FIP

EPREUVE DE MATHEMATIQUES

Samedi 21 mai 2011.

Exercice 1.

I. RÉSOLUTION D'une ÉQUATION DIFFÉRENTIELLE

1. On considère l'équation différentielle sur $]-1,+\infty[$:

$$
\begin{equation*}
(x+1) y^{\prime}+(x-1) y=-x+1 . \tag{E}
\end{equation*}
$$

où y est une fonction de la variable réelle x sur $]^{\prime}$ intervalle $]-1,+\infty\left[\right.$ et où y^{i} désigne la dérivée de y.
a) Soit g la fonction définie sur $]-1,+\infty[$ par:

$$
g(x)=\frac{x-1}{x+1} .
$$

Déterminer deux nombres réels a et b tels que, pour tout réel x de $]-1,+\infty[$:

$$
g(x)=a+\frac{b}{x-1} .
$$

En déduire la primitive G de g sur $]-1,+\infty[$ telle que $G(0)=0$.
b) Résoudre sur $]-1,+\infty\left[\right.$ l'équation différentielle $(e):(x+1) y^{\prime}+(x-1) y=0$.
2. Déterminer le nombre réel m pour que la fonction constante h définie sur $]-1,+\infty[$ par $h(x)=m$ soit solution de (E).
3. Déduire du 1.b)et du 2. l'ensemble des solutions de l'équation (E).
4. Déterminer la solution particulière f de l'équation (E) qui vêrifie la condition initiale $f(0)=0$.
II. ÉTUDE DE QUELQUES PROPRIÉTÉS DE LA COURBE REPRÉSENTATIVE D'UNE FONCTION.
Soit f la fonction définie sur $]-1,+\infty[$ par :

$$
f(x)=(x+1)^{2} e^{-x}-1
$$

On désigue par (C) la courbe représentative de f dans le plan muni d'un repère orthonormal $(O ; \vec{i}, \vec{j})$.
A l'aide d'une calculatrice graphique on a obtenu le dessin ci-dessous.

1. Déterminer la fonction dérivée f^{\prime} de f.

Soit A le point de (C) d'abscisse 1. Donner la valeur exacte de l'ordonnée de A.
Préciser la tangente en A à la courbe (C).
2. La courbe (C) admet-elle une asymptate en $+\infty$? Justifier la réponse.
3. A l'aide du développement limité, au voisinage de 0 , de la fonction $t \longmapsto e^{t}$, écrire le développement limité à lordre 2, au voisinage de 0 , de la fonction $x \longmapsto e^{-x}$.
En déduire le développement limite d'ordre 2 , au voisinage de 0 , de la fonction f.
4. Déduire du 3. une équation de la tangente (T) a la courbe (C) au point d’abscisse 0 et la position relative de (C) et (T) au voisinage de ce point.

Exercice 2.

On considère l'équation différentielle (E) : $\quad y^{\prime \prime}+3 y^{\prime}(x)+2 y(x)=2 x e^{-2 x}$
oun y est une fonction de la variable x, détinie et deux fois dérivable sur \mathbb{R}, et y la dérivée seconde de y.

1. Résoudre l'équation diférentielle (e): $y^{\prime \prime}+3 y^{\prime}(x)+2 y(x)=0$
2. Déterminer les réels a et b pour que la fonction g définie sur \mathbb{R} par $g(x)=\left(a x^{2}+b x\right) e^{-2 x}$ soit solution de l'équation (E).
3. Déterminer la solution générale de l'équation (E).
4. Quelle est la solution f de (E) qui vérifie $f(0)=1$ et $f^{\prime}(0)=-2$?

Exercice 3.

Soit f la fonction définie sur lin par:

- fest de période 2π
- $f(t)=\sin t \quad$ si $t \in[0, \pi]$
- $f(t)=0 \quad$ si $t \in] \pi, 2 \pi[$

1. Représenter f.

Calculer la valeur moyenne de f c'est-à-dire : $\bar{f}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t$.
2. Calculer le nombre $a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos (n t) d t \quad\left(n \in \mathbb{N}^{*} \backslash\{1\}\right)$.

Exercice 4.

Calcul de l'integrale $A=\int_{0}^{1} \frac{x}{x^{2}+4 x+8} d x$

1. Résoudre dans \mathbb{C} l'équation $x^{2}+4 x+8=0$.
2. Soit u la fonction définie sur \mathbb{F} par $u(x)=x^{2}+4 x+8$.
a) Calculer $u^{\prime}(x)$.
b) Déterminer deux constantes réelles a et b telles que, pour tout $x \in[0,1]$,

$$
\frac{x}{x^{2}+4 x+8}=a \frac{u^{\prime}(x)}{u(x)}+b \frac{1}{u(x)}
$$

3. Calculer la valeur exacte de lintegrale $A_{2}=\int_{0}^{2} \frac{x+2}{x^{2}+4 x+8} d x$.
4. Déterminer la forme canonique de $u(x)=x^{2}+4 x+8$, c'est-à-dire des constantes α et β telles que pour tout $x \in[0,1\}, u(x)=(x+\alpha)^{2}+\beta$.
5. En effectuant le changement de variable $t=u+2$, démontrer que :

$$
\int_{0}^{1} \frac{2}{x^{2}+1 x+8} d x=\int_{2}^{3} \frac{2}{t^{2}+1} d t
$$

6. En efectuant le changement de variable $y=\frac{t}{2}$, calculer la valeur exacte de

$$
A_{2}=\int_{0}^{1} \frac{2}{x^{2}+4 x+8} d x
$$

7. Déduire des questions précédentes la valeur exacte de l'intégrale A.

Exercice 5 .

1. Ecrire en notation exponentielle :

$$
z_{1}=\sqrt{3}-3 i \quad z_{2}=\frac{\sqrt{2}}{1+i} \quad z_{3}=-5 i \quad z_{4}=\left(\frac{1}{z_{1}}\right)^{7}
$$

2. Quel est l'ensemble des points M d'affixe z du plan tels que $|z-5|=3$?
3. Quel est l'ensemble des points M d'affixe z du plan tels que $\arg (z-(3-i))=\frac{\pi}{3}$?
4. Soit $P(z)=z^{4}+(-4-4 i) z^{3}+(-6+20 i) z^{2}+(28+32 i) z+32-48 i$.
a) Calculer $P(-2)$. En deduire une factorisation de $P(z)$ sous la forme $P(z)=(z+2) Q(z)$.
b) Démontrer que $Q(z)$ admet une racine imaginaire pure que lon déterminera (cette racine pourra être notée $b i$ ou $b \in \mathbb{R}$)
c) Achever la résolution de $P(z)=0$.

FIN.

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$\ln (a b)=\ln a+\ln b$, où $a>0$ et $b>0$
$\exp (a+b)=\exp a \times \exp b$
$a^{\prime}=e^{\ln a}$
$\cos (a+b)=\cos a \cos b-\sin a \sin b$ $\sin (a+b)=\sin a \cos b+\cos a \sin b$ $\cos (2 t)=2 \cos ^{2} t-1=1-2 \sin ^{2} t$ $\sin (2 t)=2 \sin t \cos t$
$\sin p+\sin q=2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$
$\sin p-\sin q=2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$
$\cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)]$
$\sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]$
$\sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]$
$\mathrm{e}^{\mathrm{i} t}=\cos t+\mathrm{i} \sin t$
$\cos t=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} t}+\mathrm{e}^{-\mathrm{it} t}\right), \operatorname{ch} t=\frac{1}{2}\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right)$
$\sin t=\frac{1}{2 i}\left(e^{i t}-e^{-i t}\right), \operatorname{sh} t \doteq \frac{1}{2}\left(e^{t}-e^{-t}\right)$
$\cos p+\cos q=2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$
$e^{a t}=\mathrm{e}^{\alpha t}(\cos (\beta t)+\mathrm{i} \sin (\beta t))$, où $a=\alpha+\mathrm{i} \beta$
$\cos p-\cos q=-2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$
2. CALCUL DIFFERENTIEL ETINTEGRAL
a) Limites usuelles

$$
\begin{array}{ll}
\text { Comportement } \mathfrak{a} \text { l'infini } & \text { Comportement a l'origine } \\
\lim _{t \rightarrow+\infty} \ln t=+\infty ; & \lim _{t \rightarrow 0} \ln t=-\infty \\
\lim _{t \rightarrow+\infty} e^{t}=+\infty ; & \text { Si } \alpha>0, \lim _{t \rightarrow 0} t^{\alpha}=0 ; \quad \text { si } \alpha<0, \lim _{t \rightarrow 0} t^{\alpha}=+\infty \\
\lim _{t \rightarrow-\infty} t^{t}=0 ; & \text { Si } \alpha>0, \lim _{t \rightarrow 0} t^{\alpha} \ln t=0 . \\
\text { Si } \alpha>0, \lim _{t \rightarrow+\infty} a^{\alpha}=+\infty ; & \text { si } \alpha<0, \lim _{t \rightarrow+\infty} t^{\alpha}=0
\end{array}
$$

Croissances comparées à l'infini

$$
\begin{aligned}
& \text { Si } \alpha>0, \lim _{t \rightarrow+\infty} \frac{e^{t}}{t^{a}}=+\infty \\
& \text { Si } \alpha>0, \lim _{t \rightarrow+\infty} \frac{\ln t}{t^{a}}=0
\end{aligned}
$$

b) Dérivées et primitives

Fonctions usuelles

$\mathrm{f}(t)$	$\mathrm{f}^{\prime}(t)$	$\mathrm{f}(t)$	$\mathrm{f}^{\prime}(t)$
$\ln t$	$\frac{1}{t}$	$\operatorname{ch} t$	$\operatorname{sh} t$
e^{t}	e^{t}	$\operatorname{sh} t$	$\operatorname{ch} t$
$t^{\alpha}(\alpha \in \mathbb{R})$	$\alpha t^{\alpha-1}$	$\operatorname{Arcsin} t$	$\frac{1}{\sqrt{1-t^{2}} \cdots \cdots}$
$\sin t$	$\cos t$		
$\cos t$	$-\sin t$	$\operatorname{Arctan} t$	$\frac{1}{1+t^{2}}$
$\tan t$	$\frac{1}{\cos ^{2} t}=1+\tan ^{2} t$	$\mathrm{e}^{a t}(a \in \mathbb{C})$	$a \mathrm{e}^{a t}$

Opérations

$$
\begin{aligned}
& (u+v)^{\prime}=u^{\prime}+v^{\prime} \\
& (k u)^{\prime}=k u^{\prime} \\
& (u v)^{\prime}=u^{\prime} v+u v^{\prime} \\
& \left(\frac{1}{u}\right)^{\prime}=-\frac{u^{\prime}}{u^{2}} \\
& \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}
\end{aligned}
$$

$$
(v \circ u)^{\prime}=\left(v^{\prime} \circ u\right) u^{\prime}
$$

$$
\left(e^{u}\right)^{Y}=e^{u} u^{\prime}
$$

$$
(\ln u)^{\prime}=\frac{u^{\prime}}{u}, u \text { à valeurs strictement positives }
$$

$$
\left(u^{4}\right)=a u^{a-1} u^{\prime}
$$

c) Calculintégral

Valeur moyenne de fsur $[a, b]$:

$$
\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t
$$

Intégration par parties:

$$
\int_{a}^{b} u(t) v^{\prime}(t) \mathrm{d} t=[u(t) v(t)]_{a}^{b}-\int_{a}^{b} u^{\prime}(t) v(t) \mathrm{d} t
$$

d) Développements limités

$\mathrm{e}^{t}=1+\frac{t}{1!}+\frac{t^{2}}{2!}+\cdots+\frac{t^{n}}{n!}+t^{n} \mathrm{E}(t)$
$\frac{1}{1+t}=1-t+t^{2}+\cdots+(-1)^{n} t^{n}+t^{n} \varepsilon(t)$
$\ln (1+t)=t-\frac{t^{2}}{2}+\frac{t^{3}}{3}+\cdots+(-1)^{n-1} \frac{t^{\pi}}{n}+t^{\pi} \varepsilon(t)$

$$
\begin{aligned}
& \sin t=\frac{t}{1!}-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}+\cdots+(-1)^{p} \frac{t^{2 p+1}}{(2 p+1)!}+t^{2 p+1} \varepsilon(t) \\
& \cos t=1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\cdots+(-1)^{p} \frac{t^{2 p}}{(2 p)!}+t^{2 p} p_{\varepsilon}(t) \\
& (1+1)^{\alpha}=1+\frac{\alpha}{1!} t+\frac{a(\alpha-1)}{2!} t^{2}+\cdots+\frac{\alpha(\alpha-1) \cdots(a-n+1)}{n!} t^{n}+t^{n} c(t)
\end{aligned}
$$

c) Equations différentielles

Equations	Solutions sur un intervalle I
$a(t) x^{\prime}+b(t) x=0$	$f(t)=k e^{-G(t)}$ oưं G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
$a x^{\prime}+b x^{\prime}+c x=0$ équation caractéristique : $a r^{2}+b r+c=0$ de discriminant Δ	Si $\Delta>0, f(t)=\lambda e^{r_{1} t}+\mu e^{r_{2} t} \cdots \ldots .$. où r_{1} et r_{2} sont les racines de l'équation caractéristique Si $\Delta * 0, f(r)=(\mu+\mu) e^{r t} \ldots \ldots .$. où r cst la racine double de l'équation caracteristique Si $\Delta<0, f(t)=[\lambda \cos (\beta t)+\mu \sin (\beta t)] e^{\alpha t}$ où $r_{1}=\alpha+\mathrm{i} \beta$ et $r_{2}=\alpha-\mathrm{i} \beta$ sont les racincs complexes conjuguées de l'équation caractéristique.

a) Loibinomiale $\quad P(X=k)=\mathrm{C}_{n}^{k} p^{k} q^{n-k} \quad$ ou $\quad \mathrm{C}_{n}^{k}=\frac{n!}{k!(n-k)!} ; E(X)=n p ; \quad \sigma(X)=\sqrt{n p q}$, man b) Loide Poisson

$$
P(X=k)=\frac{\mathrm{e}^{-\lambda} \lambda^{k}}{k!}
$$

$E(X)=\lambda$
$r(X)=\lambda$

$A R$	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	$0,5+88$
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,$0000 ;$	0,0000

${ }^{2}+$	1	1.5	2	3	4.	5	6	7	8.	9	10.
0 .	0368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	ง.000	0.005	0,000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.170	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	-0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										0,000	0.001
22											0.000

c) Loi exponentiolle

Fonction de fiabilite : $R(t)=\mathrm{e}^{-\lambda t} \quad E(X)=\frac{1}{\lambda}$ (M.T.B.F.) $\quad \sigma(X)=\frac{1}{\lambda}$
d) Loinormale

La loinomale cenree reduite est caracténsée par la densitêde probabilité : $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$
EXTRATTS DELA CABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUTTE M $(0,1)$
$\Pi(t)=P(T \leq t)=\int_{-\infty}^{1} f(x) \mathrm{d} x$

t	0,00	0,01	0,02	0.03	0.04	0,05	0.06	0,07	0.08	. 09
0,0	0,5000	0.5040	0,5080	0.5120	0.5160	0,5199	0.5239	0.5279	0.5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0.5596	0.5636	0.5675	0.5714	0.5753
0,2	0,5793	0.5832	0.5871	0.5910	0,5948	0,5987	0,602 6	0,6064	0.6103	0.6141
0.3	0,617, 9	0.6217	0,625 5	0,629 3	0.6331	0.6368	0,640 6	0,644 3	0.5480	0.6517
0,4	0,655 4	0.6591	0.6628	0.6664	0,6700	0,673 6	0.6772	0,680 8	0.684	0,6879
0.5	0,6915	0,6950	0,698 5	0,7019	0,705	0,708 8	0,7123	0,715 7	0,7190	0.7224
0,6	0.7257	0,7290	0.7324	0,735 7	0,7389.	0,7422	0.7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0.7642	0.7673	0,770 4	0,773 4	0,776 4	0,7794	0.7823	0.7852
0.8	0,7881	0.7910	0,793 9	0.7967	0.7995	0,8023	0,8051	0,8078	0.8106	0,8133
0,9	0.815 .9	0,818,6	0,8212.	0.8238	0,825,4	0,8289	0,8315	0,8340	0.8365	0,8389
1,0	0,8413	0,843 8	0,846!	0.8485	0,850 8	0.8531	08554	0.8577	0.8599	0.8621
1,1	0.8643	0.8665	0,8686	0.8708	0,8729	0.8749	0,8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8859	0,8888	0.8907	0.8925	0.5944	0.8962	0.8980	0,8997	0.9015
13	0,9032	0,9049	0,9066	0,9082	0.9099	0.9115	0.9131	0,9147	0.9162	0.9177
1.4	0.9192^{\prime}	0,9207	0,9222	0.9236	0,9251	0.9265	0.9279	0.9292	0.9306	0,9319
1.5	0.9332	0,9345	0.9357	0.9370	0.9382	0,9394	0.9406	0,941 8	0.9429	0.944
1.6	0.9452	0,9463	0,9474	0,948 4	0.9495	0.9505	0.9515	0.9525	0.9535	0,9545
1.7	0.9554	0,9564	0.9573	0.9582	0,9591	0,959 9	0,9608	0.9616	0.9625	0.9633
1.8	0,9641	0,9649	0.9656	0,965 4	0.9671	0.9678	0.9686	0,969 3	0,9699	0,9706
1.9	0,9713	0.9719	0.9726	0.9732	0,973 8	0,974	0,9750	0,975 6	0.9761	0.9767
2.0	0,9772;	0,9779	0.9783	0,978 8	0.9793	0.9798	0.9803	0,8808	0.9812	0.9817
2.1	0.9821	0,9826	0.9830	0.9834	0,9838	0.9842	0,9846	0.9850	0,985 4	0.9857
2.2	0,9861	0.9864	0.9868	0.9871	0,987 5	0,9878	0,9881	0,988 4	0,988 7	0.9890
2.3	$0,9893$.	0,9896	0,9898	0.9901	0,9904	0.9906	0.9909	0,991 1	0,9913	0,9916
2.4	0.9918	0.9920	0,992 2	0.9925	0.9927	0,9929	0.9931	0.9932	0,993 4	0,9936
2.5	0,9938	0.9940	0.9941	0,9943	0.9945	0,9946	0.9948	0,9949	0.9951	0.9952
2.6	0,9953	0,995 5	0,995 6	0,9957	0,9959	0,9960	0.9961	0.9962	0.9963	0,9964
2,7	0.9965	0,9966	0,9967	0,9968	0,9969	0.9970	0.9971	0,9972	0,9973	0,9974
2.3	0.9974	0.9975	0,9976	0,9977	0.9977	0,9978	0.9979	09979	0.9980	0.9981
2.9	0,998 1	0.9982	0.9982	0,9983	0,998 4	0,998 4	0,9985	0,9985	0.9986	0,9986

TABLE POUR LES GRANDES VALEURS DE

