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Motivation

Goal: simplify Bayes nets / Markov fields to make them tractable

Network of random variables

X1, ...,Xn with PX = ΠiPXi |P(Xi ) = Πiφ(Xi ,P(Xi ))

Ex. PX = PX1PX2PX3PX4|X1,X2
PX5|X2,X3

3

4 X5
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X4 X5

1 X2 X

X

X X1 X2 X

Inference: compute P(X |Y = y) where Y is a subset of observed
variables in X

tree structure ⇒ inference is easy (linear)

nb of cycles ↑ ⇒ complexity ↑
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Dynamic Bayesian networks

X1, ...,Xn form a Markov chain, PX = PX1PX2|X1
PX3|X2

...

each Xi itself is a large vector Xi = [Xi ,j ]1≤j≤m

local dynamics:
PXi |Xi−1

= ΠjPXi,j |Xi−1
PXi,j |Xi−1

= PXi,j |Xi−1,P(j)

in marginals PXi
, inner correlations increase as i grows

this makes successive inferences PXi |y1,...,yi tougher problems...

j

33X2X1 X1 X2 XX
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Factored frontier algorithm:

approximate PXi |y1,...,yi by a simpler field (white noise)

P̃Xi |y1,...,yi = ΠjPXi,j |y1,...,yi
then propagate to Xi+1, and incorporate new observation yi+1

i+1

y
i+1

y
11

yi y i+1
1

i+2
y

P(X    |       )
~
P(X    |       )i+1

~
P(X  |    )i i+1

approximation

I−projection

Two ways around complexity:

run approximate inference on the exact complex model

run exact inference on an approximate simpler model
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Formalization

Idea: to simplify a network, remove edges one at a time

How ?

An edge = a conditional independence test (yes/no)

does not measure the strength of the link

Natural distance:

Kullback-Leibler: D(PA,B|C ‖PA|CPB|C ) = I (A ;B |C )

number of common “private” bits between A and B



Motivation Formalization Triangulated graphs & I-projections Successive approximations Best graph selection Conclusion

Formalization

Idea: to simplify a network, remove edges one at a time

How ?

An edge = a conditional independence test (yes/no)

does not measure the strength of the link

independent given C
a & b   NOTa b

C

Natural distance:

Kullback-Leibler: D(PA,B|C ‖PA|CPB|C ) = I (A ;B |C )

number of common “private” bits between A and B



Motivation Formalization Triangulated graphs & I-projections Successive approximations Best graph selection Conclusion

Formalization

Idea: to simplify a network, remove edges one at a time

How ?

An edge = a conditional independence test (yes/no)

does not measure the strength of the link

independent given C
a & b   NOTa b

C

Natural distance:

Kullback-Leibler: D(PA,B|C ‖PA|CPB|C ) = I (A ;B |C )

number of common “private” bits between A and B

C

ba b

C

a



Motivation Formalization Triangulated graphs & I-projections Successive approximations Best graph selection Conclusion

Method

given P ∼ G with G a complex graph
given G′ a simpler graph
find the best probability law Q such that Q ∼ G′

min
Q

D(P‖Q) = minQ
∑

x

p(x) log2
p(x)

q(x)

then optimize over graphs G′

Wishes

edge by edge simplification

local cost of each edge

additivity of costs
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General solution

Information geometry:

assumptions:
∀x , p(x) > 0, uniqueness of Q, discrete values for X

solution by I-projection (Csiszàr) over a log-linear space of
distributions

Resolution

IPFP (iterative proportional fitting procedure)

Q obtained as a limit, and D(P‖Q) is an infinite sum...

Pythagora’s theorem (additivity of distances)

edges do not have a local cost

edge by edge removal difficult

Triangulated graphs give all for free !
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Triangulated graphs generalize trees

tree-width of G = min over all triangulations T of G of the
largest clique in T
related to the junction tree construction
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Coding theorem

Theorem

Q ∼ T and T = (V ,E ) = tree
then Q ⇔ {QA,B : (A,B) ∈ E}

A

C

D

B

FE

QA,...,F = QA QB|A QC |A QD|B QE |C QF |C
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Coding theorem (2)

Theorem

Q ∼ G and G triangulated graph
then Q ⇔ {QC : C maximal clique in G}

C5C4

C3 C6

C1
C2

Q = QC1 QC2�C1|C2∩C1
QC3�C1|C3∩C1

...
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I-projection

one always has
D(PX ,Y ‖QX ,Y ) = D(PX ‖QX ) + D(PY |X ‖QY |X )

P ∼ G with target graph G′ triangulated
let Q ∼ G′ and let C be a maximal clique in G′

D(P‖Q) = D(PC ‖QC ) + D(Prest|C ‖Qrest|C )

if Q ∼ G′ minimizes the distance, then QC ≡ PC

Q is then defined by {QC � PC : C maximal clique in G′}

Properties:

unique solution

direct computation of Q

no assumption on P
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Surgery

Question: how to remove a single edge to a triangulated graph ?

Theorem

G triangulated graph, G′ = G 	 (A,B) is triangulated
iff edge (A,B) in G is a green edge,
i.e. belongs to a unique maximal clique of G.

C C21C

1C C2

triangularity lost !
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Green edges

Q: Are there many green edges ?
R: yes! they form the “skin” of the triangulated graph.

Properties

at least 2 green edges attached to each node of degree ≥ 2

a green edge is either separating (isthmus) or belongs to a
green cycle

∃ green path between any two nodes

∃ green cycle containing any two nodes that are not separated
by an isthmus
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Green edges (2)

Theorem

Let G ⊃ G′ be triangulated graphs,
there exists a decreasing sequence of triangulated graphs

G = G0 ⊃ G1 ⊃ G2 ⊃ ... ⊃ Gn = G′

such that Gi and Gi+1 differ by a single (green) edge.
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Additivity of distances

Theorem

Let G ⊃ G′ ⊃ G′′ be triangulated graphs,
and P ∼ G, Q ∼ G′, R ∼ G′′ resp. best approximations of P,
then D(P‖R) = D(P‖Q) + D(Q‖R)

clique C

D

BA

Proof. assume wlog G′ = G 	 (A,B)

P = PA,B|D PD Prest|C G
Q = PA|D PB|D PD Prest|C G′

R = RA|D RB|D RD Rrest|C G′′

D(PA,B|D ‖RA|DRB|D) = D(PA,B|D ‖PA|DPB|D)

+D(PA|DPB|D ‖RA|DRB|D)
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Corollary

G′ = G 	 (A,B), P ∼ G, Q ∼ G′ best approximation of P on G′,

D(P‖Q) = D(PA,B|C ‖PA|C PB|C ) = I (A;B |C )

where C is the (unique) maximal clique containing edge (A,B) in G.

involves P only on the (unique) clique C containing edge
(A,B) : locality of the cost

in a decreasing sequence G = G0 ⊃ G1 ⊃ ... of triangulated
graphs, the distance computation always involves the initial
probability P (on G)
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Distance to white noise

White noise:

W = graph with no edge (still same nodes as G)
P ∼ G, best probability I ∼ W satisfies I = ΠS∈V PS

D(P‖I ) can be computed by additivity through any
decreasing sequence G = G0 ⊃ G1 ⊃ ... ⊃ Gn = W
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Theorem

There exists weights wP(D) associated to cliques D of G such that

D(P‖I ) =
∑

D clique in G
wP(D)

clique C

D

BA

Proof. Remove (A,B) in clique C : D(P‖I ) = D(P‖Q) +D(Q‖I )
If the theorem holds, one has

D(P‖Q) = I (A;B |D) =
∑

E⊆D

wP(E ∪ {A,B})

By the Moëbius transform, one gets:

wP(E ∪ {A,B}) =
∑

E⊆D

(−1)|D−E | I (A;B |E )
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Theorem

There exists weights wP(D) associated to cliques D of G such that

D(P‖I ) =
∑

D clique in G
wP(D)

sum over all (non necessarily maximal) cliques D of G

Examples

wP(∅) = 0

wP({A}) = 0

wP({A,B}) = I (A;B)

wP({A,B ,C}) = I (A;B |C )− I (A;B) sym in A,B ,C

wP(D) can be ≥ 0 or ≤ 0 for |D| ≥ 3
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Best triangulated graph

Remark:

if Q best approximation of P on triangulated graph G′, then

D(P‖I ) = D(P‖Q) + D(Q‖I )

so min G′ D(P‖Q) ⇔ max G′ D(Q‖I )

Hierarchy of triangulated graphs:

Tp = triangulated graphs over vertices V , where cliques have
at most p nodes

p ↑ ⇒ ↑nb of edges ⇒ Q closer to P (further away from I )
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Greedy algorithms

Best tree approximation:

max
G′∈T2

D(Q‖I ) = max
G′∈T2

∑

edge {A,B}∈G′
I (A;B)

a best covering tree problem: greedy algo

already discovered by [Chow et al., ’68] !

Best Tp approximation:

max
G′∈Tp

∑

edge {A,B}∈G′
I (A;B) +

∑

clique {A,B,C}∈G′
wP({A,B ,C}) + ...

greedy algos are sub-optimal, but not so bad [Malvestuto, ’91]
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Conclusion

Summary

Idea : simplify the model, then apply an exact algorithm

Bayesian networks : easy with triangulated graphs

Questions

Link between D(P‖Q) and the quality of estimators built
from Q instead of P ?

Of interest to Blaise’s problems ?

What about networks of dynamic (probabilistic) systems ?
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