What we have done in ANR STOCH-MC Apoptosis

TRAIL

- TNF-related apoptosisinducing ligand
- Induces apoptosis
- More effective on some cancer cells
- Binds to the cell's death receptors
- Fractional killing: resistance

Biological Problem

- Design efficient cancerous tumor treatments.
- Efficient protocol = Optimize drug quantity :
- frequency of treatment
- choice of concentration
- Testing many treatments in vivo is long/costly.

Goal: Propose in silico method to sort candidate protocols

Study case: HeLa cells (cervical cancer). TRAIL protein triggering the apoptosis (programmed cell death) process.

Challenge

- Modeling treatment of nonvascularized tumor (Tumor up to 10⁶ cell).
- TRAIL diffusion
- Survival after each treatment
- Temporary resistance
- Temporary holes: Need topology

Consider two scales:

- Tissue: Tumor evolution, treatment diffusion
- Cell: Effect of the treatment, Transient treatment resistance

Issue: High complexity model (combinatory explosion) => Abstractions

What we have done in ANR STOCH-MC Cellular level

Abstracting the model for TRAIL-induced apoptosis

52 ODE species, 96 reactions + 40 stochastic variables 1 simulation step represents 1 second (fine grain)

Around 10 variables (=species concentration)

1 time step corresponds to 15 min (coarse grain)

Sucheendra Palaniappan, François Bertaux, Matthieu Pichené, Eric Fabre, Gregory Batt, Blaise Genest. Discrete Stochastic Abstraction of Biological Pathway Dynamics: A case study of the Apoptosis Pathway. *Bioinformatics*, 33 (13): 1980–1986, Oxford University Press.

How good is the Abstraction?

DBN abstraction

100 runs: 98% dead

100 runs: 98% dead

Less antiapop. molecules

100 runs: 44% dead

100 runs: 40% dead

More antiapop. molecules

How good is the Abstraction?

HSD model

TRAIL
R RTRAIL DISC USCTIP C8*84
Filip Bid (Bid (Bid SdZ)
Becze
CS CS* Bar Bax Bax
Sid Bay
Wall
C3 C3" XAAP Bas-McII
XXP
Smac Smacm Bax2* Bax2McII
April Mr
COXIAD CYC CYC CYCM
Apat' Bax4-Md1
PARP CPARP Apop M
C0 Mitochondria
Cytosel

Model	cell death (HSD: 69.9%)	discerning power (HSD: 100%)	simulations (HSD: 56s)
MIDBN ₇	70.43%	96.14%	2.13s (26.3X)
$MIDBN_8$	69.57%	96.31%	2.64s (21.21X)
$MIDBN_9$	69.33%	96.37%	2.98s (18.8X)
$MIDBN_{10}$	69.03%	96.84%	3.30s (17X)
$MIDBN_{58}$	66.85%	94.12%	73.05s
RNDBN	92.29%	85.53%	299s

Time / 1000

DBN abstraction

Time efficient:

1 simu CMC 20x faster than 1 simu HSD

Approx. Distribution Representation

Real

non disjoint clusters

$$P_{NDC}(X_1 = x_1, \dots, X_n = x_n) = \prod_{j \le c} \frac{P(X_i = x_i, i \in K_j)}{P(X_i = x_i, i \in \bigcup_{\ell < j} K_\ell \cap K_j)}$$

Correlations are quite preserved

Analysing the evolution

To obtain the probability distribution produced by the DBN

Lots of simulations [HSB'16]

$$P^{t}(\boldsymbol{X} = \boldsymbol{x}) = \sum_{\boldsymbol{u} \in V^{X}} P^{t-1}(\boldsymbol{X} = \boldsymbol{u}) \prod_{i=1}^{n} CPT_{t,i}(\boldsymbol{x}_{i} \mid \boldsymbol{u}_{\hat{i}})$$

Inference (1 computation). ~10sec. [submitted]

Inference: Comparison

Test of different approximate distributions for inference in compact Markov chains. Program: Inferno (based on different distribution approximations)

Apoptosis pathway:

Method	Max. Error	Mean Error (normalized)	Nb. Error > 0.1	Comput. Time
FF	0.44	100%	124	2.2s
Disj. Cluster	0.12	24%	2	9.8s
Inferno	0.06	14%	0	13.8s

EGF-NGF pathway (normalized wrt FF for comparison with HFF):

Method	Max. Error	Mean Error	Nb. Error > 0.1	Comput. Time
FF	100%	100%	100%	1x
HFF (3k)	62%	60%	50%	10x
HFF (32k)	49%	38%	35%	1100x
Disjoint Cluster	84%	79%	84%	1.9x
Inferno	32%	14%	16%	4.2x

Inference with approximate distribution

Software developped

DBN-simulator

Inferno tool (DBN inference)

available freely at https://suchee.bitbucket.io/DBNizer/

Cellular level: Full success!

Work in progress: Tissular level (not planned in STOCH MC)

Tissular level: Abstraction

Obtaining tumor simulations using (modified) *TumorSimulator* (agent-based) [Waclaw et al. 2015]

Abstraction: Compact Markov chain Several layers, each representing subpopulation with similar conditions (same depth).

Using DBN idea

Work in progress.

Variables: concentrations of cells in layers

How concentration C relates to concentrations X, Y, Z?

~5.000 simulations to learn the « rules »

Towards a Predictive model?

Usual DBN:

1 different probability table per time point.

Very precise, few discrete states (5/variable)

Cant handle too many time points (becomes imprecise)

No prediction capabilities,

can only « replay » time points learnt

Predictive DBNlike model
Same proba table for all time points.
Need many discrete states
(>=81/variable),
New ideas: same level relation (B->C),

reduced precision for some variables
Reparations of CPTs

Results so far

Blue/Green: Initial model

Blue: Used for training Red: Model prediction

Leant from ~5000 cases.

Results so far

Results so far

With treatment at time (40d) different than learnt (60d) then

and new increase (stopping treatment)
(main problems there). => new Learning method?