Bayesian networks approximation

Eric Fabre

ANR StochMC, Feb. 13, 2014

Outline

(1) Motivation
(2) Formalization
(3) Triangulated graphs \& I-projections
(4) Successive approximations
(5) Best graph selection
(6) Conclusion

Motivation

Goal: simplify Bayes nets / Markov fields to make them tractable Network of random variables

- X_{1}, \ldots, X_{n} with $P_{X}=\Pi_{i} P_{X_{i} \mid \mathcal{P}\left(X_{i}\right)}=\Pi_{i} \phi\left(X_{i}, \mathcal{P}\left(X_{i}\right)\right)$
- Ex. $P_{X}=P_{X_{1}} P_{X_{2}} P_{X_{3}} P_{X_{4} \mid X_{1}, X_{2}} P_{X_{5} \mid X_{2}, X_{3}}$

Inference: compute $P(X \mid Y=y)$ where Y is a subset of observed
variables in X

- tree structure \Rightarrow inference is easy (linear)
- nb of cycles $\uparrow \Rightarrow$ complexity \uparrow

Motivation

Goal: simplify Bayes nets / Markov fields to make them tractable Network of random variables

- X_{1}, \ldots, X_{n} with $P_{X}=\Pi_{i} P_{X_{i} \mid \mathcal{P}\left(X_{i}\right)}=\Pi_{i} \phi\left(X_{i}, \mathcal{P}\left(X_{i}\right)\right)$
- Ex. $P_{X}=P_{X_{1}} P_{X_{2}} P_{X_{3}} P_{X_{4} \mid X_{1}, X_{2}} P_{X_{5} \mid X_{2}, X_{3}}$

Inference: compute $P(X \mid Y=y)$ where Y is a subset of observed variables in X

- tree structure \Rightarrow inference is easy (linear)
- nb of cycles $\uparrow \Rightarrow$ complexity \uparrow

Dynamic Bayesian networks

- X_{1}, \ldots, X_{n} form a Markov chain, $P_{X}=P_{X_{1}} P_{X_{2} \mid X_{1}} P_{X_{3} \mid X_{2}} \cdots$
- each X_{i} itself is a large vector $X_{i}=\left[X_{i, j}\right]_{1 \leq j \leq m}$
- local dynamics:
$P_{X_{i} \mid X_{i-1}}=\Pi_{j} P_{X_{i, j} \mid X_{i-1}} \quad P_{X_{i, j} \mid X_{i-1}}=P_{X_{i, j} \mid X_{i-1, \mathcal{P}(j)}}$
- in marginals $P_{X_{i}}$, inner correlations increase as i grows this makes successive inferences $P_{X_{i} \mid y_{1}, \ldots, y_{i}}$ tougher problems...

Factored frontier algorithm:

- approximate $P_{X_{i} \mid y_{1}, \ldots, y_{i}}$ by a simpler field (white noise)

$$
\tilde{P}_{X_{i} \mid y_{1}, \ldots, y_{i}}=\Pi_{j} P_{X_{i, j} \mid y_{1}, \ldots, y_{i}}
$$

- then propagate to X_{i+1}, and incorporate new observation y_{i+1}

Two ways around complexity:

- run approximate inference on the exact complex model
- run exact inference on an approximate simpler model

Factored frontier algorithm:

- approximate $P_{X_{i} \mid y_{1}, \ldots, y_{i}}$ by a simpler field (white noise)

$$
\tilde{P}_{X_{i} \mid y_{1}, \ldots, y_{i}}=\Pi_{j} P_{X_{i, j} \mid y_{1}, \ldots, y_{i}}
$$

- then propagate to X_{i+1}, and incorporate new observation y_{i+1}

Two ways around complexity:

- run approximate inference on the exact complex model
- run exact inference on an approximate simpler model

Outline

(1) Motivation
(2) Formalization

3 Triangulated graphs \& I-projections

4 Successive approximations
(5) Best graph selection
(6) Conclusion

Formalization

Idea: to simplify a network, remove edges one at a time How?

- An edge $=$ a conditional independence test (yes/no) - does not measure the strength of the link

Natural distance:

- Kullback-Leibler: $D\left(P_{A, B \mid C} \| P_{A \mid C} P_{B \mid C}\right)=I(A ; B \mid C)$
- number of common "private" bits between A and B

Formalization

Idea: to simplify a network, remove edges one at a time How ?

- An edge $=$ a conditional independence test (yes/no)
- does not measure the strength of the link

Natural distance:

- Kullback-Leibler: $D\left(P_{A, B \mid C} \| P_{A \mid C} P_{B \mid C}\right)=I(A ; B \mid C)$
- number of common "private" bits between A and B

Formalization

Idea: to simplify a network, remove edges one at a time How ?

- An edge $=$ a conditional independence test (yes/no)
- does not measure the strength of the link

Natural distance:

- Kullback-Leibler: $D\left(P_{A, B \mid C} \| P_{A \mid C} P_{B \mid C}\right)=I(A ; B \mid C)$
- number of common "private" bits between A and B

Method

- given $P \sim \mathcal{G}$ with \mathcal{G} a complex graph given \mathcal{G}^{\prime} a simpler graph find the best probability law Q such that $Q \sim \mathcal{G}^{\prime}$

$$
\min _{Q} D(P \| Q)=\min _{Q} \sum_{x} p(x) \log _{2} \frac{p(x)}{q(x)}
$$

- then optimize over graphs \mathcal{G}^{\prime}

Wishes

- edge by edge simplification
- local cost of each edge
- additivity of costs

Method

- given $P \sim \mathcal{G}$ with \mathcal{G} a complex graph
given \mathcal{G}^{\prime} a simpler graph
find the best probability law Q such that $Q \sim \mathcal{G}^{\prime}$

$$
\min _{Q} D(P \| Q)=\min _{Q} \sum_{x} p(x) \log _{2} \frac{p(x)}{q(x)}
$$

- then optimize over graphs \mathcal{G}^{\prime}

Wishes

- edge by edge simplification
- local cost of each edge
- additivity of costs

General solution

Information geometry:

- assumptions:
$\forall x, p(x)>0$, uniqueness of Q, discrete values for X
- solution by I-projection (Csiszàr) over a log-linear space of distributions

Resolution

- IPFP (iterative proportional fitting procedure)
- Q obtained as a limit, and $D(P \| Q)$ is an infinite sum
- Pythagora's theorem (additivity of distances)
- edges do not have a local cost
- edge by edge removal difficult

Triangulated graphs give all for free!

General solution

Information geometry:

- assumptions:
$\forall x, p(x)>0$, uniqueness of Q, discrete values for X
- solution by I-projection (Csiszàr) over a log-linear space of distributions

Resolution

- IPFP (iterative proportional fitting procedure)
- Q obtained as a limit, and $D(P \| Q)$ is an infinite sum...
- Pythagora's theorem (additivity of distances)
- edges do not have a local cost
- edge by edge removal difficult

General solution

Information geometry:

- assumptions:
$\forall x, p(x)>0$, uniqueness of Q, discrete values for X
- solution by I-projection (Csiszàr) over a log-linear space of distributions

Resolution

- IPFP (iterative proportional fitting procedure)
- Q obtained as a limit, and $D(P \| Q)$ is an infinite sum...
- Pythagora's theorem (additivity of distances)
- edges do not have a local cost
- edge by edge removal difficult

Triangulated graphs give all for free !

Outline

(1) Motivation
(2) Formalization
(3) Triangulated graphs \& I-projections
(4) Successive approximations
(5) Best graph selection
(6) Conclusion

Triangulated graphs generalize trees

- tree-width of $\mathcal{G}=\min$ over all triangulations \mathcal{T} of \mathcal{G} of the largest clique in \mathcal{T}
- related to the junction tree construction

Coding theorem

Theorem

$Q \sim \mathcal{T}$ and $\mathcal{T}=(V, E)=$ tree
then $Q \Leftrightarrow\left\{Q_{A, B}:(A, B) \in E\right\}$

$$
Q_{A, \ldots, F}=Q_{A} Q_{B \mid A} Q_{C \mid A} Q_{D \mid B} Q_{E \mid C} Q_{F \mid C}
$$

Coding theorem (2)

Theorem

$Q \sim \mathcal{G}$ and \mathcal{G} triangulated graph then $Q \Leftrightarrow\left\{Q_{C}: \quad\right.$ C maximal clique in $\left.\mathcal{G}\right\}$

$$
Q=Q_{C_{1}} Q_{C_{2} \ominus C_{1} \mid C_{2} \cap C_{1}} Q_{C_{3} \ominus C_{1} \mid C_{3} \cap C_{1} \cdots}
$$

I-projection

- one always has

$$
D\left(P_{X, Y} \| Q_{X, Y}\right)=D\left(P_{X} \| Q_{X}\right)+D\left(P_{Y \mid X} \| Q_{Y \mid X}\right)
$$

- $P \sim \mathcal{G}$ with target graph \mathcal{G}^{\prime} triangulated
let $Q \sim \mathcal{G}^{\prime}$ and let C be a maximal clique in \mathcal{G}^{\prime}

$$
D(P \| Q)=D\left(P_{C} \| Q_{C}\right)+D\left(P_{\text {rest } \mid C} \| Q_{\text {rest } \mid C}\right)
$$

if $Q \sim \mathcal{G}^{\prime}$ minimizes the distance, then $Q_{C} \equiv P_{C}$

Properties:

- unique solution
- direct computation of Q
- no assumption on P

I-projection

- one always has

$$
D\left(P_{X, Y} \| Q_{X, Y}\right)=D\left(P_{X} \| Q_{X}\right)+D\left(P_{Y \mid X} \| Q_{Y \mid X}\right)
$$

- $P \sim \mathcal{G}$ with target graph \mathcal{G}^{\prime} triangulated
let $Q \sim \mathcal{G}^{\prime}$ and let C be a maximal clique in \mathcal{G}^{\prime}

$$
D(P \| Q)=D\left(P_{C} \| Q_{C}\right)+D\left(P_{\text {rest } \mid C} \| Q_{\text {rest } \mid C}\right)
$$

if $Q \sim \mathcal{G}^{\prime}$ minimizes the distance, then $Q_{C} \equiv P_{C}$

Properties:

- unique solution
- direct computation of Q
- no assumption on P

I-projection

- one always has

$$
D\left(P_{X, Y} \| Q_{X, Y}\right)=D\left(P_{X} \| Q_{X}\right)+D\left(P_{Y \mid X} \| Q_{Y \mid X}\right)
$$

- $P \sim \mathcal{G}$ with target graph \mathcal{G}^{\prime} triangulated let $Q \sim \mathcal{G}^{\prime}$ and let C be a maximal clique in \mathcal{G}^{\prime}

$$
D(P \| Q)=D\left(P_{C} \| Q_{C}\right)+D\left(P_{\text {rest } \mid C} \| Q_{\text {rest } \mid C}\right)
$$

if $Q \sim \mathcal{G}^{\prime}$ minimizes the distance, then $Q_{C} \equiv P_{C}$

- Q is then defined by $\left\{Q_{C} \triangleq P_{C}: C\right.$ maximal clique in $\left.\mathcal{G}^{\prime}\right\}$

Properties:

- unique solution
- direct computation of Q
- no assumption on P

I-projection

- one always has

$$
D\left(P_{X, Y} \| Q_{X, Y}\right)=D\left(P_{X} \| Q_{X}\right)+D\left(P_{Y \mid X} \| Q_{Y \mid X}\right)
$$

- $P \sim \mathcal{G}$ with target graph \mathcal{G}^{\prime} triangulated
let $Q \sim \mathcal{G}^{\prime}$ and let C be a maximal clique in \mathcal{G}^{\prime}

$$
D(P \| Q)=D\left(P_{C} \| Q_{C}\right)+D\left(P_{\text {rest } \mid C} \| Q_{\text {rest } \mid C}\right)
$$

if $Q \sim \mathcal{G}^{\prime}$ minimizes the distance, then $Q_{C} \equiv P_{C}$

- Q is then defined by $\left\{Q_{C} \triangleq P_{C}: C\right.$ maximal clique in $\left.\mathcal{G}^{\prime}\right\}$

Properties:

- unique solution
- direct computation of Q
- no assumption on P

Surgery

Question: how to remove a single edge to a triangulated graph ?

Theorem

\mathcal{G} triangulated graph, $\mathcal{G}^{\prime}=\mathcal{G} \ominus(A, B)$ is triangulated iff edge (A, B) in \mathcal{G} is a green edge, i.e. belongs to a unique maximal clique of \mathcal{G}.

triangularity lost !

Green edges

Q: Are there many green edges ?
R: yes! they form the "skin" of the triangulated graph.

Properties

- at least 2 green edges attached to each node of degree ≥ 2
- a green edge is either separating (isthmus) or belongs to a green cycle
- \exists green path between any two nodes
- \exists green cycle containing any two nodes that are not separated by an isthmus

Green edges

Q: Are there many green edges ?
R: yes! they form the "skin" of the triangulated graph.

Properties

- at least 2 green edges attached to each node of degree ≥ 2
- a green edge is either separating (isthmus) or belongs to a green cycle
- \exists green path between any two nodes
- \exists green cycle containing any two nodes that are not separated by an isthmus

Green edges (2)

Theorem

Let $\mathcal{G} \supset \mathcal{G}^{\prime}$ be triangulated graphs, there exists a decreasing sequence of triangulated graphs

$$
\mathcal{G}=\mathcal{G}_{0} \supset \mathcal{G}_{1} \supset \mathcal{G}_{2} \supset \ldots \supset \mathcal{G}_{n}=\mathcal{G}^{\prime}
$$

such that \mathcal{G}_{i} and \mathcal{G}_{i+1} differ by a single (green) edge.

Outline

(1) Motivation
(2) Formalization
(3) Triangulated graphs \& I-projections

4 Successive approximations
(5) Best graph selection
(6) Conclusion

Additivity of distances

Theorem

Let $\mathcal{G} \supset \mathcal{G}^{\prime} \supset \mathcal{G}^{\prime \prime}$ be triangulated graphs, and $P \sim \mathcal{G}, Q \sim \mathcal{G}^{\prime}, R \sim \mathcal{G}^{\prime \prime}$ resp. best approximations of P, then $D(P \| R)=D(P \| Q)+D(Q \| R)$

clique C

Proof. assume wlog $\mathcal{G}^{\prime}=\mathcal{G} \ominus(A, B)$

$$
\begin{array}{ccc}
P=P_{A, B \mid D} & P_{D} P_{\text {rest } \mid C} & \mathcal{G} \\
Q=P_{A \mid D} P_{B \mid D} & P_{D} P_{\text {rest } \mid C} & \mathcal{G}^{\prime} \\
R=R_{A \mid D} R_{B \mid D} & R_{D} R_{\text {rest } \mid C} & \mathcal{G}^{\prime \prime} \\
D\left(P_{A, B \mid D} \| R_{A \mid D} R_{B \mid D}\right)= & D\left(P_{A, B \mid D} \| P_{A \mid D} P_{B \mid D}\right) \\
& +D\left(P_{A \mid D} P_{B \mid D} \| R_{A \mid D} R_{B \mid D}\right)
\end{array}
$$

Corollary

$\mathcal{G}^{\prime}=\mathcal{G} \ominus(A, B), \quad P \sim \mathcal{G}, Q \sim \mathcal{G}^{\prime}$ best approximation of P on \mathcal{G}^{\prime},

$$
D(P \| Q)=D\left(P_{A, B \mid C} \| P_{A \mid C} P_{B \mid C}\right)=I(A ; B \mid C)
$$

where C is the (unique) maximal clique containing edge (A, B) in \mathcal{G}.

- involves P only on the (unique) clique C containing edge (A, B) : locality of the cost
- in a decreasing sequence $\mathcal{G}=\mathcal{G}_{0} \supset \mathcal{G}_{1} \supset \ldots$ of triangulated graphs, the distance computation always involves the initial probability $P($ on $\mathcal{G})$

Corollary

$\mathcal{G}^{\prime}=\mathcal{G} \ominus(A, B), \quad P \sim \mathcal{G}, Q \sim \mathcal{G}^{\prime}$ best approximation of P on \mathcal{G}^{\prime},

$$
D(P \| Q)=D\left(P_{A, B \mid C} \| P_{A \mid C} P_{B \mid C}\right)=I(A ; B \mid C)
$$

where C is the (unique) maximal clique containing edge (A, B) in \mathcal{G}.

- involves P only on the (unique) clique C containing edge (A, B) : locality of the cost
- in a decreasing sequence $\mathcal{G}=\mathcal{G}_{0} \supset \mathcal{G}_{1} \supset \ldots$ of triangulated graphs, the distance computation always involves the initial probability P (on \mathcal{G})

Distance to white noise

White noise:

- $\mathcal{W}=$ graph with no edge (still same nodes as \mathcal{G})
- $P \sim \mathcal{G}$, best probability $I \sim \mathcal{W}$ satisfies $I=\Pi_{S \in V} P_{S}$
- $D(P \| I)$ can be computed by additivity through any decreasing sequence $\mathcal{G}=\mathcal{G}_{0} \supset \mathcal{G}_{1} \supset \ldots \supset \mathcal{G}_{n}=\mathcal{W}$

Distance to white noise

White noise:

- $\mathcal{W}=$ graph with no edge (still same nodes as \mathcal{G})
- $P \sim \mathcal{G}$, best probability $I \sim \mathcal{W}$ satisfies $I=\Pi_{S \in V} P_{S}$
- $D(P \| I)$ can be computed by additivity through any decreasing sequence $\mathcal{G}=\mathcal{G}_{0} \supset \mathcal{G}_{1} \supset \ldots \supset \mathcal{G}_{n}=\mathcal{W}$

Theorem

There exists weights $w_{P}(D)$ associated to cliques D of \mathcal{G} such that

$$
D(P \| I)=\sum_{D \text { clique in } \mathcal{G}} w_{P}(D)
$$

clique C

Proof. Remove (A, B) in clique $C: \quad D(P \| I)=D(P \| Q)+D(Q \| I)$ If the theorem holds, one has

$$
D(P \| Q)=I(A ; B \mid D)=\sum_{E \subseteq D} w_{P}(E \cup\{A, B\})
$$

By the Moëbius transform, one gets:

$$
w_{P}(E \cup\{A, B\})=\sum_{E \subseteq D}(-1)^{|D-E|} I(A ; B \mid E)
$$

Theorem

There exists weights $w_{P}(D)$ associated to cliques D of \mathcal{G} such that

$$
D(P \| I)=\sum_{D \text { clique in } \mathcal{G}} w_{P}(D)
$$

sum over all (non necessarily maximal) cliques D of \mathcal{G}

Examples

- $w_{P}(\emptyset)=0$
- $w_{P}(\{A\})=0$
- $w_{P}(\{A, B\})=I(A ; B)$
- $w_{P}(\{A, B, C\})=I(A ; B \mid C)-I(A ; B)$ sym in A, B, C
- $w_{P}(D)$ can be ≥ 0 or ≤ 0 for $|D| \geq 3$

Outline

(1) Motivation
(2) Formalization
(3) Triangulated graphs \& I-projections

4 Successive approximations
(5) Best graph selection
(6) Conclusion

Best triangulated graph

Remark:

- if Q best approximation of P on triangulated graph \mathcal{G}^{\prime}, then

$$
D(P \| I)=D(P \| Q)+D(Q \| I)
$$

- so $\min _{\mathcal{G}^{\prime}} D(P \| Q) \Leftrightarrow \max _{\mathcal{G}^{\prime}} D(Q \| I)$

Hierarchy of triangulated graphs:

- $\mathcal{T}_{p}=$ triangulated graphs over vertices V, where cliques have at most p nodes

Best triangulated graph

Remark:

- if Q best approximation of P on triangulated graph \mathcal{G}^{\prime}, then

$$
D(P \| I)=D(P \| Q)+D(Q \| I)
$$

- so $\min _{\mathcal{G}^{\prime}} D(P \| Q) \Leftrightarrow \max _{\mathcal{G}^{\prime}} D(Q \| I)$

Hierarchy of triangulated graphs:

- $\mathcal{T}_{p}=$ triangulated graphs over vertices V, where cliques have at most p nodes

$$
\text { TO } 2
$$

$$
\text { TO } 3
$$

- $p \uparrow \Rightarrow \uparrow n b$ of edges $\Rightarrow Q$ closer to P (further away from I)

Greedy algorithms

Best tree approximation:

$$
\max _{\mathcal{G}^{\prime} \in \mathcal{T}_{2}} D(Q \| I)=\max _{\mathcal{G}^{\prime} \in \mathcal{T}_{2}} \sum_{\text {edge }\{A, B\} \in \mathcal{G}^{\prime}} I(A ; B)
$$

- a best covering tree problem: greedy algo
- already discovered by [Chow et al., '68] !

Best \mathcal{T}_{p} approximation:

- greedy algos are sub-optimal, but not so bad [Malvestuto, '91]

Greedy algorithms

Best tree approximation:

$$
\max _{\mathcal{G}^{\prime} \in \mathcal{T}_{2}} D(Q \| I)=\max _{\mathcal{G}^{\prime} \in \mathcal{T}_{2}} \sum_{\text {edge }\{A, B\} \in \mathcal{G}^{\prime}} I(A ; B)
$$

- a best covering tree problem: greedy algo
- already discovered by [Chow et al., '68] !

Best \mathcal{T}_{p} approximation:

$$
\max _{\mathcal{G}^{\prime} \in \mathcal{T}_{P}} \sum_{\text {edge }\{A, B\} \in \mathcal{G}^{\prime}} I(A ; B)+\sum_{\text {clique }\{A, B, C\} \in \mathcal{G}^{\prime}} w_{P}(\{A, B, C\})+\ldots
$$

- greedy algos are sub-optimal, but not so bad [Malvestuto, '91]

Conclusion

Summary

- Idea : simplify the model, then apply an exact algorithm
- Bayesian networks : easy with triangulated graphs

Questions

- Link between $D(P \| Q)$ and the quality of estimators built from Q instead of P ?
- Of interest to Blaise's problems ?
- What about networks of dynamic (probabilistic) systems ?

Conclusion

Summary

- Idea : simplify the model, then apply an exact algorithm
- Bayesian networks : easy with triangulated graphs

Questions

- Link between $D(P \| Q)$ and the quality of estimators built from Q instead of P ?
- Of interest to Blaise's problems ?
- What about networks of dynamic (probabilistic) systems ?

