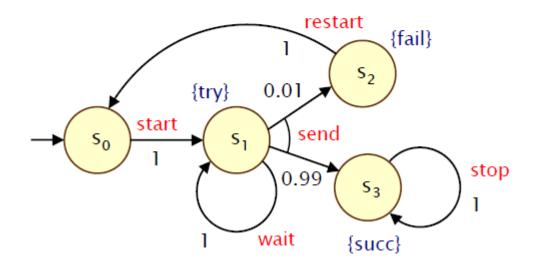
Stationary distributions have weight 0 for non bottom SCC (1; 2-3, 4). \Rightarrow Analyse the bottom SCC with earlier algorithm.

Tough part: Analyse non bottom SCC to get weights for bottom SCC, depending on Initial distribution (algorithm close to CTL model checking)

Markov Decision Process?

Markov Decision Process (MDP)

- after one step, process starts trying to send a message
- then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
- if the latter, with probability 0.99 send successfully and stop
- and with probability 0.01, message sending fails, restart



Markov Decision Process (MDP)

Can be seen as 1 and a ½ player game:

½ player is the random player, which plays according to the probabilities.

The other player is either demonic (want to break the property), or angelic (want to satisfy it)

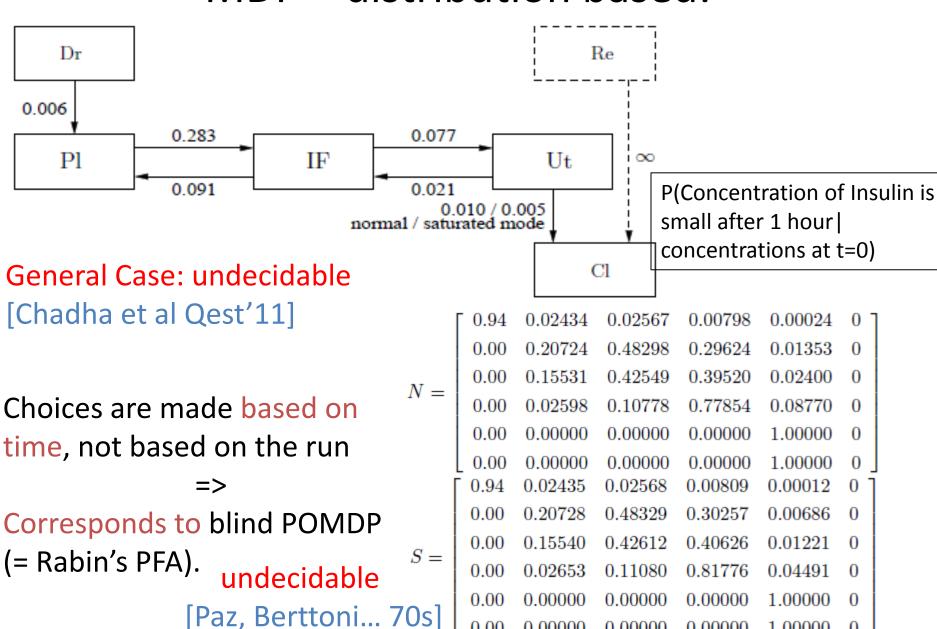
A particular set of choices of the players are called scheduler or strategies.

MDP + scheduler = Markov Chain.

- → Decide for all scheduler, does a property hold? or
- → Does there exists a scheduler such that a property holds?

Or equivalently, determine Prob^{max} and Prob^{min}....

MDP + distribution based:



0.00000

0.00000

1.00000

Concluding Remarks

Perspectives

Things to do:

extend from MC to MDPs...

What about interval MCs?

compute exact bound on errors (bound on contracting factor)...

Other approximations schemes:

« Decidable in good complexity for almost all instances. »?

Upper and lower approximation of the Markov Chain by a class with good algorithm (« class dense in the space of MC»).

=> Deal with an inbetween language.

Thank You!