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Approximation of average cost Markov decision processes using
empirical distributions and concentration inequalities
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We consider a discrete-time Markov decision process with Borel state and action
spaces, and possibly unbounded cost function. We assume that the Markov transition
kernel is absolutely continuous with respect to some probability measure m. By
replacing this probability measure with its empirical distribution mn for a sample of size
n, we obtain a finite state space control problem, which is used to provide an
approximation of the optimal value and an optimal policy of the original control model.
We impose Lipschitz continuity properties on the control model and its associated
density functions. We measure the accuracy of the approximation of the optimal value
and an optimal policy by means of a non-asymptotic concentration inequality based on
the 1-Wasserstein distance between m and mn. Obtaining numerically the solution of
the approximating control model is discussed and an application to an inventory
management problem is presented.

Keywords: Markov decision processes; long-run average cost; approximation of the
optimal value and an optimal policy; concentration inequalities; Wasserstein distance

AMS Subject Classification: 90C40; 90C05

1. Introduction

This paper is concerned with numerical methods for Markov decision processes (MDPs).

We are interested in approximating numerically the optimal value function and an optimal

policy of a discrete-time MDP with Borel state and action spaces, and unbounded cost

function under the long-run expected average cost criterion.

MDPs with general (Borel) state and action spaces, and unbounded cost function have

been extensively studied from a theoretical point of view; see, e.g. [2,16,18]. The existence

of optimal policies and the characterization of the optimal value function have been

established using various techniques such as, for instance, dynamic programming and

related algorithms (the value iteration and the policy iteration algorithms), and the linear

programming (LP) approach. The issue of the approximation of the optimal value and an

optimal policy remains, in general, an open issue. This is because, except for some

particular cases, the usual approaches to MDPs do not allow to obtain explicitly the

optimal value and an optimal policy (not even to approximate them). This is due to the

nature itself of the above techniques. As an illustration, the policy and the value iteration

algorithms require to perform successive maximizations (over a Borel domain) of

functions with Borel domain. Moreover, convergence of the policy iteration algorithm for

an average cost control problem requires particularly demanding hypotheses; see [17] and
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the references therein. Also, the LP formulation of an MDP is stated on an infinite-

dimensional space of measures over a Borel space, and so it is hardly tractable from a

numerical perspective.

On the other hand, a finite MDP (that is, with finite state and actions spaces) can be, in

principle, solved numerically. The computational effort, however, grows exponentially

with the number of variables involved, thus limiting drastically the practical interest of the

above-mentioned techniques. In this context, several approaches have been proposed to

solve (or approximate) numerically a finite MDP: reinforcement learning, neuro-dynamic

programming, approximate dynamic programs and simulation-based techniques, to name

just a few; see the survey [24] and the books [3,8,22,23]. In the particular context of

the average cost control problem, there exist several approximation techniques

[1,6,7,9,10,13,20,21,25] related to randomized/simulation-based approaches. All these

methods are exclusively focused on MDPs with finite or countable state and action spaces,

and bounded cost function. We can also mention [19], in which the authors study the

convergence of several actor-critic algorithms for MDPs with Borel state and action

spaces by minimizing the long-run average cost criterion over a parametrized family of

policies; therefore, the optimization problem is not addressed in its full generality.

Summarizing, though there exists an extensive literature on the approximation of

discrete and finite MDPs, the challenge of approximating an MDP with general state and

action spaces, and unbounded cost function remains open. Our aim is to address this

problem for such general MDPs under the long-run expected average cost criterion. We

base our approach on the hypothesis that the transition kernel Qðdyjx; aÞ defining the

dynamics of the original control model M has a density function qðyjx; aÞ, which satisfies

suitable Lipschitz continuity properties, with respect to a reference probability measure

mðdyÞ, that is, Qðdyjx; aÞ ¼ qðyjx; aÞmðdyÞ. The idea is to approximate M with a control

model Mn;d defined through the dynamics qðyjx; aÞmnðdyÞ, in which m is replaced with its

empirical distribution mn obtained from a sample of size n. Moreover, the action sets AðxÞ
of the original model are replaced in Mn;d with smaller sets AdðxÞ, where the Hausdorff

distance between AðxÞ and AdðxÞ is of (small) order d . 0.

Concerning our main contributions, let us mention the following points.

. Our framework (an MDP with general state and action spaces with possibly

unbounded cost function) is clearly more general than most of the settings studied in

the literature. Moreover, the average cost control problem is much more technically

demanding in the context of Borel state and action spaces than in the discrete

setting. As already mentioned, the policy iteration algorithm, which has been the

basis for the development of several numerical procedures to approximate MDPs,

is not of great applicability in this context.

. Our approach is based on the construction and the analysis of a simpler modelMn;d

with finite state space. From this model, we provide an approximation of the

value function and we construct an e-optimal control policy for the original control

model M.

. The convergence of these approximations is proved and, in addition, the accuracy

of the approximations is characterized in terms of a concentration inequality

measuring the non-asymptotic deviation between the value function of the original

MDP and its approximations. These inequalities are based on the 1-Wasserstein

distance between m and mn.

The above convergence results are derived in the general context where the sets AdðxÞ
satisfy some weak technical hypotheses. However, the construction of modelMn;d and the
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associated numerical approximation method depends on the choice of the family of sets

AdðxÞ and, in particular, on their topological structure. From a practical point of view, there

exist two natural choices for the family AdðxÞ:
. The first possibility corresponds to a finite AdðxÞ, leading to a finite model Mn;d.

It is then shown that the numerical approximations of the value function and the

e-optimal policy can be obtained by solving two finite LP problems, for which we

can use the powerful solvers available nowadays that can handle really large LPs.

In this case, in order to solve Mn;d, our method could be also combined with the

techniques that deal with finite MDPs with ‘large’ state and actions spaces; see

[1,6,7,9,10,13,20,21,25].

. The second natural choice is AdðxÞ ¼ AðxÞ. Then, by using similar arguments as in

section 5.3 in [12], it can be shown that the finite-state, possibly infinite-action

(hence, still infinite-dimensional) LP problem associated with Mn;d reduces to a

finite-dimensional nonlinear optimization problem that can be solved numerically

by using nonlinear optimization tools such as, e.g. the simulated annealing

technique.

Finally, let us mention Ref. [14], which follows an approach related to ours. Starting

from the recursive equation formulation of an MDP xtþ1 ¼ Fðxt; at; jtÞ and by replacing

the disturbances distribution of fjt} with its empirical distribution, the authors measure the

accuracy of an optimal policy for the perturbed model in terms of the 1-Wasserstein (or

Kantorovich) distance between the original and the empirical disturbances. The nature of

the approximation method in [14] is fundamentally different to ours. Indeed, in [14] the

idea consists in perturbing the disturbances process, while in our work we approximate

(perturb) a probability measure underlying the Markov transition kernel. These two

different approaches yield approximating models having different properties. Among

them, let us emphasize that the perturbed model in [14] does not have a finite state space,

neither considers a modification of the action spaces. Consequently, these points preclude

any tractable numerical approach, as opposed to our case. Let us also mention that, in our

paper, our hypotheses are only imposed on the original control model, while in [14] the

assumptions concern both the original and the perturbed control models; e.g. Assumption

1 in [14]. In connection with the approach in [14], see also Remark 4.2 below.

The rest of the paper is organized as follows. In Section 2 we define the control model

M, state our main assumptions and provide some useful basic results on M. The

approximating control models Mn;d are defined in Section 3 and some of their basic

properties are studied. Section 4 addresses the issue of the approximation of the optimal

value ofM, while Section 5 is concerned with the approximation of an optimal policy. In

Section 6 we discuss how to solve numerically the approximating control model Mn;d.

Finally, Section 7 shows an application of our technique to an inventory management

system.

Notation. The following notation will be used throughout the paper. Given x and y in

the Euclidean spaceRn, let kx; yl be the usual inner product of x and y. By jxj ¼ kx; xl1=2 we
will denote the norm of x [ Rn. Let 0 and 1 be the elements of Rn with all components

equal to 0 and 1, respectively. If u1 and u2 are in R
n, we shall write u1 $ u2 (respectively,

u1 . u2) when all the components of u1 are greater than or equal to (respectively, strictly

greater than) the corresponding components of u2.
We recall that E is said to be a Borel space if it is a Borel subset of a complete and

separable metric space. Its Borel s -algebra will be denoted by BðEÞ. If g is a measure on

ðE;BðEÞÞ and v : E! Rq is a measurable mapping, then the (component-wise) integral of

Stochastics: An International Journal of Probability and Stochastic Processes 3
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v with respect to g will be denoted by gðvÞ :¼ Ð
E
v dg [ Rq, provided that it is well

defined and finite. The Dirac probability measure concentrated at x [ E will be denoted by

dx; that is, for B [ BðEÞ we have dxðBÞ ¼ 1BðxÞ, where 1B denotes the indicator function.

If E is a Borel space and w : E! ½1;þ1Þ is a measurable function, the class of

measurable functions f : E! R such that kfkw :¼ supx[Efj f ðxÞj=wðxÞ} , 1 is a Banach

space denoted by BwðEÞ, and k·kw is the associated norm, called the w-norm. The family

of real-valued measurable functions on E with finite w-norm which, in addition, are

continuous (respectively, Lipschitz continuous), is denoted by CwðEÞ (respectively,

LwðEÞ). We denote by MwðEÞ the family of measures n on E such that nðwÞ is finite. For
continuous w, the w-weak topology on MwðEÞ is the coarsest topology for which all the

real-valued mappings defined on MwðEÞ by h 7! hðf Þ for f [ CwðEÞ are continuous.

Let M1ðEÞ be the family of probability measures l on E with finite first moment, that

is,
Ð
E
rðx; x0ÞlðdxÞ , 1 for some x0 [ E, with r the metric in E. The 1-Wasserstein

metric on M1ðEÞ ([4], p. 234) is defined as

W1ðl; l0Þ ¼ sup
f[L

ð
X

f dl2

ð
X

f dl0
����

���� for l; l0 [ M1ðEÞ; ð1:1Þ

where L is the family of 1-Lipschitz continuous functions f : E! R.

Finally, we let Rþ ¼ ½0;1Þ and N ¼ f0; 1; 2; . . . }.

2. The control model

We will deal with the Markov control model M :¼ ðX;A; fAðxÞ : x [ X};Q; cÞ, where
. X is the state space, assumed to be a Borel space (i.e. a measurable subset of a

complete and separable metric space), with metric rX .
. A is the action space, assumed to also be a Borel space, with metric rA.
. The set of feasible controls in state x [ X is AðxÞ, which is a non-empty measurable

subset of A. We suppose that K :¼ fðx; aÞ [ X £ A : a [ AðxÞ} is a measurable

subset of X £ A and that it contains the graph of a measurable function from X to A.

. The stochastic kernel Q on X given K is the transition probability function.

. The measurable function c : K! R is the cost-per-stage function.

In the family of closed subsets of A the Hausdorff metric is defined as

rHðC1;C2Þ :¼ sup
a[C1

inf
a0[C2

frAða; a0Þ} _ sup
a0[C2

inf
a[C1

frAða; a0Þ}:

It is a well-known result that rH is indeed a metric, except that it might not be finite. The

following notation will be used throughout. Given a measurable function v : X ! R we

define Qv : K! R as Qvðx; aÞ :¼ Ð
X
vðyÞPðdyjx; aÞ, provided that the corresponding

integrals are well defined and finite.

Let F be the family of measurable functions f : X ! A such that f ðxÞ [ AðxÞ for all
x [ X. By hypothesis, F is non-empty. Let H0 :¼ X and Ht :¼ K £ Ht21 for t $ 1 be the

history of the MDP up to time t.

Definition 2.1. A control policy is a sequence p ¼ fpt}t[N of stochastic kernels pt on

A given Ht satisfying ptðAðxtÞjhtÞ ¼ 1 for all ht [ Ht and t [ N, where

ht :¼ ðx0; a0; . . . ; xt21; at21; xtÞ. Let P be the class of all policies.

F. Dufour and T. Prieto-Rumeau4
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LetF be the family of all stochastic kernels w on A given X such that wðAðxÞjxÞ ¼ 1 for

all x [ X. A policy p is said to be randomized stationary if there exists w [ F such that

ptð·jhtÞ ¼ wð·jxtÞ for all t [ N and h [ Ht. The class of randomized stationary policies is

identified with F.

Each f [ F is identified the policy p [ P such that ptð·jhtÞ is the Dirac measure

concentrated at f ðxtÞ, for all xt [ X and t [ N. We say that f [ F is a deterministic

stationary policy. Clearly, we have F # F # P.

Let ððX £ AÞ1;BððX £ AÞ1ÞÞ be the canonical space consisting of the set of sample

paths ðX £ AÞ1 ¼ fðxt; atÞ}t[N and the associated product s -algebra. Therefore, fxt}t[N

stands for the state process and fat}t[N is the action process. For notational convenience,

we define F t as the s -algebra generated by ðxs; asÞ for 0 # s # t. From ([16], Chapter 2)

we know that for every policy p [ P and any initial state x [ X there exists a unique

probability measure Pp;x on ððX £ AÞ1;BððX £ AÞ1ÞÞ such that, for any B [ BðXÞ, C [
BðAÞ and ht [ Ht with t [ N,

Pp;xðx0 [ BÞ ¼ IBðxÞ; Pp;xðat [ CjhtÞ ¼ ptðCjhtÞ; and

Pp;xðxtþ1 [ Bjht; atÞ ¼ QðBjxt; atÞ:

The expectation operator associated with Pp;x is denoted by Ep;x.

Let 0 , a , 1 be a given discount factor. The total expected a-discounted cost of the
policy p [ P for the initial state x [ X is defined as

Vaðx;pÞ :¼ Ep;x
X1
t¼0

a tcðxt; atÞ
" #

;

and the long-run expected average cost of the policy p [ P for the initial state x [ X is

given by

Jðx;pÞ :¼ lim
t!1

1

t
Ep;x

Xt21

k¼0

cðxk; akÞ
" #

:

The value function of the a-discounted control problem is

V*
aðxÞ :¼ inf

p[P
Vaðx;pÞ for x [ X

and a policy p* [ P is said to be a-discount optimal if Vaðx;p*Þ ¼ V*
aðxÞ for every

x [ X. Similarly, the value function of the average cost control problem is

J *ðxÞ :¼ inf
p[P

Jðx;pÞ for x [ X

and a policy p* [ P is said to be AC-optimal if Jðx;p*Þ ¼ J *ðxÞ for every x [ X.

Next we state our assumptions on the elements of the control model M.

Assumption A.

(A1) The action set AðxÞ is compact for each x [ X. The multifunction C from X to A

defined byCðxÞ :¼ AðxÞ isLC-Lipschitz continuouswith respect to theHausdorffmetric.

Stochastics: An International Journal of Probability and Stochastic Processes 5
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(A2) There exists an Lw-Lipschitz continuous functionw : X ! ½1;1Þ such that there are
constants d [ ð0; 1Þ and b [ Rþ with

Qwðx; aÞ # dwðxÞ þ b for all ðx; aÞ [ K: ð2:1Þ
(A3) The cost function c is in LwðKÞ, i.e. c is Lc-Lipschitz continuous onK and there is a

positive constant c such that, for all ðx; aÞ [ K,

jcðx; aÞj # �cwðxÞ:
The Lipschitz condition in Assumption (A1) means that there exists a positive LC such

that rHðAðxÞ;AðyÞÞ # LCrXðx; yÞ for every x; y [ X. As a consequence of ([11], Lemma

2.6), the multifunction C : X ! A is continuous.

Assumption B.

(B1) There exists a probability measure m on ðX;BðXÞÞ and a measurable function

q : X £K! Rþ such that mðwÞ , þ1 and

QðBjx; aÞ ¼
ð
B

qðyjx; aÞmðdyÞ for all B [ BðXÞ and ðx; aÞ [ K:

(B2) There exist positive constants q, Lq and Lwq such that function q satisfies the

following properties:

qðyjx; aÞ # �qwðxÞ; ð2:2Þ
jqðyjx; aÞ2 qðzjx; aÞj # LqrXðy; zÞ; ð2:3Þ

jqðyjx; aÞ2 qðyjx0; a0Þj # Lq½rXðx; x0Þ þ rAða; a0Þ�; ð2:4Þ
jwðyÞqðyjx; aÞ2 wðzÞqðzjx; aÞj # LwqwðxÞrXðy; zÞ; ð2:5Þ

for every ðx; aÞ and ðx0; a0Þ in K, and y; z [ X.

(B3) There exists some x0 [ X and a . 0 such thatð
X

expfarXðx; x0Þ}mðdxÞ , 1

and, in particular, m [ M1ðXÞ.

Remark 2.2. From Assumptions (B1) and (2.4) in Assumption (B2), it follows easily that

for any v [ BwðXÞ, ðx; aÞ and ðx0; a0Þ in K

jQvðx; aÞ2 Qvðx0; a0Þj # LqkvkwmðwÞ½rXðx; x0Þ þ rAða; a0Þ�; ð2:6Þ

and so Qv is Lipschitz continuous on K. In particular, Q is strongly continuous (that is,

Qv is continuous on K for any bounded measurable function v on X) and Qw is continuous

on K.

F. Dufour and T. Prieto-Rumeau6
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The following facts on discount optimality are well known. For a proof, the reader is

referred to ([15], Lemma 3.2). For every discount factor 0 , a , 1, the discounted

optimal value function V*
a verifies

V*
aðxÞ

�� �� # �c

12 d
wðxÞ þ b

12 a

� �
for all x [ X ð2:7Þ

and, in particular, V*
a [ BwðXÞ. Moreover, V*

a is a solution of the a-discounted cost

optimality Equation (a-DCOE)

V*
aðxÞ ¼ min

a[AðxÞ
fcðx; aÞ þ a

ð
X

V*
aðyÞQðdyjx; aÞ} for x [ X: ð2:8Þ

When dealing with average optimality, we impose another condition.

Assumption C. There exists x0 [ X such that function ha defined by haðxÞ ¼
V*
aðxÞ2 V*

aðx0Þ satisfies �h ¼ supa[ð0;1Þkhakw , 1.

Let us introduce ga ¼ ð12 aÞV*
aðx0Þ. A standard calculation shows that the a-DCOE

can be re-written as

ga þ haðxÞ ¼ min
a[AðxÞ

fcðx; aÞ þ a

ð
X

haðyÞQðdyjx; aÞ}:

Lemma 2.3. For any 0 , a , 1, function ha is in LwðXÞ and its Lipschitz constant is

Lc þ LqmðwÞ�h
� �ð1þ LCÞ:

Proof. For notational convenience, let us introduce

Daðx; a; x0; a0Þ :¼ jcðx; aÞ2 cðx0; a0Þj þ ajQhaðx; aÞ2 Qhaðx0; a0Þj

for ðx; aÞ and ðx0; a0Þ in K. Then we have

cðx; aÞ þ aQhaðx; aÞ # cðx0; a0Þ þ aQhaðx0; a0Þ þ Daðx; a; x0; a0Þ

for any ðx; aÞ and ðx0; a0Þ in K, implying that

haðxÞ # 2ga þ cðx0; a0Þ þ aQhaðx0; a0Þ þ inf
a[AðxÞ

fDaðx; a; x0; a0Þ}
# haðx0Þ þ sup

a0[Aðx0Þ
inf

a[AðxÞ
fDaðx; a; x0; a0Þ}:

By symmetry, we obtain that

haðx0Þ # haðxÞ þ sup
a[AðxÞ

inf
a0[Aðx0Þ

fDaðx; a; x0; a0Þ}:

Stochastics: An International Journal of Probability and Stochastic Processes 7
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Therefore, for all x and x0 in X

jhaðxÞ2 haðx0Þj # sup
a[AðxÞ

inf
a0[Aðx0Þ

fDaðx; a; x0; a0Þ} _ sup
a0[Aðx0Þ

inf
a[AðxÞ

fDaðx; a; x0; a0Þ}:

On the other hand, from Assumptions (A3), C and Remark 2.2

Daðx; a; x0; a0Þ # Lc þ aLqmðwÞ�h
� �ðrXðx; x0Þ þ rAða; a0ÞÞ:

Now using Assumption (A1), the result follows. A

We say that the pair ðg; hÞ [ R £ BwðXÞ is a solution to the average cost optimality

Equation (ACOE) for M if

gþ hðxÞ ¼ min
a[AðxÞ

cðx; aÞ þ
ð
X

hðyÞQðdyjx; aÞ
� �

for any x [ X: ð2:9Þ

It is important to note that, in general, there might not exist solutions to the ACOE; rather,

there are solutions to the average cost optimality inequality (or inequalities); see [15] or ([18],

Theorem 10.3.1). In our next proposition we prove that, under our hypotheses on the control

model, there exists a solution ðg; hÞ to the ACOE for which, besides, h is Lipschitz continuous.

Proposition 2.4. Under Assumptions A, B and C there exists a solution ðg*; hÞ [
R £ LwðXÞ to the ACOE for the control modelM. Moreover, g* ¼ J *ðxÞ for every x [ X.

Proof. From (2.7), we have that ga is bounded for 0 , a , 1. In addition, from Lemma

2.3, the family of functions fha : 0 , a , 1} is equicontinuous. Therefore, from

Assumption C and Ascoli’s theorem, it follows that there exist ðg*; hÞ [ R £ BwðXÞ, with
khkw # �h, and a sequence fak} such that

ak ! 1; gak
! g* and hak

ðxÞ! hðxÞ for any x [ X

as k!1. In addition, the fact that the Lipschitz constants of ha do not depend on a (recall

Lemma 2.3) implies that h [ LwðXÞ, with Lipschitz constant ½Lc þ LqmðwÞ�h�ð1þ LCÞ. Now,
by using standard arguments, see, for instance, Theorem 4.1 in [15], we obtain the result. A

We conclude this section with a technical result that will be useful in the sequel.

Lemma 2.5. Suppose that Assumptions A and B hold. Given v [ LwðXÞ and ðx; aÞ [ K, the

function y 7! vðyÞqðyjx; aÞ is Lipschitz continuous on X with Lipschitz constant given by

KvwðxÞ, with
Kv :¼ kvkwðLwq þ �qLwÞ þ �qLv:

Proof. For every y; z [ X we have, from (2.2) in Assumption (B2),

jvðyÞqðyjx; aÞ2 vðzÞqðzjx; aÞj # jvðyÞkqðyjx; aÞ2 qðzjx; aÞj þ qðzjx; aÞjvðyÞ2 vðzÞj
# kvkwwðyÞjqðyjx; aÞ2 qðzjx; aÞj þ Lv �qwðxÞrXðy; zÞ:

F. Dufour and T. Prieto-Rumeau8
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Function w being Lipschitz continuous – Assumption (A2) – and from (2.2) and (2.5) in

Assumption (B2),

wðyÞjqðyjx; aÞ2 qðzjx; aÞj # jwðyÞqðyjx; aÞ2 wðzÞqðzjx; aÞj þ jwðyÞ2 wðzÞjqðzjx; aÞ
# ðLwq þ �qLwÞwðxÞrXðy; zÞ:

The stated result follows. A

3. The approximating control models

Throughout this section, we suppose that Assumptions A and B are satisfied.

We suppose that there is a probability space ðV;F ;PÞ and a family fYn}n$1 of i.i.d.

random variables taking values in X with distribution m. For each n $ 1, the M1ðXÞ-
valued mapping mn defined on V by

mnðdyÞ ¼ 1

n

Xn
k¼1

dYk
ðdyÞ ð3:1Þ

is called the empirical probability measure. It is a random variable since the M1ðXÞ-
valued mapping defined on Xn by ðx1; . . . ; xnÞ 7! 1=n

Pn
i¼1 dxi is continuous. As a

consequence, the 1-Wasserstein distance W1ðmn;mÞ is a real-valued random variable. We

will denote by P* the outer measure associated with the probability measure P, which is

defined on the class of all subsets of V.

Let us recall a known result. For a proof, the reader is referred to Corollary 2.5 and

Theorem A.5 in [5].

Theorem 3.1. Suppose that the probability measure m satisfies Assumption (B3). There

exists some g0 such that, given any 0 , g # g0, there are constants S; T . 0, depending

on g, with

PfW1ðmn;mÞ . g} # S expf2T n} for all n $ 1:

The following notation will be useful in the forthcoming. Given z . 0, define for

n $ 1

FnðzÞ ¼ fv [ V : W1ðmnðvÞ;mÞ # z} [ F :

Definition 3.2. The constants ci are defined as

c1 ¼ 1

2Lq
; c2 ¼ 12 d

4ðLq þ LwqÞ and c3 ¼ 12 d

4ðLwq þ Lqð1þ 4ðd þ bÞÞÞ :

They verify c3 # c2 # c1, and so, for n $ 1 we have Fnðc3Þ # Fnðc2Þ # Fnðc1Þ.

The meaning of constants ci will become clear later. We make another hypothesis.

Assumption D. For all d . 0 there exists a family AdðxÞ, for x [ X, of subsets of A

satisfying the following hypotheses.

Stochastics: An International Journal of Probability and Stochastic Processes 9
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(D1) For every x [ X, AdðxÞ is a non-empty closed subset of AðxÞ. We suppose that

Kd ¼ fðx; aÞ [ X £ A : a [ AdðxÞ}

is a measurable subset of X £ A, containing the graph of a measurable function from

X to A.

(D2) For every x [ X,

rHðAðxÞ;AdðxÞÞ # dwðxÞ: ð3:2Þ
(D3) The multifunction Cd from X toA defined by CdðxÞ :¼ AdðxÞ is LC;d-Lipschitz

continuous with respect to the Hausdorff metric. We suppose that

supd.0LC;d ¼ L*C , 1.

We define, for n $ 1 and ðx; aÞ [ Kd,

bnðx; aÞ ¼
ð
X

qðyjx; aÞmnðdyÞ: ð3:3Þ

Observe that

bnðx; aÞ2 1 ¼
ð
X

qðyjx; aÞmnðdyÞ2
ð
X

qðyjx; aÞmðdyÞ

and so, from Lipschitz continuity of y 7! qðyjx; aÞ for fixed ðx; aÞ – see (2.3) in

Assumption (B2)

jbnðx; aÞ2 1j # LqW1ðm;mnÞ for all ðx; aÞ [ Kd: ð3:4Þ
We introduce a family of random kernels Qn for n $ 1 depending on v [ V through

the empirical measure mn associated with m.

Definition 3.3. Given n $ 1 and for v [ Fnðc1Þ consider the kernel Qn on X

given Kd

QnðBjx; aÞ ¼ 1

bnðx; aÞ
ð
B

qðyjx; aÞmnðdyÞ ¼
P

fk:Yk[B} qðYkjx; aÞPn
k¼1 qðYkjx; aÞ

for B [ BðXÞ and ðx; aÞ [ Kd.

Note that for every fixed v [ V, the kernel Qn is supported on the finite set

fYkðvÞ}1#k#n. The condition v [ Fnðc1Þ ensures that bnðx; aÞ $ 1=2 for all ðx; aÞ [ Kd;

therefore, Qnð·jx; aÞ is well defined on Fnðc1Þ. We also have that Qn is a stochastic kernel

on Fnðc1Þ, meaning that QnðXjx; aÞ ¼ 1 for ðx; aÞ [ Kd.

Definition 3.4. Given n $ 1, v [ Fnðc1Þ and d . 0, the control modelMn;d is defined by

the following elements

X;A; fAdðxÞ : x [ X};Qn; c
� 	

(cf. the definition of the control model M).

F. Dufour and T. Prieto-Rumeau10
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Associated with the control model Mn;d, the set Pd denotes the family of all control

policies. Given p [ Pd and any initial state x [ X, let P
p;x
n;d be the underlying probability

measure on ððX £ AÞ1;BððX £ AÞ1ÞÞ such that, for any B [ BðXÞ, C [ BðAÞ, and ht [ Ht

with t [ N,

P
p;x
n;d ðx0 [ BÞ ¼ IBðxÞ; P

p;x
n;d ðat [ CjhtÞ ¼ ptðCjhtÞ; and

P
p;x
n;d ðxtþ1 [ Bjht; atÞ ¼ QnðBjxt; atÞ:

For notational convenience, E
p;x
n;d will denote the associated expectation operator.

Let Fd be the family of measurable functions f : X ! A such that f ðxÞ [ AdðxÞ for all
x [ X. Clearly, Fd # F. Also, letFd # F be the family of stochastic kernels on A given X

such that wðAdðxÞjxÞ ¼ 1 for all x [ X. Sets Fd and Fd are identified with the class of

stationary deterministic and randomized policies for Mn;d, respectively. We will also use

the notation Qnð·jx; f Þ and Qnð·jx;wÞ to denote the Markov kernels associated with the

stationary policies f [ Fd and w [ Fd, i.e.

QnðBjx; f Þ ¼ QnðBjx; f ðxÞÞ and QnðBjx;wÞ ¼
ð
AdðxÞ

QnðBjx; aÞwðdajxÞ

for B [ BðXÞ and x [ X.

It is worth noting that the Markov chain with transition function Qnð·jx;wÞ, for x [ X

and w [ Fd, is essentially a finite state Markov chain. Indeed, for whatever initial state

x0 [ X, the subsequent states xt for t $ 1 lie in the finite set Gn ¼ fYkðvÞ}1#k#n. This

finite state space, however, varies with v [ V and n $ 1.

Propositions 3.5 and 3.6 below explore some properties of the control models Mn;d.

They suppose that Assumptions A, B and D hold.

Proposition 3.5. Fix n $ 1, v [ Fnðc1Þ and d . 0. For any v [ BwðXÞ,

jQnvðx; aÞ2 Qnvðx0; a0Þj # 2kvkwLq mðwÞ þ Lw

2Lq


 �
1þ 2�qwðxÞ� �

rXðx; x0Þ þ rAða; a0Þ
� �

;

for any ðx; aÞ and ðx0; a0Þ in Kd. In particular, the mapping ðx; aÞ 7! Qnvðx; aÞ is locally

Lipschitz continuous on Kd.

Proof. First observe that

jbnðx; aÞ2 bnðx0; a0Þj # Lq½rXðx; x0Þ þ rAða; a0Þ�; ð3:5Þ
by definition of bn (see Equation (3.3)) and

mnðwÞ # mðwÞ þ Lw

2Lq
; ð3:6Þ

by using the fact that w is Lw-Lipschitz continuous and v [ Fnðc1Þ. Now, Qnvðx; aÞ2
Qnvðx0; a0Þ equals

1

bnðx; aÞ
ð
X

vðyÞqðyjx; aÞmnðdyÞ2 1

bnðx0; a0Þ
ð
X

vðyÞqðyjx0; a0ÞmnðdyÞ

Stochastics: An International Journal of Probability and Stochastic Processes 11
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and so

jQnvðx; aÞ2 Qnvðx0; a0Þj # 1

bnðx; aÞ kvkw
ð
X

wðyÞjqðyjx; aÞ2 qðyjx0; a0ÞjmnðdyÞ

þ jbnðx; aÞ2 bnðx0; a0Þj
bnðx; aÞbnðx0; a0Þ kvkw

ð
X

wðyÞqðyjx; aÞmnðdyÞ
# 2kvkwLqmnðwÞ 1þ 2�qwðxÞ� �

rXðx; x0Þ þ rAða; a0Þ
� �

;

by using Equation (3.5) and the fact that bnðx; aÞ $ 1=2. Finally, combining the previous

equation and (3.6) the result follows. A

As a direct consequence of this lemma, we obtain that the kernel Qn is strongly

continuous, and also that Qnw is continuous on Kd. It is worth noting that, for v [ BwðXÞ,
the mapping Qv is Lipschitz continuous (see Remark 2.2). For the kernel Qn this might not

hold, and we have that Qnv is locally Lipschitz continuous.

Proposition 3.6. Given n $ 1 and d . 0, on Fnðc2Þ we have

Qnwðx; aÞ # 1þ d

2
wðxÞ þ 2b for any ðx; aÞ [ Kd:

As a consequence,

E
p;x
n;d ½wðxtÞ� #

1þ d

2

� �t

wðxÞ þ 4b

12 d
ð3:7Þ

for any x [ X, p [ Pd and t [ N.

Proof. Note that

Qnwðx; aÞ # j12 bnðx; aÞj
bnðx; aÞ

ð
X

wðyÞqðyjx; aÞmnðdyÞ þ
ð
X

wðyÞqðyjx; aÞmnðdyÞ:

By Lipschitz continuity of wq and Assumption (A2) we haveð
X

wðyÞqðyjx; aÞmnðdyÞ # LwqwðxÞW1ðm;mnÞ þ Qwðx; aÞ
# LwqwðxÞW1ðm;mnÞ þ dwðxÞ þ b:

Therefore, from Equation (3.4)

Qnwðx; aÞ # 2LqW1ðm;mnÞ þ 1
� �

LwqwðxÞW1ðm;mnÞ þ dwðxÞ þ b
� �

and so,

Qnwðx; aÞ # dnwðxÞ þ 2b for all ðx; aÞ [ Kd;

with dn ¼ d þ 2W1ðm;mnÞðLq þ LwqÞ, and the first statement easily follows. The second

statement of this proposition is now a direct consequence. A

F. Dufour and T. Prieto-Rumeau12
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Given n $ 1, d . 0 and v [ Fnðc2Þ we can introduce, for the control modelMn;d, the

total expected a-discounted cost of the policy p [ P for the initial state x [ X defined as

Va;n;dðx;pÞ :¼ E
p;x
n;d

X1
t¼0

a tcðxt; atÞ
" #

;

and the long-run expected average cost of the policy p [ Pd for the initial state x [ X is

given by

Jn;dðx;pÞ :¼ lim
t!1E

p;x
n;d

1

t

Xt21

k¼0

cðxk; akÞ
" #

:

The value function of the a-discounted control problem is

V*
a;n;dðxÞ :¼ inf

p[Pd

Va;n;dðx;pÞ for x [ X

and a policy p* [ Pd is said to be a-discount optimal if Va;n;dðx;p*Þ ¼ V*
a;n;dðxÞ for every

x [ X. Similarly, the value function of the average cost control problem is

J*n;dðxÞ :¼ inf
p[Pd

Jn;dðx;pÞ for x [ X

and a policy p* [ Pd is said to be AC-optimal if Jn;dðx;p*Þ ¼ J*n;dðxÞ for every x [ X.

Observe that J*n;dðxÞ is defined on Fnðc2Þ as the optimal value function of the control

model Mn;d. For completeness, we propose the following definition of J*n;dðxÞ. If the

control model Mn;d is well defined and its optimal average cost value function exists, let

J*n;dðxÞ be the corresponding value function (in particular, this holds when v [ Fnðc2Þ).
Otherwise, define J*n;dðxÞ [ R arbitrarily.

4. Approximation of the optimal average cost

Our next results compare the difference between Qv and Qnv when v is a Lipschitz

continuous function.

Proposition 4.1. Given n $ 1, v [ LwðXÞ and ðx; aÞ [ Kd, on Fnðc1Þ we have

jQvðx; aÞ2 Qnvðx; aÞj # CvwðxÞW1ðm;mnÞ; ð4:1Þ

with Cv ¼ 2Kv þ 2Lqkvkwðd þ bÞ, where constant Kv comes from Lemma 2.5.

Proof. First of all, observe that Qnvðx; aÞ is finite for any ðx; aÞ [ Kd by using Proposition

3.6. From Definition 3.3 we have

Qvðx; aÞ2 Qnvðx; aÞ ¼
ð
X

vðyÞqðyjx; aÞmðdyÞ2 1

bnðx; aÞ
ð
X

vðyÞqðyjx; aÞmnðdyÞ

Stochastics: An International Journal of Probability and Stochastic Processes 13
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and so,

jQvðx; aÞ2 Qnvðx; aÞj # 1

bnðx; aÞ
ð
X

vðyÞqðyjx; aÞmðdyÞ2
ð
X

vðyÞqðyjx; aÞmnðdyÞ
����

����
þ jbnðx; aÞ2 1j

bnðx; aÞ
ð
X

jvðyÞjqðyjx; aÞ
# 2KvwðxÞW1ðm;mnÞ þ 2LqW1ðm;mnÞ·kvkwðdwðxÞ þ bÞ;

where we have used Lemma 2.5, Equation (3.4) and Assumption (A2). The stated result

follows. A

Remark 4.2. When comparing our hypotheses to those in [14], note that Assumption 2(d)

in [14] implies, using our notation, that jQvðx; aÞ2 Qnvðx; aÞj is bounded above by a

constant multiplied by the distance between the original and the perturbed disturbance

distributions. Under our hypotheses, we obtain a weaker inequality in Proposition 4.1

because we have, in addition, the multiplicative term wðxÞ.

Next we state our main results in this section.

Theorem 4.3. Suppose that Assumptions A, B, C and D are satisfied. There exist positive

constants G1 and G2 such that for every n $ 1, d . 0 and v [ Fnðc2Þ we have

g* 2 J*n;dðxÞ
��� ��� # G1W1ðm;mnÞ þG2d for x [ X:

Proof. Given p [ Pd and x [ X, observe that E
p;x
n;d ½hðxtÞ� is finite by using Proposition 3.6.

On the other hand, for any ðx; aÞ [ Kd we have from Proposition 4.1

g* þ hðxÞ # cðx; aÞ þ Qnhðx; aÞ þ ChwðxÞW1ðm;mnÞ:
Consequently, taking the expectation

g* þ E
p;x
n;d ½hðxkÞ� # E

p;x
n;d ½cðxk; akÞ� þ E

p;x
n;d ½hðxkþ1Þ� þ ChW1ðm;mnÞEp;x

n;d ½wðxkÞ�

for all k $ 0. Summing over k ¼ 0; . . . ; t2 1 yields

tg* þ hðxÞ #
Xt21

k¼0

E
p;x
n;d ½cðxk; akÞ� þ E

p;x
n;d ½hðxtÞ� þ ChW1ðm;mnÞ

Xt21

k¼0

E
p;x
n;d ½wðxkÞ�: ð4:2Þ

From Proposition 3.6 we have

Xt21

k¼0

E
p;x
n;d ½wðxtÞ� #

2

12 d
wðxÞ þ 4bt

12 d
ð4:3Þ

and

E
p;x
n;d jhðxtÞj # �h wðxÞ þ 4b

12 d


 �
; ð4:4Þ

F. Dufour and T. Prieto-Rumeau14
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with h as in Assumption C (recall the proof of Proposition 2.4). Dividing by t in (4.2),

combining Equations (4.3) and (4.4), and taking the superior limit as t tends to infinity,

g* # lim
t!1

1

t

Xt21

k¼0

E
p;x
n;d ½cðxk; akÞ� þ ChW1ðm;mnÞ 4b

12 d
:

Since p is arbitrary, we obtain

g* # J*n;dðxÞ þ ChW1ðm;mnÞ 4b

12 d
: ð4:5Þ

Recalling Remark 2.2, Assumptions (A1) and (A3), it follows by using Proposition D.5

in [16] that there is a measurable selector f * [ F such that

g* þ hðxÞ ¼ cðx; f *ðxÞÞ þ Qhðx; f *ðxÞÞ: ð4:6Þ
Now observe that the function defined on Kd by ðx; aÞ! rAða; f *ðxÞÞ satisfies the

hypothesis of Proposition D.5 in [16]. Consequently, by using Assumption D there exists
~f [ Fd satisfying

min
a[A0

d
ðxÞ
rAða; f *ðxÞÞ ¼ rAð~fðxÞ; f *ðxÞÞ # dwðxÞ; ð4:7Þ

for any x [ X.

From Remark 2.2, Assumption (A3) and (4.7), we obtain

g* þ hðxÞ $ 2jcðx; f *ðxÞÞ2 cðx; ~fðxÞÞj2 jQhðx; f *ðxÞÞ2 Qhðx; ~fðxÞÞj
þ cðx; ~fðxÞÞ þ Qhðx; ~fðxÞÞ

$ 2 Lc þ LqmðwÞ�h
� 	

dwðxÞ þ cðx; ~fðxÞÞ þ Qhðx; ~fðxÞÞ;
and so,

g* þ hðxÞ $ 2 ðLc þ LqmðwÞ�hÞdþ ChW1ðm;mnÞ
� �

wðxÞ þ cðx; ~fðxÞÞ þ Qnhðx; ~fðxÞÞ;
by Proposition 4.1. Finally by using the same arguments as before for the stationary policy

~p generated by ~f, we obtain that

g* $ Jn;dðx; ~pÞ2 ðLc þ LqmðwÞ�hÞdþ ChW1ðm;mnÞ
� � 4b

12 d
: ð4:8Þ

Combining Equations (4.5) and (4.8) and letting

G1 ¼ Ch
4b

12 d
and G2 ¼ ðLc þ LqmðwÞ�hÞ 4b

12 d

we obtain the result. A

We note that we have bounds on the norm of h (recall Assumption C) and its Lipschitz

constant (as a consequence of Lemma 2.3). Therefore, constantsG1 andG2 defined above

do not depend on n $ 1 nor on d: they depend on constants related to the control modelM
that have been introduced in Assumptions A, B and C.
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Theorem 4.4. Suppose that Assumptions A, B, C and D are satisfied. There exists 10 . 0

such that for any 0 , 1 # 10 there exist d . 0 and constants S0; T 0 . 0 such that

P* J*n;dðxÞ2 g*
��� ��� . 1
n o

# S0 expf2T 0n}

for all n $ 1 and x [ X.

Proof. Define 10 ¼ 2G1g0, where the constants G1 and g0 are taken from Theorems 4.3

and 3.1, respectively. Fix 1 such that 0 , 1 # 10. We define

c ¼ c2 ^ 1

2G1

and d ¼ 1

2G2

:

Given arbitrary n $ 1 and v [ FnðcÞ, J*n;dðxÞ is the optimal average cost of the control

model Mn;d for the initial state x [ X.

Since c # g0, we obtain from Theorem 3.1 that there are positive constants S0 and T 0
such that

PfW1ðm;mnÞ . c} # S0 expf2T 0n}:

On the other hand, on the set FnðcÞ we have, by Theorem 4.3,

J*n;dðxÞ2 g*
��� ��� # G1W1ðm;mnÞ þG2d # 1:

Therefore, fjJ*n;dðxÞ2 g*j . 1} # fW1ðm;mnÞ . c}. The stated result follows. A

Note that we do not take probability P of the set fjJ*n;dðxÞ2 g*j . 1} but, rather, its

outer probability P*. This is because the issue of the measurability of J*n;dðxÞ has not been
addressed. We also note that Assumption (D3) has not been used yet. We will need it in our

next section.

5. Approximation of an average cost optimal policy

In this section, we introduce another assumption on the control model.

Assumption E. Let w : X ! ½1;1Þ be the Lw-Lipschitz continuous function introduced in

Assumption A. There exists ðx *; a*Þ [ X such that w* ¼ Qwðx*; a*Þ is finite and, in

addition, there is some 0 , d , 1 such that

ð
X

wðyÞjQðdyjx; aÞ2 Qðdyjx0; a0Þj # dðwðxÞ þ wðx0ÞÞ for all ðx; aÞ and ðx0; a0Þ in K;

where jQð·jx; aÞ2 Qð·jx0; a0Þj is the total variation of the signed kernel

Qð·jx; aÞ2 Qð·jx0; a0Þ.

F. Dufour and T. Prieto-Rumeau16
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We note that Assumption E implies Assumption A2. Indeed, given ðx; aÞ [ K we have

Qwðx; aÞ #
ð
X

wðyÞjQðdyjx; aÞ2 Qðdyjx*; a*Þj þ Qwðx*; a*Þ # dwðxÞ þ ðw* þ dwðx*ÞÞ:

Therefore, Assumption (A2) holds by letting b :¼ w* þ dwðx *Þ. That is why we have used
the same constant 0 , d , 1 in Assumptions (A2) and E. As we shall see, Assumption E

is also a sufficient condition for Assumption C.

Our next lemma is a direct consequence of ([18], Theorem 7.3.14).

Lemma 5.1. Under Assumption E, the control model M is uniformly w-geometrically

ergodic on F. This means that, for each f [ F, the Markov chain on X with transition

kernel given by Qð·jx; f ðxÞÞ has a unique invariant probability measure mf on X with

mf ðwÞ , 1, and that

sup
f[F

E f ;x½uðxtÞ�2 mf ðuÞ
�� �� # Rdt·kukwwðxÞ for all t [ N; u [ BwðXÞ; and x [ X;

with R ¼ 1þ ðb=ð12 dÞÞ.

The important feature of this result is that constants R and b are the same for every

deterministic stationary policy. A standard calculation shows that, under uniform

w-geometric ergodicity, we can obtain Assumption C by letting

�h ¼ R�c

12 d
ð1þ wðx0ÞÞ

for any fixed x0 [ X. Hence, in what follows we will not suppose Assumption C and,

instead, we will use Assumption E.

Proposition 5.2. Suppose that Assumptions A, B, D and E hold. Let n $ 1, d . 0 and

v [ Fnðc3Þ, and define ~R ¼ 1þ 4ðwðx *Þ þ bÞ=ð12 dÞ. Under these conditions, we have

that the control model Mn;d is ð ~R; ð1þ dÞ=2Þ-uniformly w-geometrically ergodic on Fd.

This means that, for each w [ Fd, the Markov chain on X with transition kernel given by

Qnð·jx;wÞ has a unique invariant probability measure mn;d
w on X with mn;d

w ðwÞ , 1, and that

sup
w[Fd

jEw;x½uðxtÞ�2mn;d
w ðuÞj# ~R

1þd

2

� �t

·kukwwðxÞ forall t[N; u[BwðXÞ; and x[X:

Proof. Let us prove that the control modelMn;d satisfies Assumption E. Since v [ Fnðc2Þ,
from Proposition 3.6 we have Qnwðx; aÞ # ðð1þ dÞ=2ÞwðxÞ þ 2b for all ðx; aÞ [ Kd, and

so the first condition in Assumption E is satisfied for any a* [ Adðx*Þ by letting

~w* :¼ 1þ d

2
wðx*Þ þ 2b:

Concerning the second statement in Assumption E, given ðx; aÞ and ðx0; a0Þ in Kd we haveð
X

wðyÞjQnðdyjx; aÞ2 Qnðdyjx0; a0Þj ¼
ð
X

wðyÞ qðyjx; aÞ
bnðx; aÞ 2

qðyjx0; a0Þ
bnðx0; a0Þ

����
����mnðdyÞ
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(this is because, from Definition 3.3, the kernel Qnð·jx; aÞ has density qðyjx; aÞ=bnðx; aÞ
with respect to mn). By Assumption (B2), the function

y 7! wðyÞ qðyjx; aÞ
bnðx; aÞ 2

qðyjx0; a0Þ
bnðx0; a0Þ

����
����

is Lipschitz-continuous on X with Lipschitz constant given by

Lwq·
wðxÞ

bnðx; aÞ þ
wðx0Þ

bnðx0; a0Þ
� �

# 2Lwq·ðwðxÞ þ wðx0ÞÞ

because on Fnð1=2LqÞ we have bnðx; aÞ $ 1=2 and bnðx0; a0Þ $ 1=2. Therefore,

ð
X

wðyÞjQnðdyjx; aÞ2 Qnðdyjx0; a0Þj # 2Lwq·ðwðxÞ þ wðx0ÞÞW1ðm;mnÞ

þ
ð
X

wðyÞ qðyjx; aÞ
bnðx; aÞ 2

qðyjx0; a0Þ
bnðx0; a0Þ

����
����mðdyÞ:

Observe now that wðyÞjðqðyjx; aÞÞ=ðbnðx; aÞÞ2 ðqðyjx0; a0ÞÞ=ðbnðx0; a0ÞÞj is less than

jwðyÞqðyjx; aÞ2 wðyÞqðyjx0; a0Þj
bnðx; aÞ þ wðyÞqðyjx0; a0Þ

bnðx; aÞbnðx0; a0Þ jbnðx; aÞ2 bnðx0; a0Þj

#
jwðyÞqðyjx; aÞ2 wðyÞqðyjx0; a0Þj

bnðx; aÞ þ 8wðyÞqðyjx0; a0ÞLqW1ðm;mnÞ

by recalling Equation (3.4). Since Qwðx0; a0Þ # dwðx0Þ þ b # ðd þ bÞðwðxÞ þ wðx0ÞÞ we

obtain that

ð
X

wðyÞjQnðdyjx; aÞ2 Qnðdyjx0; a0Þj

#
d

12 LqW1ðm;mnÞ þ 2W1ðm;mnÞ½Lwq þ 4Lqðd þ bÞ�

 �

½wðxÞ þ wðx0Þ�
# d þ 2W1ðm;mnÞðLwq þ Lq½1þ 4ðd þ bÞ�Þ� �½wðxÞ þ wðx0Þ�:

Finally, we have established that for all ðx; aÞ and ðx0; a0Þ in Kdð
X

wðyÞjQnðdyjx; aÞ2 Qnðdyjx0; a0Þj # ~dnðwðxÞ þ wðx0ÞÞ

where

~dn ¼ d þ 2W1ðm;mnÞ Lwq þ Lq½1þ 4ðd þ bÞ�� �
:

We note that, on Fnðc3Þ, we have ~dn # ð1þ dÞ=2.
Summarizing, the control model Mn;d satisfies

Qnwðx*; a*Þ # 1þ d

2
wðx*Þ þ 2b , 1 for some ðx *; a*Þ [ Kd

F. Dufour and T. Prieto-Rumeau18
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and, for all ðx; aÞ and ðx0; a0Þ in Kd,

ð
X

wðyÞjQnðdyjx; aÞ2 Qnðdyjx0; a0Þj # 1þ d

2

� �
·ðwðxÞ þ wðx0ÞÞ: ð5:1Þ

It follows from Lemma 5.1 that the control model Mn;d is ð ~R; ð1þ dÞ=2Þ-uniformly

w-geometrically ergodic on Fd. It remains to show that Mn;d is ð ~R; ð1þ dÞ=2Þ-uniformly

w-geometrically ergodic on Fd. To see this, fix w [ Fd and note that Qnð·jx;wÞ has

density

y 7!
ð
AdðxÞ

qðyjx; aÞ
bnðx; aÞ wðdajxÞ

with respect to mn. Therefore

ð
X

wðyÞjQnðdyjx;wÞ2 Qnðdyjx0;wÞjmnðdyÞ

¼
ð
X

wðyÞ
ð
AdðxÞ£Adðx0Þ

qðyjx; aÞ
bnðx; aÞ 2

qðyjx0; a0Þ
bnðx0; a0Þ


 �
wðdajxÞ £ wðda0jx0Þ

����
����mnðdyÞ

#

ð
AdðxÞ£Adðx0Þ

ð
X

wðyÞ qðyjx; aÞ
bnðx; aÞ 2

qðyjx0; a0Þ
bnðx0; a0Þ

����
����mnðdyÞwðdajxÞ £ wðda0jx0Þ

#
1þ d

2

� �
·ðwðxÞ þ wðx0ÞÞ;

by (5.1). Recalling ([18], Theorem 7.3.14), the result follows. A

Let us now comment on Assumption E. Assumptions A, B and C on the control model

M ensure that the corresponding ACOE has a solution ðg*; hÞ. Besides, we have obtained
explicit bounds on the norm of h. To approximate an optimal policy, we need a solution to

the ACOE for control model Mn;d. In general, imposing Assumption C on M does not

imply that a similar condition is satisfied by Mn;d. On the other hand, as seen in

Proposition 5.2, Assumption E forM does imply the same condition forMn;d. Moreover,

it has the advantage that we have explicit values for the constants involved in the uniform

w-geometric ergodicity. This will allow to establish the ACOE for Mn;d and to obtain

bounds on the norms of the involved functions.

Concerning constants ci introduced in Definition 3.2, their interpretation is now clear.

On Fnðc1Þ the control model Mn;d is well defined; on Fnðc2Þ the optimal average cost

function J*n;d is finite; on Fnðc3Þ the control model Mn;d is uniformly w-geometrically

ergodic.

We recall the definition of the ACOE. Given n $ 1, d . 0 and v [ Fnðc1Þ, we say that
the pair ðg; hÞ [ R £ BwðXÞ is a solution to ACOE for the control model Mn;d if

gþ hðxÞ ¼ min
a[AdðxÞ

cðx; aÞ þ
ð
X

hðyÞQnðdyjx; aÞ
� �

for all x [ X: ð5:2Þ
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We say that f [ Fd is an Mn;d-canonical policy if it attains the minimum in (5.2), that is,

gþ hðxÞ ¼ cðx; f ðxÞÞ þ
ð
X

hðyÞQnðdyjx; f ðxÞÞ for all x [ X:

Theorem 5.3. Suppose that Assumptions A, B, D and E are satisfied. Given n $ 1 and

d . 0, consider v [ Fnðc3Þ.
(i) There exists a solution ðg*n;d; hn;dÞ [ R £ BwðXÞ to the ACOE for the control

model Mn;d. This solution satisfies

g*n;d ¼ J*n;dðxÞ for all x [ X; and khn;dkw # H;

where

H ¼ 2 ~R�c

12 d
ð1þ wðx0ÞÞ:

(ii) If ðg0; h0Þ is any other solution to the ACOE forMn;d then g
0 ¼ g*n;d and functions

h0 and hn;d differ on X by a constant.

(iii) The set of Mn;d-canonical policies is non-empty and it does not depend on the

particular solution hn;d of the ACOE. Moreover, any Mn;d-canonical policy is

average optimal for Mn;d.

Proof.

(i) According to the results in Section 3, Assumptions 3.1 and 3.2 in [15] are

satisfied. Therefore, for every 0 , a , 1, from ([15], Lemma 3.2), the

discounted value function V*
a;n;d belongs to BwðXÞ and, besides, it verifies

V*
a;n;dðxÞ

��� ��� # 2�c

12 d
wðxÞ þ 2b

12 a


 �
ð5:3Þ

and satisfies the discounted optimality equation

V*
a;n;dðxÞ ¼ min

a[AdðxÞ
cðx; aÞ þ a

ð
X

V*
a;n;dðyÞQnðdyjx; aÞ

� �
: ð5:4Þ

Now, consider x0 [ X and define the function ha;n;d as ha;n;dðxÞ ¼ V*
a;n;dðxÞ2

V*
a;n;dðx0Þ for x [ X. If f * [ Fd attains the minimum in DCOE (5.4), then

jha;n;dðxÞj #
X1
t¼0

a t E
f *;x
n;d ½cðxt; f *ðxtÞÞ�2 E

f *;x0
n;d ½cðxt; f *ðxtÞÞ�

��� ���
#
X1
t¼0

a t 1þ d

2

� �t

~R�c½wðxÞ þ wðx0Þ�

F. Dufour and T. Prieto-Rumeau20
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by using Proposition 5.2 and so, for every 0 , a , 1

kha;n;dkw # H: ð5:5Þ

Introduce ga;n;d ¼ ð12 aÞV*
a;n;dðx0Þ. The discounted optimality equation can be

re-written as

ga;n;d þ ha;n;dðxÞ ¼ min
a[AdðxÞ

cðx; aÞ þ a

ð
X

ha;n;dðyÞQnðdyjx; aÞ
� �

:

We observe that, as a consequence of (5.3), the sequence fga;n;d} is bounded when
0 , a , 1. By using similar arguments as in Lemma 2.3 and Proposition 3.5, it

follows that

jha;n;dðxÞ2ha;n;dðx0Þj# Lcþ2HLq mðwÞþ Lw

2Lq


 �
1þ2�qwðxÞ� �
 �

ð1þL*CÞrXðx;x0Þ:
ð5:6Þ

From the previous equation, it follows that the family of functions fha;n;d : a [
ð0; 1Þ} is equicontinuous. Now, by using inequality (5.5) and Ascoli’s theorem,

we obtain that there exist a sequence fak}, a constant g*n;d [ R and a function

hn;d [ BwðXÞ such that

ak ! 1; gak ;n;d ! g*n;d and hak ;n;dðxÞ! hn;dðxÞ for any x [ X

as k!1. Clearly, from (5.5) we have khn;dkw # H, while (5.6) implies that hn;d
is locally Lipschitz continuous on X.

By using standard arguments (in particular, we make use of the extended

Fatou lemma in ([18], Lemma 8.3.7)), we obtain that

g*n;d þ hn;dðxÞ ¼ min
a[AdðxÞ

cðx; aÞ þ
ð
X

hn;dðyÞQnðdyjx; aÞ
� �

for all x [ X. The fact that g*n;d ¼ J*nðxÞ for x [ X follows in a straightforward

way.

(ii) Let ðg1; h1Þ and ðg2; h2Þ in R £ BwðXÞ be two solutions to the ACOE for the

control model Mn;d. The fact that g1 ¼ g2 ¼ g*n;d follows from standard

arguments, such as those used in the proof of item (i) above.

Hence, it remains to show that h1 and h2 differ by a constant, i.e. there exists

g [ R such that h1ðxÞ2 h2ðxÞ ¼ g for all x [ X. Let the policies f 1 and f 2 in Fd
attain the minimum in the ACOE for h1 and h2, respectively; that is, we have for

all x [ X

g*n;d þ h1ðxÞ ¼ cðx; f 1Þ þ
ð
X

h1ðyÞQnðdyjx; f 1Þ ð5:7Þ

# cðx; f 2Þ þ
ð
X

h1ðyÞQnðdyjx; f 2Þ; ð5:8Þ
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g*n;d þ h2ðxÞ ¼ cðx; f 2Þ þ
ð
X

h2ðyÞQnðdyjx; f 2Þ ð5:9Þ

# cðx; f 1Þ þ
ð
X

h2ðyÞQnðdyjx; f 1Þ; ð5:10Þ

with cðx; f 1ðxÞÞ ¼ cðx; f 1Þ and Qnðdyjx; f 1ðxÞÞ ¼ Qnðdyjx; f 1Þ. Consider now the

transition matrices of the policies f i, for i ¼ 1; 2, when restricted to the set of

states Gn ¼ fYkðvÞ}1#k#n. The corresponding transition matrix will be denoted

by Pi, with Piðx; yÞ ¼ Qnðfy}jx; f iðxÞÞ for x; y [ Gn (recall Definition 3.3). By

Proposition 5.2, the transition matrix Pi has a unique invariant probability

measure. Therefore, Gn can be partitioned into an irreducible class of positive

recurrent states Ri and a (possibly empty) class of transient states Ti. So, let us

write the transition matrix Pi in block form

Pi ¼
PiðRi;RiÞ 0

PiðTi;RiÞ PiðTi; TiÞ

 !
;

where we highlight the transitions between the classes of recurrent and transient

states. It is a well known fact that

ðI2PiðTi;TiÞÞ21 ¼ Iþ
X1
k¼1

ðPiðTi;TiÞÞk and ðI2PiðTi;TiÞÞ21PiðTi;RiÞ1¼ 1:

ð5:11Þ

By (5.7) and (5.10) we have that function h1 2 h2 on Gn (that will be interpreted

as a column vector) is subharmonic for P1, meaning that h1 2 h2 $ P1ðh1 2 h2Þ.
As a consequence, for each x [ Gn and t $ 0

E
f 1;x
n;d ½ðh1 2 h2ÞðxtÞ� # h1ðxÞ2 h2ðxÞ:

By Proposition 5.2, this implies that mn;d
f 1
ðh1 2 h2Þ # h1ðxÞ2 h2ðxÞ for all x [ Gn,

with mn;d
f 1

being the invariant probability measure associated with the policy f 1.

Consequently, h1 2 h2 is constant on R1. Similarly, using (5.8) and (5.9) we

obtain that h1 2 h2 is superharmonic for P2, and it follows that h1 2 h2 is constant

on R2. Summarizing, there exist g1 and g2 [ R such that

h1ðxÞ2 h2ðxÞ ¼ g1 for all x [ R1 and h1ðxÞ2 h2ðxÞ ¼ g2 for all x [ R2:

ð5:12Þ

Now, by (5.8), for every x [ T2,

h1ðxÞ2
X
y[T2

P2ðx; yÞh1ðyÞ # 2g*n;d þ cðx; f 2Þ þ
X
y[R2

P2ðx; yÞh1ðyÞ

or, in matrix notation and denoting, generically, by uðSÞ the column vector u

restricted to the components of S # Gn,

ðI2 P2ðT2; T2ÞÞh1ðT2Þ # 2g*n;d1þ cðT2; f 2Þ þ P2ðT2;R2Þh1ðR2Þ: ð5:13Þ
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Also, from (5.9),

ðI2 P2ðT2; T2ÞÞh2ðT2Þ ¼ 2g*n;d1þ cðT2; f 2Þ þ P2ðT2;R2Þh2ðR2Þ: ð5:14Þ

Since the matrix ðI 2 P2ðT2; T2ÞÞ21 is non-negative (recall (5.11)), it follows

from (5.13) that

h1ðT2Þ # ðI2 P2ðT2; T2ÞÞ21· 2g*n;d1þ cðT2; f 2Þ þ P2ðT2;R2Þh1ðR2Þ
� 

:

However, we have h1ðR2Þ ¼ h2ðR2Þ þ g21, and so

h1ðT2Þ # ðI2 P2ðT2; T2ÞÞ21· 2g*n;d1þ cðT2; f 2Þ þ P2ðT2;R2Þðh2ðR2Þ þ g21Þ
� 

¼ h2ðT2Þ þ g21;

where we have applied (5.11) and (5.14). By following a similar argument, we

obtain that h1ðT1Þ2 h2ðT1Þ $ g11. So far, we have established that

h1ðxÞ2 h2ðxÞ ¼ g1 on R1;

h1ðxÞ2 h2ðxÞ $ g1 on T1;

8<
: and

h1ðxÞ2 h2ðxÞ ¼ g2 on R2;

h1ðxÞ2 h2ðxÞ # g2 on T2:

8<
:

In particular, g1 # h1ðxÞ2 h2ðxÞ # g2 for all x [ Gn:
Suppose, for the moment, that g1 , g2. Then we necessarily have

R1 > R2 ¼ Y. Define the policy �f [ Fd as follows: �fðxÞ ¼ f 1ðxÞ if x [ R1, and
�fðxÞ ¼ f 2ðxÞ if x [ R2 (the definition outside R1 < R2 is not relevant). We have

that R1 and R2 are two disjoint recurrent classes for �f. In this case, it is not possible

that fQnð·jx; �fÞ} has a unique invariant probability measure (recall Proposition

5.2). This leads to a contradiction, and so g1 ¼ g2 ¼: g.
Once we know that h1ðxÞ ¼ h2ðxÞ þ g for all x [ Gn, the equality is extended

to X 2 Gn by noting that hiðxÞ for x [ X 2 Gn is uniquely determined by the

values of hi in Gn; namely,

g*n;d þ hiðxÞ ¼ min
a[AdðxÞ

cðx; aÞ þ
X
y[Gn

hiðyÞQnðfy}jx; aÞ
( )

;

and h1ðxÞ2 h2ðxÞ ¼ g for x [ X 2 Gn follows.

(iii) This statement easily follows from (ii) and standard arguments. A

Under the hypotheses of Theorem 5.3, we note that the optimal average cost g*n;d of

Mn;d is such that jg*n;dj # 4�cb=ð12 dÞ. We also note that the solution hn;d to the ACOE

that has been constructed in the proof of Theorem 5.3 is in fact the unique solution to the

ACOE such that hn;dðx0Þ ¼ 0.
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Lemma 5.4. For n $ 1, d . 0 and v [ Fnðc3Þ, let hn;d [ BwðXÞ be the solution in the

ACOE for the control model Mn;d constructed in Theorem 5.3. Define for x [ X

~hn;dðxÞ¼ min
a[AdðxÞ

fcðx;aÞþbnðx;aÞQnhn;dðx;aÞ}¼ min
a[AdðxÞ

cðx;aÞþ
ð
X

hn;dðyÞqðyjx;aÞmnðdyÞ
� �

:

Function ~hn;d is in LwðXÞ, it verifies

kg*n;d þ hn;d2~hn;dkw # HLq
1þ d

2
þ 2b

� �
W1ðm;mnÞ and

k~hn;dkw # H
5þ d

4
þ b

� �
þ 4�cb

12 d
;

and its Lipschitz constant is

1þ L*C
� 	

Lc þ HLq mðwÞ þ Lw

2Lq

� �� �
:

Proof. It is clear from our continuity hypotheses that ~hn;d is measurable (see, e.g. ([16],

Proposition D.5.(b))), and so also ~hn;d [ BwðXÞ. In addition, by the ACOE in Theorem 5.3,

for all x [ X

g*n;d þ hn;dðxÞ ¼ min
a[AdðxÞ

cðx; aÞ þ
ð
X

hn;dðyÞQnðdyjx; aÞ
� �

¼ min
a[AdðxÞ

cðx; aÞ þ
ð
X

hn;dðyÞqðyjx; aÞmnðdyÞ þ ð12 bnðx; aÞÞ
ð
X

hn;dðyÞQnðdyjx; aÞ
� �

:

Since we have

ð12 bnðx; aÞÞ
ð
X

hn;dðyÞQnðdyjx; aÞ
����

���� # HLq
1þ d

2
þ 2b

� �
W1ðm;mnÞwðxÞ;

it follows by using Proposition 3.6 that

g*n;d þ hn;d 2 ~hn;d

��� ���
w
# HLq

1þ d

2
þ 2b

� �
W1ðm;mnÞ;

where g*n;d is interpreted as a constant function on X. The bound on k~hn;dkw easily follows

from the previous inequality. Indeed, we have

k~hn;dkw # HLq
1þ d

2
þ 2b

� �
W1ðm;mnÞ þ kg*n;dkw þ khn;dkw:

Now, we obtain the desired bound by recalling that jg*n;dj # 4�cb=ð12 dÞ and khn;dkw # H

(see item (i) of Theorem 5.3) and by observing that for v [ Fnðc3Þ # Fnðc1Þ we have

W1ðm;mnÞ # 1=2Lq (see Definition 3.2).
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For notational convenience, let us introduce

Dnðx; a; x0; a0Þ :¼ jcðx; aÞ2 cðx0; a0Þj þ jbnðx; aÞQnhn;dðx; aÞ2 bnðx0; a0ÞQnhn;dðx0; a0Þj
for ðx; aÞ and ðx0; a0Þ in Kd (cf. the definition of Daðx; a; x0; a0Þ in the proof of Lemma 2.3).

Then, proceeding as in the proof of Lemma 2.3 we have

~hn;dðxÞ # ~hn;dðx0Þ þ sup
a0[Adðx0Þ

inf
a[AdðxÞ

fDnðx; a; x0; a0Þ};

and, symmetrically,

~hn;dðx0Þ # ~hn;dðxÞ þ sup
a[AdðxÞ

inf
a0[Adðx0Þ

fDnðx; a; x0; a0Þ}:

So, for all x and x0 in X

j~hn;dðxÞ2 ~hn;dðx0Þj # sup
a[AdðxÞ

inf
a0[Adðx0Þ

fDnðx; a; x0; a0Þ} _ sup
a0[Adðx0Þ

inf
a[AdðxÞ

fDnðx; a; x0; a0Þ}:

Now, from Assumption (A3), item (i) of Theorem 5.3, (2.4) and (3.6) we easily obtain that

Dnðx; a; x0; a0Þ # Lc þ HLq mðwÞ þ Lw

2Lq

� �
 �
½rXðx; x0Þ þ rAða; a0Þ�: ð5:15Þ

With Assumption (D3), this yields the Lipschitz constant of ~hn;d. A

This means that function hn;d in the average optimality equation for Mn;d is not

necessarily Lipschitz continuous (in fact, it is locally Lipschitz continuous), but it can be

approximated by a Lipschitz continuous function ~hn;d, with an approximation error which

is controlled in the w-norm by the Wasserstein distance W1ðmn;mÞ. We note that in

Proposition 2.4 we could derive that h in the average optimality equation for M is

Lipschitz continuous.

Theorem 5.5. Suppose that Assumptions A, B, D and E are satisfied. There exist constants

H1 and H2 such that given n $ 1, d . 0 and v [ Fnðc3Þ, any Mn;d-canonical policy
~fn;d [ Fd # F verifies

Jð~fn;d; xÞ # g* þH1W1ðm;mnÞ þ dH2 for x [ X:

Proof. Let hn;d be the solution of the ACOE for Mn;d constructed in Theorem 5.3, and let
~fn;d attain the minimum in the corresponding ACOE, that is,

g*n;d þ hn;dðxÞ ¼ cðx; ~fn;dðxÞÞ þ Qnhn;dðx; ~fn;dðxÞÞ for x [ X: ð5:16Þ

Our first step in this proof is to ‘replace’ hn;d with ~hn;d in (5.16). To this end, regarding the

left-hand side of (5.16), note that by Lemma 5.4,

g*n;d þ hn;dðxÞ # ~hn;dðxÞ þ HLq
1þ d

2
þ 2b

� �
W1ðm;mnÞwðxÞ for each x [ X;
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while, for the right-hand side,

hn;dðyÞ $ ~hn;dðyÞ2 g*n;d 2 HLq
1þ d

2
þ 2b

� �
W1ðm;mnÞwðyÞ for each y [ X;

and so

Qnhn;dðx; aÞ $ Qn
~hn;dðx; aÞ2 g*n;d 2 HLq

1þ d

2
þ 2b

� �
W1ðm;mnÞQnwðx; aÞ

for each ðx; aÞ [ Kd;

whence, by Proposition 3.6,

Qnhn;dðx; ~fn;dðxÞÞ $ Qn
~hn;dðx; ~fn;dðxÞÞ2 g*n;d 2 HLq

1þ d

2
þ 2b

� �2

W1ðm;mnÞwðxÞ
for each x [ X:

So far, we have established that

HLq
1þ d

2
þ 2b

� �
3þ d

2
þ 2b

� �
W1ðm;mnÞwðxÞ þ g*n;d þ ~hn;dðxÞ
$ cðx; ~fn;dðxÞÞ þ Qn

~hn;dðx; ~fnðxÞÞ
for all x [ X. Now we use the fact that ~hn;d [ LwðXÞ – Lemma 5.4 – and Proposition 4.1

to derive

C ~hn;d
þ HLq

1þ d

2
þ 2b

� �
3þ d

2
þ 2b

� �� �
W1ðm;mnÞwðxÞ þ g*n;d þ ~hn;dðxÞ

$ cðx; ~fn;dðxÞÞ þ Q~hn;dðx; ~fn;dðxÞÞ
for all x [ X. Taking into account the bounds on k~hn;dkw and its Lipschitz constant in

Lemma 5.4, we obtain that there exists a constant G that depends only on the constants in

Assumptions A, B, E and L*C in (D3) (and not on n nor on d) such that

GwðxÞW1ðm;mnÞ þ g*n;d þ ~hn;dðxÞ $ cðx; ~fn;dðxÞÞ þ Q~hn;dðx; ~fn;dðxÞÞ

for all x [ X. Iterating this inequality and using (by now) standard arguments, we derive

G
4b

12 d
W1ðm;mnÞ þ g*n;d $ Jð~fn;d; xÞ for x [ X:

By Theorem 4.3, we conclude that there are constants Hi depending on the parameters in

our assumptions (and not on n nor on d) such that

g* # Jð~fn;d; xÞ # g* þH1W1ðm;mnÞ þ dH2 for x [ X:

This completes the proof. A

We have that Jð~fn;d; xÞ is defined for v [ Fnðc3Þ. We extend this definition as we did

with J*n;dðxÞ in the previous section. If the control model Mn;d is well defined and if a
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solution to the corresponding ACOE exists, let Jð~fn;d; xÞ be the average cost (for the control
model M) of any canonical policy (in particular, these statements hold on Fnðc3Þ).
Otherwise, define Jð~fn;d; xÞ arbitrarily.

Theorem 5.6. Suppose that Assumptions A, B, D and E are satisfied. There exists 10 . 0

such that for any 0 , 1 # 10 there exist d . 0 and constants S00; T 00 . 0 such that

P*fJð~fn;d; xÞ2 g* . 1} # S00 expf2T 00n}

for all n $ 1 and x [ X.

Proof. The proof is similar to that of Theorem 4.4. Just define 10 ¼ 2H1g0, where the

constants H1 and g0 are taken from Theorems 5.5 and 3.1. Fix 1 such that 0 , 1 # 10,
and let

c ¼ c3 ^ 1

2H1

and d ¼ 1

2H2

:

Note now that the set fJð~fn;d; xÞ . g* þ 1} is contained in fW1ðm;mnÞ . c} and proceed as

in the proof of Theorem 4.4. A

6. Numerical approximations

Suppose that Assumptions A, B, D and E are satisfied. Given n $ 1 and d . 0, consider

v [ Fnðc3Þ. Moreover, we will suppose that the sets AdðxÞ are finite for every x [ X. We

recall the notation Gn ¼ fYkðvÞ}1#k#n. In what follows, we consider the control model

Mn;d restricted to the states in Gn. We can do so because we have QnðGnjx; aÞ ¼ 1 for all

x [ Gn and a [ AdðxÞ. Therefore, in what follows we will be dealing with a unichain, finite
state and action average cost MDP.

LP formulation of the average cost problem. Consider the following (primal) LP

problem ðPÞ

minimize
X
x[Gn

X
a[AdðxÞ

cðx; aÞzðx; aÞ

subject to

X
a[AdðxÞ

zðx; aÞ ¼
X
x0[Gn

X
a0[Adðx0Þ

zðx0; a0ÞQnðfx}jx0; a0Þ for all x [ Gn;

X
x[Gn

X
a[AdðxÞ

zðx; aÞ ¼ 1 and zðx; aÞ $ 0 for all x [ Gn and a [ AdðxÞ:

Here, the variable zðx; aÞ is interpreted as a state-action limiting frequency.

It is known that the minimal value of ðPÞ equals g*n;d, the optimal average cost of

the control model Mn;d. Moreover, if fz*ðx; aÞ} is an optimal solution of ðPÞ,
letting X * ¼ fx [ Gn :

P
a[AdðxÞ z

*ðx; aÞ . 0}, define the randomized stationary policy
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w* [ Fd as

w*ðfa}jxÞ ¼ z*ðx; aÞP
a0[AdðxÞ z*ðx; a0Þ

for a [ AdðxÞ and x [ X *; ð6:1Þ

and define it arbitrarily for states in Gn 2 X *. We have that the policy w* is average cost

optimal for the control model Mn;d. Besides,

mn;d
w ðxÞ ¼

X
a[AdðxÞ

z*ðx; aÞ for x [ Gn

is its unique invariant probability measure. In particular, Rðw*Þ :¼ X * is the set of

recurrent states for w*.

Observe that our procedure in Section 5 to approximate an optimal control policy for

M is concerned with a canonical policy ~fn;d for Mn;d. The policy w* determined above is

average optimal for Mn;d but it might not be canonical. Hence, to use our method in

Section 5, we must solve the ACOE for Mn;d in order to find a canonical policy.

The dual problem of ðPÞ is the LP problem ðDÞ given by:

maximize g subject to gþ hðxÞ # cðx; aÞ þ
X
y[Gn

Qnðfy}jx; aÞhðyÞ

for all x [ Gn and a [ AdðxÞ; g [ R and hðxÞ [ R for x [ Gn:

Its optimal value is g*n;d and, at optimality, we obtain a solution of the following

inequalities

g*n;d þ hðxÞ # min
a[AdðxÞ

cðx; aÞ þ
X
y[Gn

Qnðfy}jx; aÞhðyÞ
( )

for all x [ Gn: ð6:2Þ

It is important to mention that, by solving ðDÞ, we might not obtain a solution to the ACOE

for the control modelMn;d, although we know from Theorem 3 that such a solution indeed

exists.

Solving the ACOE by LP. Next we show how we can find a solution to the ACOE for

the control model Mn;d by solving two linear programs.

Lemma 6.1. Let fz*ðx; aÞ} be an optimal solution of ðPÞ, let w* [ Fd be as in (6.1), and fix

arbitrary x* [ Rðw*Þ. Let h* [ Rn be the unique solution of the ACOE forMn;d such that

h*ðx*Þ ¼ 0, and let h [ RjGnj, with hðx*Þ ¼ 0, verify the inequalities in (6.2). Then we

have hðxÞ # h*ðxÞ for all x [ Gn.

Proof. We deduce from (6.2) that

g*n;d þ hðxÞ # cðx;w*Þ þ
X
y[Gn

Qnðfy}jx;w*ÞhðyÞ for all x [ Gn;

with cðx;w*Þ ¼ Ð
AdðxÞ cðx; aÞw*ðdajxÞ. Since w* is average optimal, i.e.X

x[Gn

cðx;w*Þmn;d
w * ðxÞ ¼ g*n;d;
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the above inequality necessarily holds with equality for the recurrent states Rðw*Þ of w*:

g*n;d þ hðxÞ ¼ cðx;w*Þ þ
X

y[Rðw *Þ
Qnðfy}jx;w*ÞhðyÞ for all x [ Rðw*Þ:

On the other hand, we deduce from the ACOE that

g*n;d þ h*ðxÞ # cðx;w*Þ þ
X

y[Rðw *Þ
Qnðfy}jx;w*Þh*ðyÞ for all x [ Rðw*Þ:

Therefore, function h2 h*, when restricted to the set of recurrent states Rðw*Þ, is

subharmonic for w* and, hence, constant. Since h2 h* vanishes at x* [ Rðw*Þ, we
conclude that hðxÞ ¼ h*ðxÞ for all x [ Rðw*Þ.

Now, let f * [ Fd be a canonical policy forMn;d, that is, it attains the minimum in the

ACOE:

g*n;d þ h*ðxÞ ¼ cðx; f *Þ þ
X
y[Gn

Qnðfy}jx; f *Þh*ðyÞ for all x [ Gn: ð6:3Þ

Since we also have, by (6.2),

g*n;d þ hðxÞ # cðx; f *Þ þ
X
y[Gn

Qnðfy}jx; f *ÞhðyÞ for all x [ Gn; ð6:4Þ

we obtain that h2 h* is superharmonic for the kernelQnð·j·; f *Þ. Hence, h2 h* is constant

on set R of recurrent states for f *. Arguing as in the proof of Theorem 5.3(ii), we have that

R> Rðw*Þ is not empty, and so hðxÞ ¼ h*ðxÞ for all x [ R.

Let us now write (6.4) in matrix form for the transient states T ¼ Gn 2 R of f *:

hðTÞ # cðT; f *Þ2 g*n;d1þ Pf * ðT ; TÞhðTÞ þ Pf * ðT;RÞhðRÞ;

with

Qnð·j·; f *Þ ¼
Pf * ðR;RÞ 0

Pf * ðT;RÞ Pf * ðT ; TÞ

 !
:

This implies, as in the proof of Theorem 5.3(ii), that

hðTÞ # ðI2 Pf *ðT ; TÞÞ21 cðT ; f *Þ2 g*n;d1þ Pf *ðT ;RÞhðRÞ
� 

¼ ðI2 Pf * ðT ; TÞÞ21 cðT ; f *Þ2 g*n;d1þ Pf *ðT ;RÞh*ðRÞ
�  ð6:5Þ

¼ h*ðTÞ; ð6:6Þ
where (6.5) follows from the fact that h ¼ h* on R, and (6.6) is deduced from (6.3). This

completes the proof that hðxÞ # h*ðxÞ for all x [ Gn. A

Note that the proof that h # h* mainly relies on the properties of the canonical policy

f *. Since our goal is, in fact, to solve the ACOE, such a canonical policy is not, therefore,

‘available’. That is why this proof uses the policy w*, which can be explicitly determined
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by solving ðPÞ, and then uses the link between them: R> Rðw*Þ – Y, deduced from the

ergodicity property of Mn;d on Fd (recall Proposition 5.2).

As a consequence of Lemma 6.1, we have that h* in the ACOE for Mn;d, with

h*ðx*Þ ¼ 0 is the maximal solution h of (6.2) with hðx*Þ ¼ 0. This leads to the definition of

the LP problem ðD0Þ as

maximize
X
x[Gn

hðxÞ subject to g*n;d þ hðxÞ # cðx; aÞ þ
X
y[Gn

Qnðfy}jx; aÞhðyÞ

for all x [ Gn and a [ AdðxÞ; hðx*Þ ¼ 0 and hðxÞ [ R for x [ Gn:

It should be clear that h*, the unique solution of the ACOE with h*ðx *Þ ¼ 0, is the unique

optimal solution of ðD0Þ. Observe also that the LP problem ðD0Þ is somehow ‘parametrized’

by the optimal value g*n;d and the state x
*. We summarize these results in our next theorem.

Theorem 6.2. Suppose that Assumptions A, B, D and E are satisfied. Given n $ 1 and

d . 0, consider v [ Fnðc3Þ and suppose that the sets AdðxÞ are finite for every x [ X. The

following procedure allows to derive g*n;d [ R and the policy ~fn;d [ Fd – the optimal

average cost and a canonical policy forMn;d – with the properties given in Theorems 4.4

and 5.6.

. Solve the LP problem ðPÞ. Let g*n;d [ R be its optimal value and let fz*ðx; aÞ} be an
optimal solution. Determine a state x* [ Gn with

P
a[AdðxÞ z

*ðx*; aÞ . 0.

. For g*n;d and x* as above, solve the LP problem ðD0Þ and determine h* [ RjGnj,
which is a solution of the ACOE for Mn;d. The canonical policy ~fn;d can now be

obtained from h*.

Therefore, we can find the solutions to the ACOE forMn;d by solving two ‘connected’

LP problems ðPÞ and ðD0Þ. These LP problems are connected in the sense that, first of all,

we must solve ðPÞ and then, with some data obtained from this solution, we solve ðD0Þ,
which yields the solution to the ACOE.

7. Application to an inventory management system

The dynamics of the inventory management system is given by

xtþ1 ¼ maxfxt þ at 2 jt; 0} for t [ N; ð7:1Þ

where xt stands for the stock level at the beginning of period t, at is the amount

ordered by the controller at the beginning of period t and jt is the random demand

at the end of period t. We suppose that fjt}t[N are i.i.d. random variables taking

values in Rþ, with density function f with respect to the Lebesgue measure and

distribution function F. The capacity of the warehouse is given by M . 0.

Therefore, we have

X ¼ A ¼ ½0;M� and AðxÞ ¼ ½0;M 2 x� for x [ X;

and so K ¼ fðx; aÞ [ ½0;M� £ ½0;M� : xþ a # M}. The transition kernel is given by

QðBjx; aÞ ¼ ð12 Fðxþ aÞÞIBð0Þ þ
ð
½0;xþa�>B

f ðxþ a2 yÞ dy ð7:2Þ
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for measurable B # X and ðx; aÞ [ K. The controller incurs a (buying) cost of b . 0 for

each ordered unit, a holding cost h . 0 for each period a unit spends in the warehouse

and receives an amount of p . 0 for each unit that is sold. Therefore, the running cost

function is

cðx; aÞ ¼ baþ hðxþ aÞ2 pE½minfxþ a; j}�;
where j has density f, that is,

cðx; aÞ ¼ baþ hðxþ aÞ2 p

ðxþa

0

sf ðsÞ ds2 pðxþ aÞð12 Fðxþ aÞÞ for ðx; aÞ [ K:

Due to the particular nature of the state 0 [ X, which can be reached with positive

probability, the state space X is endowed with the following metric:

rXðx; x0Þ ¼
jx2 x0j if x; x0 [ ð0;M�
1þ x0 if x ¼ 0 and x0 [ ð0;M�
0 if x ¼ x0 ¼ 0:

8>>><
>>>:

This consists in considering the usual topology on (0,M ], and letting 0 to be an isolated

point identified with 21. On A ¼ [0,M ] we consider the usual topology.

Proposition 7.1. Suppose that the distribution function F of the demand has a density

function f which is Lipschitz continuous on ½0; M�. In addition, assume that f ð0Þ ¼ 0 and

FðMÞ , 1. Under these conditions, the inventory management system satisfies

Assumptions A–E in this paper.

Proof. In this proof we will use the following fact. If x; x0 [ X then jx2 x0j # rXðx; x0Þ. In
particular, Lipschitz continuity of a function when X is endowed with the usual topology

implies Lipschitz continuity with respect to rX .
Assumption (A1) holds since dHðAðxÞ;Aðx0ÞÞ ¼ jx2 x0j for x; x0 [ X. Also, letting

w ; 1, Assumption (A2) is satisfied by choosing any 0 , d , 1 and b . 0 such that

d þ b $ 1. Finally, it is clear that Assumption (A3) holds because f and F are Lipschitz

continuous on ½0;M�.
Concerning Assumption B, fix arbitrary 0 , p , 1 and define the probability measure

m on X as follows:

mf0} ¼ p and mðBÞ ¼ 12 p

M
lðBÞ formeasurable B # ð0;M�;

where l is the Lebesgue measure on R. It then follows from (7.2) that the density function

of Qð·jx; aÞ with respect to m is given by

qðyjx; aÞ ¼

1

p
ð12 Fðxþ aÞÞ for y ¼ 0;

M

12 p
f ðxþ a2 yÞ for 0 , y # xþ a;

0 for xþ a # y # M:

8>>>>><
>>>>>:
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The fact that q is Lipschitz continuous both in y [ X and ðx; aÞ [ K easily follows from

Lipschitz continuity of f on [0,M ] and on the fact that f(0) ¼ 0; so, Assumption (B2) holds.

Assumption (B3) trivially holds, and therefore Assumption B is satisfied.

Now we turn to Assumption D. Given d . 0, let qd ¼ 2þ ½M=d�, where ½M=d� is the
integer part of M=d. For x [ X define

AdðxÞ ¼ ðM 2 xÞj
qd 2 1

: j ¼ 0; 1; . . . ; qd 2 1

� �
:

This consists in choosing qd equally spaced points in AðxÞ ¼ ½0;M 2 x�. Clearly,

Assumption D holds, while we have dHðAðxÞ;AdðxÞÞ # M=ðqd 2 1Þ # d (Assumption

(D2)). Finally, we have that x 7! AdðxÞ is Lipschitz continuous with L*C ¼ 1.

Concerning Assumption E, which implies Assumption C, we observe that for ðx; aÞ and
ðx0; a0Þ in Kð
X

jQðdyjx;aÞ2Qðdyjx0;a0Þj ¼
ð
X

jqðyjx;aÞ2qðyjx0;a0ÞjmðdyÞ

¼ jFðxþaÞ2Fðx0 þa0Þjþ
ðM
0

j f ðxþa2 yÞ2 f ðx0 þa02 yÞjdy
# jFðxþaÞ2Fðx0 þa0ÞjþFðxþaÞþFðx0 þa0Þ
¼ 2Fðmaxfxþa;x0 þa0}Þ# 2FðMÞ:

Consequently, Assumption E holds by letting d ¼ FðMÞ , 1. A

Numerical experimentation. Define the density function of the demand as

f ðxÞ ¼ 1

l2
xe2x=l for x $ 0

for some parameter l . 0. In this case, we have

qðyjx; aÞ ¼

1

p
1þ xþ a

l

� �
·e2ðxþaÞ=l for y ¼ 0;

M

12 p
·
xþ a2 y

l2
·e2ðxþa2yÞ=l for 0 , y # xþ a;

0 for y . xþ a

8>>>>>>><
>>>>>>>:

and

cðx; aÞ ¼ baþ hðxþ aÞ2 2pl 12 1þ xþ a

2l

� �
e2ðxþaÞ=l

� �
:

We take the following values for the parameters of the control model:

M ¼ 10; b ¼ 7; h ¼ 3; p ¼ 17; p ¼ 1

10
; l ¼ 5

2
:

For the approximation of the action sets we have chosen qd ¼ 20.
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To approximate the optimal average cost of the inventory management problemwe have

generatedn (forn ¼ 50; 150; 300; 500; 700; 1000) i.i.d. samples of the probabilitymeasurem.
For each such sample, the value g*n;d has been determined by solving the primal LP problem

ðPÞ described in Section 6. Such computations have been repeated 500 times, thus yielding

500 observations of the random variable g*n;d. The results are summarized in Table 1.

We observe that the expected values converge very fast, with a decreasing variance.

Also, we have displayed the density estimation for the 500 samples of g*n;d for the above

values of n; see Figure 1.

Regarding the approximation of an optimal policy, for the n

(n ¼ 50; 150; 300; 500; 700; 1000) i.i.d. samples of the probability measure m we have

solved the ACOE of the control model Mn;d by solving the linear programs ðPÞ and ðD0Þ;
recall Theorem 2. Once the solution h* to the ACOE (on the states of Gn) is obtained, we

can determine a canonical policy ~fn;d [ Fd. Namely, given arbitrary x [ X we can

explicitly determine an action a* ¼ ~fn;dðxÞ [ AdðxÞ such that

min
a[AdðxÞ

cðx; aÞ þ
X
y[Gn

Qnðfy}jx; aÞhðyÞ
( )

¼ cðx; a*Þ þ
X
y[Gn

Qnðfy}jx; a*ÞhðyÞ: ð7:3Þ

To evaluate the policy ~fn;d under the controlmodelMwe proceed as follows. If the system is

in state x [ X, we determine the action ~fn;dðxÞ as in (7.3). Thenwe simulate a transition of the

control modelM under the dynamics (7.1). This procedure is repeated 2000 times starting

from the initial state x0 ¼ 5. Then we compute the average value of the corresponding

cðxt; atÞ for t ¼ 0; . . . ; 2000. Therefore, to evaluate Jð~fn;d; x0Þ we have performed a

minimization as in (7.3) for each t ¼ 0; 1; . . . ; 2000. This procedure is repeated 500 times,

so that we obtain a sample of size 500 of the random variable Jð~fn;d; x0Þ (we note that, by
ergodicity, this average cost does not depend on the initial state x0). Our results are displayed

in Table 2, while in Figure 2 we display the corresponding density estimation.

Table 1. Estimation of the optimal average cost g *.

n ¼ 50 n ¼ 150 n ¼ 300 n ¼ 500 n ¼ 700 n ¼ 1000

Mean 226.8755 226.4380 226.2817 226.1717 226.1553 226.1659
SD 2.2119 1.4578 1.0145 0.8104 0.6662 0.5734
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Figure 1. Density estimators for g*n;d.
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We also observe that the expected values converge very fast, that the variances become

very small as well and also that these figures are very close to those given in Table 1.

For each n, define ĝn;d as the mean value of the 500 observations of g*n;d given in

Table 1, and define also Ĵn;d as the mean of the 500 observations of Jð~fn;d; x0Þ. In Table 3 we
display the relative error jðĴn;d 2 ĝn;dÞ=ĝn;dj, which we interpret as follows: taking ĝn;d as

the ‘true’ value of g*, the relative error in Table 3 measures how far the policy ~fn;d [ F,

constructed from the control modelMn;d, is from optimality in the control modelM. The

results in Table 3 show that our method to approximate an optimal policy is fairly accurate.
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