TOWARDS A FRAMEWORK FOR EFFICIENT ANALYSIS OF MACROSCALE DYNAMICAL SYSTEMS:
DBNS FOR APPROXIMATING THE TEMPORAL DYNAMICS OF APOPTOSIS PATHWAY

Sucheendra K. Palaniappan SUMO Team, INRIA

GOAL: UNDERSTANDING MACROSCALE DYNAMICS OF APOPTOSIS PATHWAY


```
RECAP OF BLAISE'S
```


ORGANISATION OF THIS TALK

- Dynamic Bayesian network (DBN) approximations of ODE Dynamics
- How to build the DBN (Liu et.al 2011)
- DBN Approximation for the Apoptosis pathway - distinguishing features of the pathway
- Plan

DBN AS EFFICIENT APPROXIMATION OF ODE DYNAMICS

$$
E+S \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} E S \xrightarrow{k_{3}} E+P
$$

DBN AS EFFICIENT APPROXIMATION

 OF ODE DYNAMICS$$
E+S \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} E S \xrightarrow{k_{3}} E+P
$$

$\frac{d S}{d t}=-k_{1} \cdot S \cdot E+k_{2} \cdot E S$
$\frac{d E}{d t}=-k_{1} \cdot S \cdot E+\left(k_{2}+k_{3}\right) \cdot E S$
$\frac{d E S}{d t}=k_{1} \cdot S \cdot E-\left(k_{2}+k_{3}\right) \cdot E S$
$\frac{d P}{d t}=k_{3} \cdot E S$

DBN

HOW TO BUILD THE DBN

ODE DYNAMICS

SINGLE TRAJECTORY OF THE SYSTEM

- The value domain of each species
is discretized
- It is assumed that dynamics of the system is only observable at

certain time points

HOW TO BUILD THE DBN

HOW TO BUILD THE DBN

STRUCTURE

- nodes -> Every variable of the mathematical model
- edges -> Dictated by the corresponding equation for each variable

$$
\begin{aligned}
& \frac{d S}{d t}=-k_{1} \cdot S \cdot E+k_{2} \cdot E S \\
& \frac{d E}{d t}=-k_{1} \cdot S \cdot E+\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d E S}{d t}=k_{1} \cdot S \cdot E-\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d P}{d t}=k_{3} \cdot E S
\end{aligned}
$$

HOW TO BUILD THE DBN

STRUCTURE

- nodes -> Every variable of the mathematical model
- edges -> Dictated by the corresponding equation for each variable

HOW TO BUILD THE DBN

STRUCTURE

- nodes -> Every variable of the mathematical model
- edges -> Dictated by the corresponding equation for each variable

HOW TO BUILD THE DBN

 CPT$$
\frac{d P}{d t}=k_{3} \cdot E S
$$

$\mathrm{P}\left(\mathrm{p}^{\mathrm{t}+1}=0 \mid E S^{\mathrm{t}}=1, \mathrm{p}^{\mathrm{t}}=0\right)=0.9$ $\mathrm{P}\left(\mathrm{p}^{\mathrm{t}+1}=1 \mid E S^{\mathrm{t}}=1, \mathrm{p}^{\mathrm{t}}=0\right)=0.1$ $P\left(p^{t+1}=2 \mid E S^{t}=1, p^{t}=0\right)=0.0$

Fill by simple counting

DBN OF APOPTOSIS PATHWAY: DISTINGUISHING FEATURES

- The pathway model is a hybrid model of both deterministic (ODE) and Stochastic components
- 58 Protein species + mRNA species (governed by stochastic equations)

DISTINGUISHING FEATURES:

- The parents of certain variables are large (leading to a correspondingly Large CPTs)
- Use mutual information to restrict the number of parents
- Introduce new intermediate pseudo-nodes with reduced in degree
- production, degradation

DISTINGUISHING FEATURES:

- Separation of timescales
- The structure of the DBN is based on the assumption that between the time steps the dependency of variables is dictated by their mathematical formalism
- But, when considering larger time windows this may not be true the dependency between variables can be different

dependency could change on different time scales

FINAL THOUGHTS

- Final goal is to have a minimalist and sufficient structure that captures all the interesting dynamics of the Apoptosis pathway
- First Steps - ongoing
- Building the DBN with only the protein's as DBN variables
- For nodes with larger nodes, using mutual information to minimise the number of parents

