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Goal: simplify Bayes nets / Markov fields to make them tractable

Network of random variables
® Xi,..., Xy with Px = ;Pxp(x;) = Mip(Xi, P(Xi))

@ Ex. Px = Px; Px, Pxy Px, x5 Pxs| X2, x:
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Motivation

Goal: simplify Bayes nets / Markov fields to make them tractable
Network of random variables
® Xi,..., Xy with Px = ;Pxp(x;) = Mip(Xi, P(Xi))

® Ex. Px = PX1PX2PX3PX4\X17X2PX5\X27X3
X] X2 X3 X] X2 )(3
X, X5 X, X5
Inference: compute P(X|Y = y) where Y is a subset of observed
variables in X

@ tree structure = inference is easy (linear)

@ nb of cycles T = complexity 1
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Dynamic Bayesian networks

@ Xi,..., Xy form a Markov chain, Px = Px; Px,|x, Px;|x,--
@ each X; itself is a large vector X; = [Xi jli<j<m
@ local dynamics:
Pxiixiy = NiPx; ;x4 Px; jixioe = PX,-,J-\X,-,LPU)
@ in marginals Px;, inner correlations increase as i grows
this makes successive inferences Px,, ... tougher problems...

X X X3 X X X3
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Factored frontier algorithm:
@ approximate Pyx|,, .. by a simpler field (white noise)
’BX,'\}/L---J,' = anXi,jb’h---Ji
@ then propagate to Xj i1, and incorporate new observation y; 1
13<Xilg}f> PO V™) ﬁ(XH%I) yith

Oz--4 approximation
O-- o3 I—projection
-
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Two ways around complexity:
@ run approximate inference on the exact complex model

@ run exact inference on an approximate simpler model
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How ?
@ An edge = a conditional independence test (yes/no)

@ does not measure the strength of the link

a, P .  a&b NOT
\\\ " independent given C
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Formalization

Idea: to simplify a network, remove edges one at a time
How ?
@ An edge = a conditional independence test (yes/no)

@ does not measure the strength of the link

a, P .  a&b NOT
\\\ " independent given C

Natural distance:
@ Kullback-Leibler: D(PA,B|C || PA|CPB|C) = I(A, B|C)

@ number of common “private” bits between A and B
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Method
@ given P ~ G with G a complex graph
given G’ a simpler graph
find the best probability law @ such that @ ~ G’
(%)

mCi)n D(P||Q) = ming XX: p(x) logy %

@ then optimize over graphs G’
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Method
@ given P ~ G with G a complex graph
given G’ a simpler graph
find the best probability law @ such that @ ~ G’
p(x)

mCi)n D(P||Q) = ming XX: p(x) logy )

@ then optimize over graphs G’

Wishes
@ edge by edge simplification
@ local cost of each edge

@ additivity of costs
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Information geometry:
@ assumptions:
Vx, p(x) > 0, uniqueness of Q, discrete values for X

@ solution by |-projection (Csiszar) over a log-linear space of
distributions
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Information geometry:

@ assumptions:
Vx, p(x) > 0, uniqueness of Q, discrete values for X

@ solution by |-projection (Csiszar) over a log-linear space of
distributions

Resolution

o IPFP (iterative proportional fitting procedure)
Q obtained as a limit, and D(P||Q) is an infinite sum...
Pythagora's theorem (additivity of distances)

edges do not have a local cost

e 66 o ¢

edge by edge removal difficult
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General solution

Information geometry:

@ assumptions:
Vx, p(x) > 0, uniqueness of Q, discrete values for X

@ solution by |-projection (Csiszar) over a log-linear space of
distributions

Resolution

o IPFP (iterative proportional fitting procedure)
Q obtained as a limit, and D(P||Q) is an infinite sum...
Pythagora's theorem (additivity of distances)

edges do not have a local cost

e 66 o ¢

edge by edge removal difficult

Triangulated graphs give all for free !
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Triangulated graphs generalize trees

@ tree-width of G = min over all triangulations T of G of the
largest clique in T~

@ related to the junction tree construction
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Coding theorem

Q~T andT = (V,E) = tree
then Q & {Qap : (A, B) € E}

Qa,...F = Qa Qpja Qcja Qpis Qejc QF|c
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Coding theorem (2)

Q ~ G and G triangulated graph
then Q < {Qc¢ : C maximal clique in G}

@
e

Q= QCl QC2@C1\C20C1 QC3@C1\C3OC1-~
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|-projection

@ one always has
D(Px,vy | @x,v) = D(Px || Qx) + D(Pyx || Qv|x)
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@ one always has

D(Px,vy | @x,v) = D(Px || Qx) + D(Pyx || Qv|x)
@ P ~ G with target graph G’ triangulated

let @ ~ G and let C be a maximal clique in G’

D(PHQ) = D(PC || QC) + D(Prest\C || Qrest|C)

if @ ~ G’ minimizes the distance, then Q¢ = P¢
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|-projection

@ one always has

D(Px,vy | @x,v) = D(Px || Qx) + D(Pyx || Qv|x)
@ P ~ G with target graph G’ triangulated

let @ ~ G and let C be a maximal clique in G’

D(PHQ) = D(PC || QC) + D(Prest\C || Qrest|C)

if @ ~ G’ minimizes the distance, then Q¢ = P¢
@ Q is then defined by {Qc £ Pc : C maximal clique in G'}

Properties:
@ unique solution
@ direct computation of Q

@ no assumption on P
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Surgery

Question: how to remove a single edge to a triangulated graph ?

G triangulated graph, G' = G © (A, B) is triangulated
iff edge (A, B) in G is a green edge,
i.e. belongs to a unique maximal clique of G.

triangularity lost !

s - S
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Green edges

Q: Are there many green edges 7
R: yes! they form the “skin” of the triangulated graph.
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Green edges

Q: Are there many green edges 7
R: yes! they form the “skin” of the triangulated graph.

Properties
@ at least 2 green edges attached to each node of degree > 2

@ a green edge is either separating (isthmus) or belongs to a
green cycle

@ d green path between any two nodes

@ d green cycle containing any two nodes that are not separated
by an isthmus
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Green edges (2)

Theorem

Let G D G’ be triangulated graphs,
there exists a decreasing sequence of triangulated graphs

G§=G02G12G:D..0G,=¢
such that G; and G; 1 differ by a single (green) edge.
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Additivity of distances

Let G © G' D G" be triangulated graphs,
and P~ G, Q ~G', R~ G" resp. best approximations of P,
then D(P||R) = D(P||Q) + D(Q||R)

clique C

o
Proof. assume wlog G’ =G & (A, B)

P = Papp Pp Prest|c g
Q = Pap Pep Pbp Prestic g
R = Rap Reip Rp Rrest|c G"

D(Pasgip || RapReip) = D(Pagp |l PapPsip)
+D(PaipPg|p | RajpRB|D)
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G =G6 (A B), P~G, Q~ G best approximation of P on G’,

D(P||Q) = D(Pagic | Pajc Psic) = I(A; B|C)

where C is the (unique) maximal clique containing edge (A, B) in G.
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G =G6 (A B), P~G, Q~ G best approximation of P on G’,

D(P||Q) = D(Pagic | Pajc Psic) = I(A; B|C)

where C is the (unique) maximal clique containing edge (A, B) in G.

@ involves P only on the (unique) clique C containing edge
(A, B) : locality of the cost

@ in a decreasing sequence G = Gy D G1 D ... of triangulated
graphs, the distance computation always involves the initial
probability P (on G)
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Distance to white noise

White noise:
@ W = graph with no edge (still same nodes as G)
@ P ~ G, best probability / ~ W satisfies | = lNscy Ps
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Distance to white noise

White noise:

@ W = graph with no edge (still same nodes as G)
@ P ~ G, best probability | ~ W satisfies | = MNgcy Ps

@ D(P||I) can be computed by additivity through any
decreasing sequence G =Gy D G1 D ... DG, =W



Successive approximations
000080

There exists weights wp(D) associated to cliques D of G such that

DPIN= 3 we(D)

D clique in G

If the theorem holds, one has

D(P||Q) = I(A; BID) = > wp(E U{A, B})

ECD
By the Moeébius transform, one gets:

wp(EU{A,B}) = > (~1)°~Fl(A; BIE)
ECD
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Theorem

There exists weights wp(D) associated to cliques D of G such that

DPIN= 3 we(D)

D clique in G

sum over all (non necessarily maximal) cliques D of G

Examples
o wp(P)=0
o wp({A}) =0
o wp({A,B}) =1(A;B)
o wp({A, B, C}) = I(A; B|C) — I(A; B) sym in A, B, C
@ wp(D) can be >0 or <0 for [D| >3
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Best triangulated graph

Remark:
@ if Q best approximation of P on triangulated graph G’, then

D(P||I) = D(P[Q) + D(@I|/)
@ so ming' D(P||Q) < maxg D(Q||I)
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Best triangulated graph

Remark:
@ if Q best approximation of P on triangulated graph G’, then

D(P||I) = D(P[Q) + D(QI|/)
@ so ming' D(P||Q) < maxg D(Q||/)

Hierarchy of triangulated graphs:

@ 7, = triangulated graphs over vertices V, where cliques have

at most p nodes
TO 2 TO3

“
@ pT = Tnb of edges = Q closer to P (further away from /)
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Greedy algorithms

Best tree approximation:

max D(Q||/) = max Z I(A; B)
g'eTe g'eTe edge {A,B}eg’

@ a best covering tree problem: greedy algo
@ already discovered by [Chow et al., '68] !
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Greedy algorithms

Best tree approximation:

D ) = I(A; B
fnax (QII1) nax > (A;B)
edge {A,B}eg’

@ a best covering tree problem: greedy algo

@ already discovered by [Chow et al., '68] !

Best 7, approximation:

1(A; B A B, C
gn/]ea%) Z (A;B) + . Z wp({A,B,C}) +
edge {A,B}eg’ clique {A,B,C}eg’

@ greedy algos are sub-optimal, but not so bad [Malvestuto, '91]

SORECODENCEDD
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Summary
@ Idea : simplify the model, then apply an exact algorithm

@ Bayesian networks : easy with triangulated graphs
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Conclusion

Summary
@ Idea : simplify the model, then apply an exact algorithm

@ Bayesian networks : easy with triangulated graphs

Questions

@ Link between D(P||Q) and the quality of estimators built
from @ instead of P ?

@ Of interest to Blaise’s problems ?

@ What about networks of dynamic (probabilistic) systems ?



