2016

Exercice 1

On considère l'ensemble U des suites réelles $u=(u_n)_{n\in\mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, \quad u_{n+2} = u_{n+1} + 2u_n.$$

Pour un $u \in U$ les deux premiers termes u_0 et u_1 sont donnés. La suite nulle définie par $u_0 = 0$ et $u_1 = 0$ appartient à U.

- 1. Montrer que si $a \in U$, $b \in U$ et $\alpha \in \mathbb{R}$, on a $a + b \in U$ et $\alpha a \in U$. En déduire que U est un espace vectoriel sur \mathbb{R} .
- 2. Soient c et d les deux suites appartenant à U telles que $c_0 = 1$, $c_1 = 0$, $d_0 = 0$, $d_1 = 1$.
 - (a) Montrer que (c, d) est une base de U.
 - (b) Quelle est la dimension de l'espace vectoriel *U* ?
- 3. (a) Montrer qu'il existe deux réels distincts et non nuls ρ et σ que l'on calculera, avec $\rho < 0 < \sigma$, tels que les suites géométriques $(\rho^n)_{n \in \mathbb{N}}$ et $(\sigma^n)_{n \in \mathbb{N}}$ appartiennent à U. On notera r et s les suites telles que $\forall n \in \mathbb{N}$, $r_n = \rho^n$ et $s_n = \sigma^n$.
 - (b) Montrer que (r, s) est une autre base de U.
- 4. (a) Si ν est la suite de U telle que $\nu_0 = x$, $\nu_1 = y$, donner en fonction de x et y les composantes de ν dans la base (r, s).
 - (b) En déduire une formule générale de v_n en fonction de n (sans utiliser la formule de récurrence).

Les deux questions d'informatique suivantes peuvent être rédigées au choix en pseudocode ou en Scilab.

- 5. (a) Écrire une procédure informatique F ayant pour variables d'entrée deux réels x, y et un entier naturel n et qui renvoie le terme v_n de la suite $v \in U$ telle que $v_0 = x$ et $v_1 = y$.
 - La fonction F utilisera la relation de récurrence $v_{n+2} = v_{n+1} + 2v_n$ dans une boucle ou de manière récursive.
 - (b) Écrire une procédure informatique G ayant également pour variable d'entrée deux réels x, y et un entier naturel n et qui renvoie aussi le terme v_n de la suite $v \in U$ telle que $v_0 = x$ et $v_1 = y$, mais sans faire de boucle (en utilisant la formule établie à la question 4.b).
 - (c) Expliquez quelle est, entre F et G, la fonction la plus efficace pour calculer v_n ?

On se donne un tableau à une dimension, de longueur n dont les entrées sont indexées de 1 à n, ne contenant que des 0 et des 1, commençant et se terminant par un 0. On supposera qu'il ne contient pas que des 0.

Dans un tel tableau on appelle **séquence1** une suite de 1 consécutifs précédés et suivis d'au moins un 0. Ci-dessous, on a un exemple d'un tel tableau de longueur 16, comportant 4 **séquence1**, dont une de longueur 4 entre les numéros 8 et 11, et une en 15 de longueur 1. On se propose d'écrire des fonctions en métalangage ou en Scilab permettant de calculer le nombre, la longueur et la position de telles **séquence1**.

Tableau1(i) 0 0 1 1 1 1 0 1 1

1. Soit la fonction f écrite en Scilab, avec en entrée un tableau t défini précédemment.

```
function nb=f(t)
   nb=0
   n=length(t)
   for i=1:(n-1)
        if t(i)<t(i+1)
            nb=nb+1
        end
   end
endfunction</pre>
```

Expliquer ce que renvoie f (Tableau1) et préciser le fonctionnement de f.

2. Écrire en métalangage ou en Scilab une fonction g qui détermine et renvoie la position et la longueur [début,fin,longueur] de la plus longue séquence1 du tableau (en cas d'égalité de longueur celle de la première rencontrée). Par exemple g (Tableau1) doit renvoyer la liste [3,6,4].

INFO 2018

On admet que
$$\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$$
 et $\sum_{n=N+1}^{+\infty} \frac{1}{n^6} \le \frac{1}{5N^5}$.

- 1. Ecrire en métalangage ou en scilab une fonction fin prenant comme argument un réel eps avec $10^{-10} \le eps \le 1$, et renvoyant le plus petit entier naturel non nul N tel que $\frac{1}{N^5} \le eps$.
- 2. Ecrire en métalangage ou en scilab une fonction somme prenant comme argument un réel N strictement positif et renvoyant une approximation décimale de $\sum_{n=1}^{N} \frac{1}{n^6}$.
- 3. En utilisant les deux fonctions précédentes, écrire en métalangage ou en Scilab une fonction approxPi6 prenant comme argument un réel eps strictement positif et renvoyant une approximation de π^6 à eps près.

INFO 2019

les deux questions sont indépendantes

1. On souhaite obtenir un encadrement du réel α , solution de l'équation $\operatorname{sh}(\alpha)$ -1=0, en appliquant un procédé de dichotomie. Recopier en la complétant la fonction Scilab suivante, qui prend en argument un réel strictement positif $\varepsilon > 0$, et renvoie deux réels a et b vérifiant $a \le \alpha \le b$ et $b - a \le \varepsilon$. On sait que α est compris entre 0 et 1.

```
egin{aligned} & 	ext{function } [a,b] = 	ext{dicho(eps)} \\ & a = \dots \\ & b = \dots \\ & 	ext{while } \dots \\ & c = (a+b)/2 \\ & 	ext{if } \dots & 	ext{then } a = c \\ & 	ext{else } b = c \\ & 	ext{end} \\ & 	ext{end} \\ & 	ext{end} \\ & 	ext{endfunction} \end{aligned}
```

Note : la fonction sh s'écrit sinh en Scilab

2. En utilisant la fonction précédente sur machine, on trouve 0,881 comme valeur approchée de α . On rappelle de plus que la suite $(I_n)_{n\in\mathbb{N}}$ vérifie :

$$I_0=\alpha$$
 , et pour tout $n\in\mathbb{N}$, $I_{n+1}=\frac{\sqrt{2}}{2n+2}-\left(\frac{2n+1}{2n+2}\right)I_n$.

Ecrire une fonction en Scilab ou bien en pseudo code, qui prend en entrée un entier naturel n et renvoie une valeur approchée de I_n .

ENONCÉ 2020

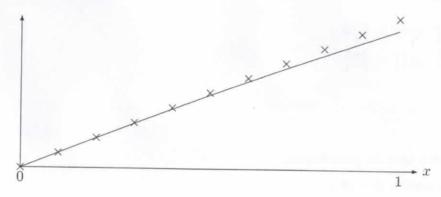
Partie C – Résolution approchée d'un problème de Cauchy

Soit N un entier naturel non nul. Dans cette partie, on cherche à résoudre l'équation (E_0) , avec les conditions initiales y(0) = 0 et y'(0) = 1 par la méthode d'Euler, en prenant un pas égal à 1/N. On admet que cela revient à calculer les termes de la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 0$, $u_1 = 1/N$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \quad N^2(u_{n+2} - 2u_{n+1} + u_n) + u_n = \frac{n^2}{N^2}.$$

- 1. Pour tout $n \in \mathbb{N}$, exprimer u_{n+2} en fonction de N, n, u_n et u_{n+1} .
- 2. Écrire une fonction cauchy, en Scilab ou bien en pseudo-code, qui prend en entrée un entier naturel non nul N et renvoie le vecteur $[u_0, u_1, \dots, u_N]$.

Sur la figure suivante, on représente le graphe de la solution théorique du problème de Cauchy sur l'intervalle [0.1], ainsi que les points de coordonnées $(k/N, u_k)$ avec $k \in \{0, 1, ..., N\}$ (ici, on a choisi N = 10).



3. Comment agir sur le paramètre N pour améliorer la solution approchée ? Quel est l'impact sur le temps de calcul ?