Bayesian networks approximation

Eric Fabre

ANR StochMC, Feb. 13, 2014

Outline

- Motivation
- 2 Formalization
- Triangulated graphs & I-projections
- 4 Successive approximations
- Best graph selection
- **6** Conclusion

Goal: simplify Bayes nets / Markov fields to make them tractable

Network of random variables

•
$$X_1,...,X_n$$
 with $P_X = \prod_i P_{X_i|\mathcal{P}(X_i)} = \prod_i \phi(X_i,\mathcal{P}(X_i))$

$$\bullet \ \mathsf{Ex.} \ P_X = P_{X_1} P_{X_2} P_{X_3} P_{X_4 | X_1, X_2} P_{X_5 | X_2, X_3}$$

- tree structure ⇒ inference is easy (linear)
- nb of cycles $\uparrow \Rightarrow$ complexity \uparrow

Goal: simplify Bayes nets / Markov fields to make them tractable

Network of random variables

- $X_1,...,X_n$ with $P_X = \prod_i P_{X_i|\mathcal{P}(X_i)} = \prod_i \phi(X_i,\mathcal{P}(X_i))$
- Ex. $P_X = P_{X_1} P_{X_2} P_{X_3} P_{X_4 | X_1, X_2} P_{X_5 | X_2, X_2}$

Inference: compute P(X|Y=y) where Y is a subset of observed variables in X

- tree structure ⇒ inference is easy (linear)
- nb of cycles $\uparrow \Rightarrow$ complexity \uparrow

- $X_1, ..., X_n$ form a Markov chain, $P_X = P_{X_1} P_{X_2|X_1} P_{X_2|X_2} ...$
- each X_i itself is a large vector $X_i = [X_{i,i}]_{1 \le i \le m}$
- local dynamics:

Motivation

$$P_{X_{i}|X_{i-1}} = \Pi_{j} P_{X_{i,j}|X_{i-1}} \qquad P_{X_{i,j}|X_{i-1}} = P_{X_{i,j}|X_{i-1},\mathcal{P}(j)}$$

• in marginals P_{X_i} , inner correlations increase as i grows this makes successive inferences $P_{X_i|y_1,...,y_i}$ tougher problems...

Factored frontier algorithm:

Motivation

• approximate $P_{X_i|_{V_1,...,V_i}}$ by a simpler field (white noise)

$$\tilde{P}_{X_i|y_1,\dots,y_i} = \Pi_j P_{X_{i,j}|y_1,\dots,y_i}$$

• then propagate to X_{i+1} , and incorporate new observation y_{i+1}

- run approximate inference on the exact complex model
- run exact inference on an approximate *simpler* model

Factored frontier algorithm:

Motivation

• approximate $P_{X_i|_{V_1,...,V_i}}$ by a simpler field (white noise)

$$\tilde{P}_{X_i|y_1,\dots,y_i} = \Pi_j P_{X_{i,j}|y_1,\dots,y_i}$$

• then propagate to X_{i+1} , and incorporate new observation y_{i+1}

Two ways around complexity:

- run approximate inference on the exact complex model
- run exact inference on an approximate simpler model

Outline

- Motivation
- 2 Formalization
- 3 Triangulated graphs & I-projections
- 4 Successive approximations
- Best graph selection
- 6 Conclusion

to simplify a network, remove edges one at a time

- An edge = a conditional independence test (yes/no)
- does not measure the strength of the link

- Kullback-Leibler: $D(P_{A,B|C} || P_{A|C} P_{B|C}) = I(A; B|C)$
- number of common "private" bits between A and B

to simplify a network, remove edges one at a time How?

- An edge = a conditional independence test (yes/no)
- does not measure the strength of the link

- Kullback-Leibler: $D(P_{A,B|C} || P_{A|C} P_{B|C}) = I(A; B|C)$
- number of common "private" bits between A and B

to simplify a network, remove edges one at a time

How?

- An edge = a conditional independence test (yes/no)
- does not measure the strength of the link

Natural distance:

- Kullback-Leibler: $D(P_{A,B|C} \parallel P_{A|C}P_{B|C}) = I(A; B|C)$
- number of common "private" bits between A and B

Method

Motivation

• given $P \sim \mathcal{G}$ with \mathcal{G} a complex graph given \mathcal{G}' a simpler graph find the best probability law Q such that $Q \sim \mathcal{G}'$

$$\min_{Q} D(P||Q) = \min_{Q} \sum_{x} p(x) \log_{2} \frac{p(x)}{q(x)}$$

• then optimize over graphs \mathcal{G}'

- edge by edge simplification
- local cost of each edge
- additivity of costs

Method

Motivation

• given $P \sim \mathcal{G}$ with \mathcal{G} a complex graph given \mathcal{G}' a simpler graph find the best probability law Q such that $Q \sim \mathcal{G}'$

$$\min_{Q} D(P||Q) = \min_{Q} \sum_{x} p(x) \log_{2} \frac{p(x)}{q(x)}$$

• then optimize over graphs \mathcal{G}'

Wishes

- edge by edge simplification
- local cost of each edge
- additivity of costs

General solution

Information geometry:

- assumptions:
 - $\forall x, p(x) > 0$, uniqueness of Q, discrete values for X
- solution by I-projection (Csiszàr) over a log-linear space of distributions

- IPFP (iterative proportional fitting procedure)
- Q obtained as a limit, and D(P||Q) is an infinite sum...
- Pythagora's theorem (additivity of distances)
- edges do not have a local cost
- edge by edge removal difficult

General solution

Information geometry:

- assumptions:
 - $\forall x, p(x) > 0$, uniqueness of Q, discrete values for X
- solution by I-projection (Csiszàr) over a log-linear space of distributions

Resolution

- IPFP (iterative proportional fitting procedure)
- Q obtained as a limit, and D(P||Q) is an infinite sum...
- Pythagora's theorem (additivity of distances)
- edges do not have a local cost
- edge by edge removal difficult

General solution

Information geometry:

- assumptions:
 - $\forall x, p(x) > 0$, uniqueness of Q, discrete values for X
- solution by I-projection (Csiszàr) over a log-linear space of distributions

Resolution

- IPFP (iterative proportional fitting procedure)
- Q obtained as a limit, and D(P||Q) is an infinite sum...
- Pythagora's theorem (additivity of distances)
- edges do not have a local cost
- edge by edge removal difficult

Triangulated graphs give all for free!

Outline

- Motivation
- 2 Formalization
- 3 Triangulated graphs & I-projections
- 4 Successive approximations
- Best graph selection
- 6 Conclusion

Triangulated graphs generalize trees

- ullet tree-width of $\mathcal{G}=\min$ over all triangulations \mathcal{T} of \mathcal{G} of the largest clique in \mathcal{T}
- related to the junction tree construction

Coding theorem

$\mathsf{Theorem}$

$$Q \sim \mathcal{T}$$
 and $\mathcal{T} = (V, E) = tree$
then $Q \Leftrightarrow \{Q_{A,B} : (A, B) \in E\}$

$$Q_{A,...,F} = Q_A Q_{B|A} Q_{C|A} Q_{D|B} Q_{E|C} Q_{F|C}$$

$\mathsf{Theorem}$

 $Q \sim \mathcal{G}$ and \mathcal{G} triangulated graph then $Q \Leftrightarrow \{Q_C : C \text{ maximal clique in } G\}$

$$Q = Q_{C_1} \ Q_{C_2 \ominus C_1 | C_2 \cap C_1} \ Q_{C_3 \ominus C_1 | C_3 \cap C_1} \dots$$

one always has $D(P_{X,Y} \parallel Q_{X,Y}) = D(P_X \parallel Q_X) + D(P_{Y|X} \parallel Q_{Y|X})$

• $P \sim \mathcal{G}$ with target graph \mathcal{G}' triangulated

$$D(P||Q) = D(P_C || Q_C) + D(P_{rest|C} || Q_{rest|C}$$

• Q is then defined by $\{Q_C \triangleq P_C : C \text{ maximal clique in } \mathcal{G}'\}$

- unique solution
- direct computation of Q
- no assumption on P

- one always has $D(P_{X,Y} \parallel Q_{X,Y}) = D(P_X \parallel Q_X) + D(P_{Y|X} \parallel Q_{Y|X})$
- $P \sim \mathcal{G}$ with target graph \mathcal{G}' triangulated let $Q \sim \mathcal{G}'$ and let C be a maximal clique in \mathcal{G}'

$$D(P||Q) = D(P_C || Q_C) + D(P_{rest|C} || Q_{rest|C})$$

if $Q \sim \mathcal{G}'$ minimizes the distance, then $Q_C \equiv P_C$

• Q is then defined by $\{Q_C \triangleq P_C : C \text{ maximal clique in } \mathcal{G}'\}$

- unique solution
- direct computation of Q
- no assumption on P

one always has $D(P_{X,Y} \parallel Q_{X,Y}) = D(P_X \parallel Q_X) + D(P_{Y|X} \parallel Q_{Y|X})$

• $P \sim \mathcal{G}$ with target graph \mathcal{G}' triangulated let $Q \sim \mathcal{G}'$ and let C be a maximal clique in \mathcal{G}'

$$D(P||Q) = D(P_C || Q_C) + D(P_{rest|C} || Q_{rest|C})$$

if $Q \sim \mathcal{G}'$ minimizes the distance, then $Q_C \equiv P_C$

• Q is then defined by $\{Q_C \triangleq P_C : C \text{ maximal clique in } \mathcal{G}'\}$

- unique solution
- direct computation of Q
- no assumption on P

- one always has $D(P_{X,Y} \parallel Q_{X,Y}) = D(P_X \parallel Q_X) + D(P_{Y|X} \parallel Q_{Y|X})$
- $P \sim \mathcal{G}$ with target graph \mathcal{G}' triangulated let $Q \sim \mathcal{G}'$ and let C be a maximal clique in \mathcal{G}'

$$D(P||Q) = D(P_C || Q_C) + D(P_{rest|C} || Q_{rest|C})$$

if $Q \sim \mathcal{G}'$ minimizes the distance, then $Q_C \equiv P_C$

• Q is then defined by $\{Q_C \triangleq P_C : C \text{ maximal clique in } \mathcal{G}'\}$

Properties:

- unique solution
- direct computation of Q
- no assumption on P

Surgery

Question: how to remove a single edge to a triangulated graph?

$\mathsf{Theorem}$

Formalization

 \mathcal{G} triangulated graph, $\mathcal{G}' = \mathcal{G} \ominus (A, B)$ is triangulated iff edge (A, B) in \mathcal{G} is a green edge, i.e. belongs to a unique maximal clique of \mathcal{G} .

triangularity lost!

Green edges

Q: Are there many green edges?

R: yes! they form the "skin" of the triangulated graph.

- at least 2 green edges attached to each node of degree > 2
- a green edge is either separating (isthmus) or belongs to a
- green path between any two nodes
- ■ green cycle containing any two nodes that are not separated

Green edges

Q: Are there many green edges?

R: yes! they form the "skin" of the triangulated graph.

Properties

- at least 2 green edges attached to each node of degree > 2
- a green edge is either separating (isthmus) or belongs to a green cycle
- green path between any two nodes
- ∃ green cycle containing any two nodes that are not separated by an isthmus

Green edges (2)

$\mathsf{Theorem}$

Let $\mathcal{G} \supset \mathcal{G}'$ be triangulated graphs, there exists a decreasing sequence of triangulated graphs

$$\mathcal{G} = \mathcal{G}_0 \supset \mathcal{G}_1 \supset \mathcal{G}_2 \supset ... \supset \mathcal{G}_n = \mathcal{G}'$$

such that G_i and G_{i+1} differ by a single (green) edge.

Outline

- Motivation
- 2 Formalization
- Triangulated graphs & I-projections
- Successive approximations
- Best graph selection
- 6 Conclusion

$\mathsf{Theorem}$

Motivation

Let $\mathcal{G} \supset \mathcal{G}' \supset \mathcal{G}''$ be triangulated graphs, and $P \sim G$, $Q \sim G'$, $R \sim G''$ resp. best approximations of P, then D(P||R) = D(P||Q) + D(Q||R)

Proof. assume wlog $\mathcal{G}' = \mathcal{G} \ominus (A, B)$

$$\begin{array}{rcl} P & = & P_{A,B|D} & P_D \; P_{rest|C} & \mathcal{G} \\ Q & = & P_{A|D} \; P_{B|D} \; P_D \; P_{rest|C} & \mathcal{G}' \\ R & = & R_{A|D} \; R_{B|D} \; R_D \; R_{rest|C} & \mathcal{G}'' \\ D(P_{A,B|D} \parallel R_{A|D} R_{B|D}) & = & D(P_{A,B|D} \parallel P_{A|D} P_{B|D}) \\ & & + D(P_{A|D} P_{B|D} \parallel R_{A|D} R_{B|D}) \end{array}$$

Corollary

$$\mathcal{G}'=\mathcal{G}\ominus(A,B),\ \ P\sim\mathcal{G},\ \ Q\sim\mathcal{G}'\ \ \text{best approximation of P on \mathcal{G}'},$$

$$D(P||Q) = D(P_{A,B|C} || P_{A|C} P_{B|C}) = I(A; B|C)$$

where C is the (unique) maximal clique containing edge (A, B) in \mathcal{G} .

- involves P only on the (unique) clique C containing edge
- in a decreasing sequence $\mathcal{G} = \mathcal{G}_0 \supset \mathcal{G}_1 \supset \dots$ of triangulated

$$\mathcal{G}' = \mathcal{G} \ominus (A, B), \ P \sim \mathcal{G}, \ Q \sim \mathcal{G}'$$
 best approximation of P on \mathcal{G}' ,

$$D(P||Q) = D(P_{A,B|C} || P_{A|C} P_{B|C}) = I(A; B|C)$$

where C is the (unique) maximal clique containing edge (A, B) in \mathcal{G} .

- involves P only on the (unique) clique C containing edge (A,B): locality of the cost
- in a decreasing sequence $\mathcal{G} = \mathcal{G}_0 \supset \mathcal{G}_1 \supset ...$ of triangulated graphs, the distance computation always involves the initial probability P (on \mathcal{G})

Distance to white noise

White noise:

- $W = \text{graph with no edge (still same nodes as } \mathcal{G})$
- $P \sim \mathcal{G}$, best probability $I \sim \mathcal{W}$ satisfies $I = \prod_{S \in \mathcal{V}} P_S$
- D(P||I) can be computed by additivity through any

Distance to white noise

White noise:

- $W = \text{graph with no edge (still same nodes as } \mathcal{G})$
- $P \sim \mathcal{G}$, best probability $I \sim \mathcal{W}$ satisfies $I = \prod_{S \in \mathcal{V}} P_S$
- D(P||I) can be computed by additivity through any decreasing sequence $\mathcal{G} = \mathcal{G}_0 \supset \mathcal{G}_1 \supset ... \supset \mathcal{G}_n = \mathcal{W}$

There exists weights $w_P(D)$ associated to cliques D of G such that

$$D(P\|I) = \sum_{D \text{ clique in } \mathcal{G}} w_P(D)$$

Proof. Remove (A, B) in clique C: D(P||I) = D(P||Q) + D(Q||I)If the theorem holds, one has

$$D(P||Q) = I(A; B|D) = \sum_{E \subset D} w_P(E \cup \{A, B\})$$

By the Moëbius transform, one gets:

$$w_P(E \cup \{A, B\}) = \sum_{E \subset D} (-1)^{|D-E|} I(A; B|E)$$

There exists weights $w_P(D)$ associated to cliques D of G such that

$$D(P\|I) = \sum_{D \ clique \ in \ \mathcal{G}} w_P(D)$$

sum over all (non necessarily maximal) cliques D of \mathcal{G}

Examples

- $w_P(\emptyset) = 0$
- $w_P(\{A\}) = 0$
- $w_P(\{A, B\}) = I(A; B)$
- $w_P(\{A, B, C\}) = I(A; B|C) I(A; B)$ sym in A, B, C
- $w_P(D)$ can be > 0 or < 0 for |D| > 3

Outline

- Motivation
- 2 Formalization
- Triangulated graphs & I-projections
- 4 Successive approximations
- Best graph selection
- 6 Conclusion

Remark:

• if Q best approximation of P on triangulated graph \mathcal{G}' , then

$$D(P||I) = D(P||Q) + D(Q||I)$$

• so min $_{\mathcal{G}'} D(P||Q) \Leftrightarrow \max_{\mathcal{G}'} D(Q||I)$

• \mathcal{T}_p = triangulated graphs over vertices V, where cliques have

Best triangulated graph

Remark:

• if Q best approximation of P on triangulated graph \mathcal{G}' , then

$$D(P||I) = D(P||Q) + D(Q||I)$$

• so min $_{G'} D(P||Q) \Leftrightarrow \max_{G'} D(Q||I)$

Hierarchy of triangulated graphs:

• \mathcal{T}_p = triangulated graphs over vertices V, where cliques have at most p nodes TO 2 TO 3

• $p \uparrow \Rightarrow \uparrow nb$ of edges $\Rightarrow Q$ closer to P (further away from I)

Greedy algorithms

Best tree approximation:

$$\max_{\mathcal{G}' \in \mathcal{T}_2} D(Q \| I) = \max_{\mathcal{G}' \in \mathcal{T}_2} \sum_{\text{edge } \{A,B\} \in \mathcal{G}'} I(A;B)$$

- a best covering tree problem: greedy algo
- already discovered by [Chow et al., '68]!

Best \mathcal{T}_p approximation:

$$\max_{\mathcal{G}' \in \mathcal{T}_P} \sum_{\text{edge } \{A,B\} \in \mathcal{G}'} I(A;B) + \sum_{\text{clique } \{A,B,C\} \in \mathcal{G}'} w_P(\{A,B,C\}) + \dots$$

greedy algos are sub-optimal, but not so bad [Malvestuto, '91]

Greedy algorithms

Best tree approximation:

$$\max_{\mathcal{G}' \in \mathcal{T}_2} D(Q \| I) = \max_{\mathcal{G}' \in \mathcal{T}_2} \sum_{\text{edge } \{A,B\} \in \mathcal{G}'} I(A; B)$$

- a best covering tree problem: greedy algo
- already discovered by [Chow et al., '68] !

Best \mathcal{T}_p approximation:

$$\max_{\mathcal{G}' \in \mathcal{T}_P} \sum_{\text{edge } \{A,B\} \in \mathcal{G}'} I(A;B) + \sum_{\text{clique } \{A,B,C\} \in \mathcal{G}'} w_P(\{A,B,C\}) + \dots$$

greedy algos are sub-optimal, but not so bad [Malvestuto, '91]

Conclusion

Summary

- Idea: simplify the model, then apply an exact algorithm
- Bayesian networks: easy with triangulated graphs

Questions

- Link between D(P||Q) and the quality of estimators built from Q instead of P?
- Of interest to Blaise's problems ?
- What about networks of dynamic (probabilistic) systems ?

Conclusion

Motivation

Summary

- Idea: simplify the model, then apply an exact algorithm
- Bayesian networks : easy with triangulated graphs

Questions

- Link between D(P||Q) and the quality of estimators built from Q instead of P?
- Of interest to Blaise's problems ?
- What about networks of dynamic (probabilistic) systems ?