
Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	1 :			
Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	nt sur	la con	ocatio	n.)											1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE: Première
E3C : □ E3C1 ■ E3C2 □ E3C3
VOIE : Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : SCIENCES DE L'INGENIEUR
DURÉE DE L'ÉPREUVE :2 heures
Niveaux visés (LV) : LVA LVB
Axes de programme :
CALCULATRICE AUTORISÉE : Oui Don
DICTIONNAIRE AUTORISÉ :□Oui □ Non
■ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages :10

BACCALAURÉAT GÉNÉRAL Épreuve Commune de Contrôle Continu E3C

SCIENCES DE L'INGÉNIEUR

Coefficient 5

Durée: 2 heures

Aucun document autorisé

L'usage des calculatrices est autorisé dans les conditions suivantes :

- l'usage de calculatrice avec mode examen actif est autorisé;
- l'usage de calculatrice sans mémoire, « type collège » est autorisé.

Information aux candidats: les candidats qui disposent d'une calculatrice avec mode examen devront l'activer le jour des épreuves et les calculatrices dépourvues de mémoire seront autorisées. Ainsi tous les candidats composeront sans aucun accès à des données personnelles pendant les épreuves.

SUJET SI-E3C-31-3

Constitution du sujet

•	Présentation du distributeur de savon	Pages 3 à 4
•	Étude d'une performance du produit	Pages 5 à 7
•	Modification du comportement du produit	Pages 8 à 9
•	Document réponse	Page10

Rappel du règlement de l'épreuve

Le sujet comporte deux exercices indépendants l'un de l'autre, équilibrés en durée et endifficulté, qui s'appuient sur un produit unique. Un premier exercice s'intéresse à l'étude d'une performance du produit. Les candidats doiventmobiliser leurs compétences et les connaissances associées pour qualifier et/ou quantifiercette performance, à partir de l'analyse, de la modélisation de tout ou partie du produit ou derelevés expérimentaux.

Le second exercice porte sur la commande du fonctionnement du produit ou la modificationde son comportement. L'étude s'appuie sur l'algorithmique et de la programmation, à partirde ressources fournies au candidat qu'il devra exploiter, compléter ou modifier.

L'usage de la calculatrice est autorisé dans les conditions précisées par les textes en viqueur.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																			
Prénom(s) :																			
N° candidat :											N° (d'ins	crip	otio	n :				
Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	ent sur	la con	vocatio	on.)								,				1.1

PRÉSENTATION DU DISTRIBUTEUR DE SAVON

Dans un souci de santé publique, on veut limiter la transmission des bactéries lors du lavage des mains. Le problème vient du fait qu'avec les distributeurs de savon manuels, le contact des mains favorise la transmission des bactéries.

Le systèmeétudié permet la distribution sans contact d'une dose suffisante de savon liquide pour un usage domestique

Ce distributeur est un nouveau modèle plus compact pour le fabricant. Le cahier des charges spécifie qu'il doit utiliser les mêmes recharges que ceux du modèle précédent.

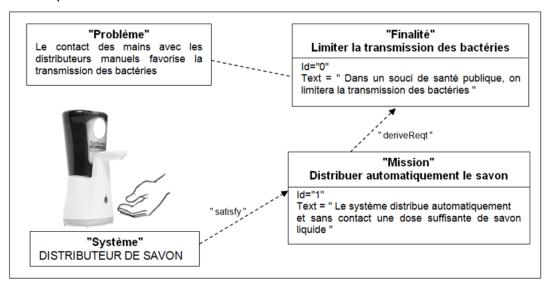
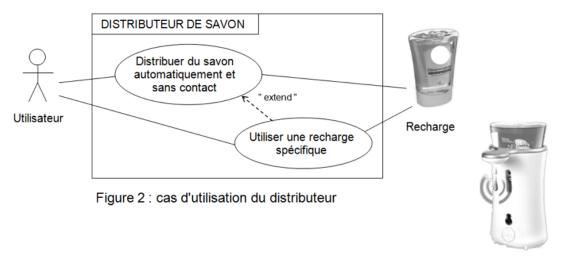
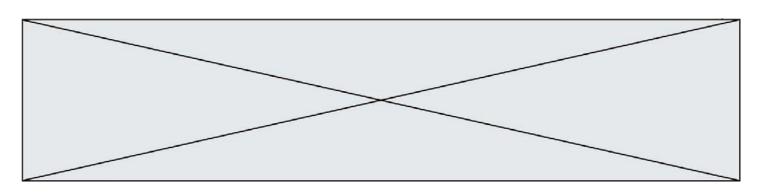
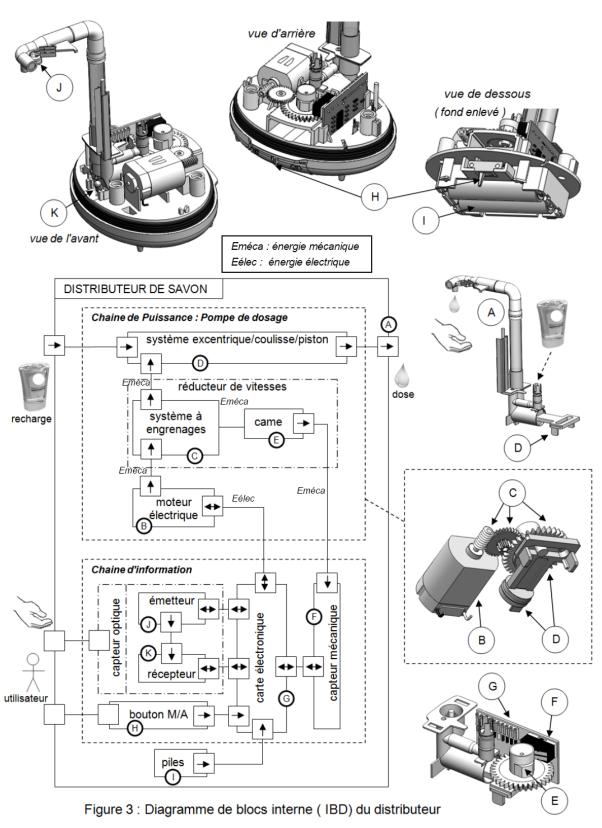
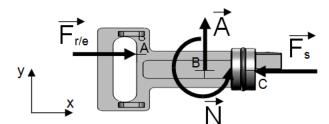





Figure 1: mission du distributeur

Modèle précédent

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	otio	n :			
	(Les n	uméros	figure	ent sur	la con	vocatio	on.)	_	1									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/															1.1

Exercice 1 - ÉTUDE D'UNE PERFORMANCE DU PRODUIT


le moteur est-il en capacité de délivrer une dose de savon en 2,5 s ?

L'étude sera menée dans un plan (\vec{x}, \vec{y}) figure 1.

Les liaisons sont supposées parfaites, le poids des pièces est négligé.

Pour refouler la dose de savon, le piston doit exercer une force de 20 N.

On isole d'abord le coulisse/piston à l'équilibre, il est soumis à :

- L'action de la dose de savon, une force Fs (20 N)
- L'action de la roue/excentrique, une force Fr/e
- Les actions de guidage de la coulisse :
 - une force \overrightarrow{A}
 - un couple N

figure 1: isolement du coulisse/piston

Question I-1 - Le système coulisse/piston étant en équilibre, **établir** la relation entre les normes de $\overrightarrow{Fr/e}$ et de \overrightarrow{Fs} . En **déduire** la valeur de $\overrightarrow{F_{r/e}}$.

On isole maintenant la roue/excentrique à l'équilibre, elle est soumise à:

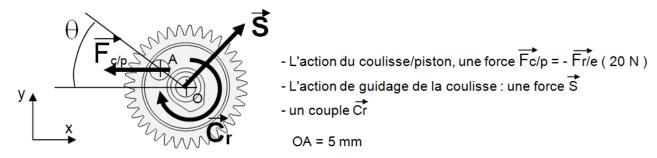
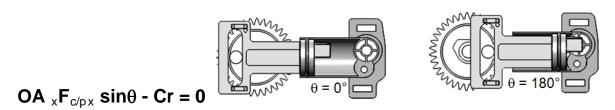



figure 2 : isolement de la roue/excentrique

L'équation du moment du « principe fondamental de la statique »donne la relation :

Question I-2 - Calculer les différentes valeur du couple Cr pour les valeurs suivantes de figure 3 : déplacement du piston durant la phase de refoulement

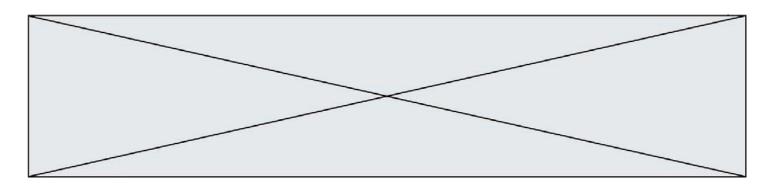
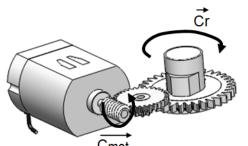



Figure 2 I'angle θ ($\theta = 0^\circ$; 90° et 180°), c'est-à-dire durant la phase de refoulement.

-En déduire la valeur maxi du couple Cr.

Pour le réducteur à engrenages, on donne l'expression :

$$\eta = \frac{Cr}{C_{mot \times r}}$$

η: rendement du réducteur = 0,81

r : rapport de réduction du réducteur = 198

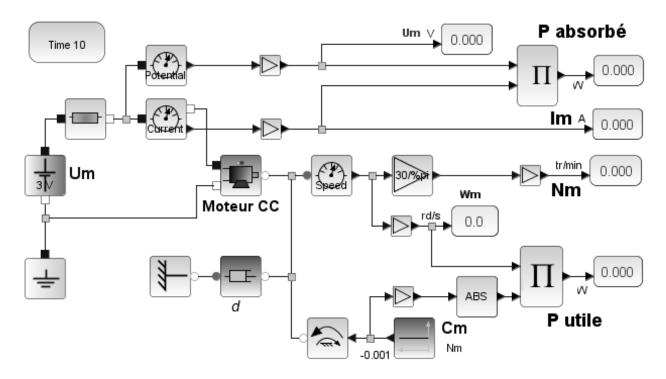

C_{mot}: couple du moteur

figure 4 : réducteur à engrenages

Question I-3 - Donner l'expression littérale du couple moteur C_{mot} en fonction de Cr, ηet r.

- **Calculer** la valeur maximale du couple moteur C_{mot} (Nmm)

On utilise pour la suite la simulation d'une modélisation multiphysique du moteur électrique du distributeur qui nous permet de déterminer des caractéristiques en fonction du couple moteur C_{mot} .

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	ı :			
(F)	(Les nu	ıméros	figure	nt sur	la con	ocatio	n.)											
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1

Paramètres internes dumoteur :

tension U= 3V résistance interne R = 4.5Ω inductance L = 30mHconstante de couple k=0,002817 N.m.A⁻¹ moment d'inertie du rotor J=0,19.10⁻⁶ kg/m² constante de viscosité d = 11.10⁻⁷N.m.s/rad

Les résultats de la simulation sont les suivants :

Cm	Pa	Pu	η	lm	Nm
0,00000	0,652	0,000	0,000	0,236	5770,3
0,00015	0,728	0,082	0,113	0,266	5207
0,00030	0,801	0,146	0,182	0,296	4643,7
0,00045	0,873	0,192	0,220	0,327	4080,4
0,00060	0,943	0,221	0,234	0,357	3517,1
0,00075	1,011	0,232	0,229	0,387	2953,8
0,00090	1,078	0,225	0,209	0,417	2390,5
0,00105	1,142	0,201	0,176	0,447	1827,2
0,00120	1,205	0,159	0,132	0,478	1263,9
0,00135	1,266	0,099	0,078	0,508	700,6
0,00150	1,325	0,022	0,017	0,538	137,2
Nm	W	W		Α	tr/min

Caractéristiques déterminées :

Pa: puissance électrique absorbée

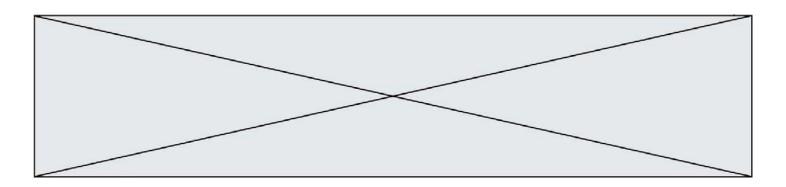
Pu : puissance mécanique utile

η: rendement du moteur

Im: courant absorbé Nm: vitesse du moteur

figure 5 : Modélisation multiphysique du moteur électrique

On prendra 0,75 N mm comme valeur de C_m. Question I-4


- -Rechercher dans le tableau figure 5 les valeurs de Pu, η et Nm pour la valeur du couple C_m.
- -Conclurequant aux valeurs de la puissance et du rendement.

Le temps du fabricant pour refouler une dose de savon est 2,5 s On choisit une vitesse du moteur de 3 517 tr/min

Question I-5 - Calculer la vitesse Nr (tr/min) de la roue/excentrique, sachant que le rapport de réduction r est de 198. Figure 4

Sachant que pour une dose de savon, la roue/excentrique fait 1 tour

- Question I-6 - Déterminer en fonction de la valeur de Nr trouvée précédemment, la durée (en secondes) pour refouler une dose de savon
 - Conclurequant à la valeur annoncée par le fabricant.

Exercice 2 - MODIFICATION DU COMPORTEMENT DU PRODUIT

Le fonctionnement du distributeur est géré par un microprocesseur qui se trouve sur la carte électronique (voir figure 3)

Afin d'éviter le gaspillage, on impose une temporisation de 2 secondes, à partir de la détection d'une main par le capteur, avant de délivrer la dose de savon.

Question II-1 **Établir** les correspondances,entre l'algorigramme décrivant ce fonctionnement et les propositions, dans le tableau du document réponse DR1.

Question II-2 **Compléter** sur DR1, la description de ce fonctionnement en notation algorithmique.

La durée d'exécution d'une instruction (blocs de l'algorigramme) est en moyenne de 2 µs pour les opérations internes et de 6 µs pour les échanges avec la périphérie.

Question II-3 **Évaluer** la durée séparant la détection d'une main à l'émission de la dose de savon. **Conclure** sur l'utilité de la temporisation de 2 s.

Le capteur utilisé est de type barrage (figure 6), le récepteur est susceptible de recevoir du savon ou de l'eau, ce qui provoque par moment une non-détection de la main.

Le constructeur décide de remplacer le capteur de type barrage par un capteur de type proximité (figure 6).

Figure 6 : Capteur infra rouge de type barrage et de type proximité

Extrait du cahier des charges :

- La tension d'alimentation fournit par les 2 piles est de 3V
- La distance de détection est 10cm au maximum
- Le cône de détection doit être de 20° au maximum
- La consommation doit être la plus faible possible

Figure7: Document technique du capteur SCHARP GP2Y0D810Z0F

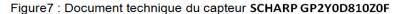
Figure 8 : Document technique du détecteur IT15IR

Figure 9 : Document technique du capteur VL6180X

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	n:			
Liberté · Égalité · Fraternité Né(e) le :	Les nu	uméros	s figure	ent sur	la con	vocatio	on.)]									1.1

CAPTEUR SCHARP GP2Y0D810Z0F

Le capteur de proximité infrarouge de très petite taille permet la détection sans contact.


Caractéristiques: • Alimentation: 2,7 à 6,2 Vcc

• Consommation: 5mA

Angle de détection : environ 30°
Distance de détection : 2 à 10 cm

• Tension de sortie : 0 V (état bas) et 3 V (état haut)

Dimensions: 21,6 x 8,9 x 10,4 mm

DETECTEUR IT15IR

Capteur à infrarouges passifs prévu pour la détection du mouvement d'une personne Caractéristiques :

Alimentation: 4,5 à 20 Vcc
 Consommation: 50 μA

Signal de sortie : 0,3 V (état bas) ou 5 V (état haut)

Angle de détection : 110°
Distance de détection : 7 mètres

Dimensions: 33 x 25 x 28 mm

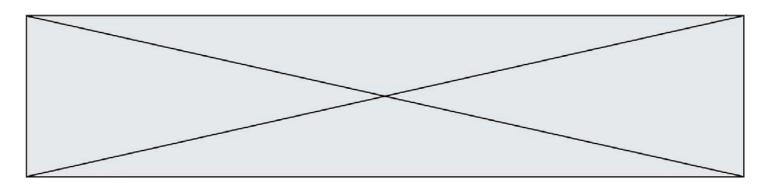
Figure 8 : Document technique du détecteur IT15IR

CAPTEUR VL6180X

Le capteur VL6180X est parfait pour détecter le mouvement d'une main, un impact de robot sur un mur ou toute autre mesure de distance. Il utilise une source de lumière très petite, il est bon pour déterminer la distance d'un objet bien en face de lui.

Caractéristiques :

- Alimentation en 2,8Vcc
- Consommation 45μA
- Distance de détection de 0 à 100mm
- Angle détection 15°
- Signal de sortie : 0,4V (état bas) ou 2,4 V (état haut)
- Dimensions: 20.5mm x 18.0mm x 3.0mm

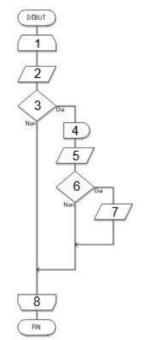

Figure 9: Document technique du capteur VL6180X

Question II-4 **Compléter** le tableau comparatif sur **DR2** en vous aidant des documents techniques figures 7, 8 et 9.

Figure 7 Figure 8 Figure 9 DR2

Question II-5 **Choisir et justifier** le nouveau capteur de détection de la main en respectant le cahier des charges.

Figure 7 Figure 8 Figure 9 DR2



DOCUMENT RÉPONSE

DR1:

Question II-1: Compléter le tableau avec les propositions suivantes :

Temporisation – Présence_Main ? – Emission_Dose – Début_Boucle - Lire_Capteur – Fin_Boucle – Présence_Main ? – Lire_Capteur

Question II	-2	

1		
2		
3		
4		
5		
6		
7		
8		
	•	

DEBUT
REPETER
SI
Alors
SI
Alors
FIN SI
FIN REPETER
FIN

DR2

Question II-3

Désignation	Capteur IT15IR	Capteur VL6180X	Capteur GP2Y0D810Z0F
Alimentation			
Distance de détection			
Angle de détection			
Nature du signal de sortie			