What we have done
in ANR STOCH-MC
Apoptosis
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Biological Problem

* Design efficient cancerous tumor treatments.

* Efficient protocol = Optimize drug quantity :
- frequency of treatment
- choice of concentration

* Testing many treatments in vivo is
long/costly.

Goal : Propose in silico method to sort candidate
protocols

Study case : Hela cells (cervical cancer). TRAIL protein triggering the
apoptosis (programmed cell death) process.



Challenge

* Modeling treatment of non-
vascularized tumor (Tumor up to 10°
cell).

* TRAIL diffusion

e Survival after each treatment
 Temporary resistance
 Temporary holes: Need topology

Consider two scales:
* Tissue : Tumor evolution, treatment diffusion
e Cell : Effect of the treatment, Transient treatment resistance

Issue: High complexity model (combinatory explosion) => Abstractions



What we have done
in ANR STOCH-MC
Cellular level



Abstracting the model for
TRAIL-induced apoptosis

Signal transduction layer

52 ODE species, 96 reactions
+ 40 stochastic variables
1 simulation step represents 1 second
(fine grain)

Around 10 variables (=species concentration)

1 time step corresponds to 15 min

(coarse grain)

Sucheendra Palaniappan, Francois Bertaux, Matthieu Pichené, Eric Fabre, Gregory Batt, Blaise Genest.
Discrete Stochastic Abstraction of Biological Pathway Dynamics: A case study of the Apoptosis Pathway.
Bioinformatics, 33 (13): 1980-1986, Oxford University Press.



How good is the Abstraction?

HSD model

DBN abstraction

100 runs: 98% dead

INITIAL CONFIGURATION:1010110 HSD
98 dead cells

10°
0
100 200 300 400 500
10* INITIAL CONFIGURATION:1010110 MIDBN10
) . ' 98 dead cells
|11 o I S S S S U SR S J I S —
Interval 4
10
10' Ff Fofemmmmmmmmmmmm e im e mmee e (= " P
.............................. \ntervel 2
10°
Intarval 1
10'
10°
0
0 100 200 300 400 500

100 runs: 98% dead

Less antiapop. molecules

100 runs: 44% dead
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More antiapop. molecules



How good is the Abstraction?

HSD model

DBN abstraction

HEHSD

EIMIDBN10

HERNDBN

Model cell deatho discerning p%wer -I;Iizilét;[oonoso
(HSD: 69.9%) | (HSD: 100%) (HSD: 565)
MIDBN; 70.43% 96.14% 2.13s (26.3X)
MIDBNg 69.57% 96.31% 2.64s (21.21X)
MIDBNg 69.33% 96.37% 2.98s (18.8X)
MIDBN g 69.03% 96.84% 3.30s (17X)
MIDBNsg 66.85% 94.12% 73.05s
RNDBN 02.29% 85.53% 299s

Time efficient:
1 simu CMC 20x faster than 1 simu HSD



Approx. Distribution Representation
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Analysing the evolution

To obtain the probability distribution
produced by the DBN

Lots of simulations
[HSB’16]

PI(X =x) = Z PH(X = U)HCPTt,i(wi | u;)
i=1

ueV=X

Inference (1 computation). ~10sec.
[submitted]



Inference: Comparison

Test of different approximate distributions for inference in compact Markov chains.

Program : Inferno (based on different distribution approximations)

Apoptosis pathway:

Method Max. Error | Mean Error (normalized) | Nb. Error > 0.1 | Comput. Time
FF 0.44 100% 124 2.2s
Disj. Cluster 0.12 24% 2 0.8s
Inferno 0.06 14% 0 13.8s

EGF-NGF pathway (normalized wrt FF for comparison with HFF):

Method Max. Error Mean Error Nb. Error > 0.1 | Comput. Time
FF 100% 100% 100% 1x
HFF (3k) 62% 60% 50% 10x
HFF (32k) 49% 38% 35% 1100x
Disjoint Cluster 84% 79% 84% 1.9x
Inferno 32% 14% 16% 4.2x




Inference with approximate

distribution

time (min)

EGF-NGF pathway

Proba(ErkAct = 2)

FF (factored Frontier) :
No correlations between var.

Inferno

Simulations



Software developped

@izer
Directed graph of
reaction network
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DBN-simulator
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Inferno tool
(DBN inference)

Original system trajectories
Variable Quantization scheme

available freely at
https://suchee.bitbucket.io/DBNizer/



Cellular level:
Full success!



Work in progress:
Tissular level
(not planned in STOCH MC)



Tissular level : Abstraction

* Obtaining tumor simulations using
(modified) TumorSimulator (agent-based)

[Waclaw et al. 2015] Simulations of
TumourSimulator

e Abstraction : Compact Markov chain
Several layers, each representing subpopulation
with similar conditions (same depth).

Waclaw, B., Bozic, I., Pittman, M., Hruban, M., Vogelstein, B., Nowak, M. (2015).
A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525, 261-264.



Using DBN idea

Work in progress.

e Variables : concentrations of cells in layers

How concentration C relates
to concentrations X, Y, Z ?

!

T T+1

~5.000 simulations to learn the « rules »



Towards a Predictive model?

‘\
/
0 1 2 t t+1
Usual DBN: Predictive DBNIlike model
1 different probability table per time point. Same proba table for all time points.
Very precise, few discrete states (5/variable) Need many discrete states
Cant handle too many time points (becomes imprecise) (>=81/variable),
No prediction capabilities, New ideas: same level relation (B->C),
can only « replay » time points learnt reduced precision for some variables

Reparations of CPTs



Cells (AU)

Training

Results so far

time

Blue/Green : Initial model
Blue : Used for training
Red : Model prediction

Leant from ~5000 cases.

20/15



Cells (AU)
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With treatmant where it was learnt.
(60 days)
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Cells (AU)
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With treatmant at time (40d) different than learnt (60d)
then

and new increase (stopping treatment)

(main problems there). => new Learning method?



