EPREUVE DE MATHEMATIQUES

Samedi 21 mai 2011.

Exercice 1.

I. RÉSOLUTION D'UNE ÉQUATION DIFFÉRENTIELLE

1. On considère l'équation différentielle sur $]-1, +\infty[$:

(E)
$$(x+1)y'+(x-1)y=-x+1$$
.

où y est une fonction de la variable réelle x sur l'intervalle $]-1,+\infty[$ et où y' désigne la dérivée de y.

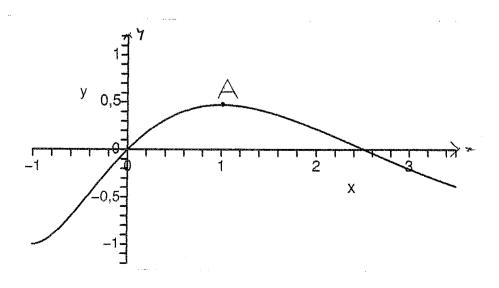
a) Soit g la fonction définie sur $]-1, +\infty[$ par :

$$g(x) = \frac{x-1}{x+1}.$$

Déterminer deux nombres réels a et b tels que, pour tout réel x de $]-1,+\infty[$:

$$g(x) = a + \frac{b}{x - 1}.$$

En déduire la primitive G de g sur]-1, $+\infty[$ telle que G(0)=0.


- b) Résoudre sur $]-1, +\infty[$ l'équation différentielle (e): (x+1)y'+(x-1)y=0.
- 2. Déterminer le nombre réel m pour que la fonction constante h définie sur $]-1, +\infty[$ par h(x)=m soit solution de (E).
- 3. Déduire du 1.b) et du 2. l'ensemble des solutions de l'équation (E).
- 4. Déterminer la solution particulière f de l'équation (E) qui vérifie la condition initiale f(0) = 0.
- II. ÉTUDE DE QUELQUES PROPRIÉTÉS DE LA COURBE REPRÉSENTATIVE D'UNE FONCTION.

Soit f la fonction définie sur $]-1,+\infty[$ par :

$$f(x) = (x+1)^2 e^{-x} - 1.$$

On désigne par (C) la courbe représentative de f dans le plan muni d'un repère orthonormal $(O; \vec{i}, \vec{j})$.

A l'aide d'une calculatrice graphique on a obtenu le dessin ci-dessous.

- Déterminer la fonction dérivée f' de f.
 Soit A le point de (C) d'abscisse 1. Donner la valeur exacte de l'ordonnée de A.
 Préciser la tangente en A à la courbe (C).
- 2. La courbe (C) admet-elle une asymptote en $+\infty$? Justifier la réponse.
- A l'aide du développement limité, au voisinage de 0, de la fonction t → e^t, écrire le développement limité à l'ordre 2, au voisinage de 0, de la fonction x → e^{-x}.
 En déduire le développement limité d'ordre 2, au voisinage de 0, de la fonction f.
- 4. Déduire du 3. une équation de la tangente (T) à la courbe (C) au point d'abscisse 0 et la position relative de (C) et (T) au voisinage de ce point.

Exercice 2.

On considère l'équation différentielle (E): $y'' + 3y'(x) + 2y(x) = 2xe^{-2x}$

où y est une fonction de la variable x, définie et deux fois dérivable sur \mathbb{R} , et y la dérivée seconde de y.

- 1. Résoudre l'équation différentielle (e) : y'' + 3y'(x) + 2y(x) = 0
- 2. Déterminer les réels a et b pour que la fonction g définie sur \mathbb{R} par $g(x) = (ax^2 + bx)e^{-2x}$ soit solution de l'équation (E).
- 3. Déterminer la solution générale de l'équation (E).
- 4. Quelle est la solution f de (E) qui vérifie f(0) = 1 et f'(0) = -2?

Exercice 3.

Soit f la fonction définie sur \mathbb{R} par :

- f est de période 2π
- $f(t) = \sin t$

si $t \in [0, \pi]$

• f(t) = 0

si $t \in]\pi, 2\pi[$

1. Représenter f.

Calculer la valeur moyenne de f c'est-à-dire : $\bar{f} = \frac{1}{2\pi} \int_0^{2\pi} f(t) dt$.

2. Calculer le nombre $a_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) dt$ $(n \in \mathbb{N}^* \setminus \{1\}).$

Exercice 4.

Calcul de l'intégrale $A = \int_0^1 \frac{x}{x^2 + 4x + 8} dx$

- 1. Résoudre dans C l'équation $x^2 + 4x + 8 = 0$.
- 2. Soit u la fonction définie sur \mathbb{R} par $u(x) = x^2 + 4x + 8$.
 - a) Calculer u'(x).
 - b) Déterminer deux constantes réelles a et b telles que, pour tout $x \in [0, 1]$,

2

$$\frac{x}{x^2 + 4x + 8} = a \frac{u'(x)}{u(x)} + b \frac{1}{u(x)}.$$

- 3. Calculer la valeur exacte de l'intégrale $A_1 = \int_0^1 \frac{x+2}{x^2+4x+8} dx$.
- 4. Déterminer la forme canonique de $u(x) = x^2 + 4x + 8$, c'est-à-dire des constantes α et β telles que pour tout $x \in [0, 1]$, $u(x) = (x + \alpha)^2 + \beta$.
- 5. En effectuant le changement de variable t = u + 2, démontrer que :

$$\int_0^1 \frac{2}{x^2 + 4x + 8} \, dx = \int_2^3 \frac{2}{t^2 + 4} \, dt$$

6. En effectuant le changement de variable $y=\frac{t}{2},$ calculer la valeur exacte de

$$A_2 = \int_0^1 \frac{2}{x^2 + 4x + 8} \, dx$$

7. Déduire des questions précédentes la valeur exacte de l'intégrale A.

Exercice 5.

1. Ecrire en notation exponentielle:

$$z_1 = \sqrt{3} - 3i$$
 $z_2 = \frac{\sqrt{2}}{1+i}$ $z_3 = -5i$ $z_4 = \left(\frac{1}{z_1}\right)^7$.

- 2. Quel est l'ensemble des points M d'affixe z du plan tels que |z-5|=3 ?
- 3. Quel est l'ensemble des points M d'affixe z du plan tels que $\arg(z-(3-i))=\frac{\pi}{3}$?
- 4. Soit $P(z) = z^4 + (-4 4i)z^3 + (-6 + 20i)z^2 + (28 + 32i)z + 32 48i$.
 - a) Calculer P(-2). En déduire une factorisation de P(z) sous la forme P(z) = (z+2)Q(z).
 - b) Démontrer que Q(z) admet une racine imaginaire pure que l'on déterminera (cette racine pourra être notée bi où $b \in \mathbb{R}$)
 - c) Achever la résolution de P(z) = 0.

000

0

FIN.

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$$in(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$exp(a+b) = exp a \times exp b$$

$$a^t = e^{t \ln a}$$

$$cos(a+b) = cos a cos b - sin a sin b$$

$$sin(a+b) = sin a cos b + cos a sin b$$

$$cos(2t) = 2 cos^2 t - 1 = 1 - 2 sin^2 t$$

$$sin(2t) = 2 sin t cos t$$

$$sin p + sin q = 2 sin \frac{p+q}{2} cos \frac{p-q}{2}$$

$$sin p - sin q = 2 sin \frac{p-q}{2} cos \frac{p+q}{2}$$

$$cos p + cos q = 2 cos \frac{p+q}{2} sin \frac{p-q}{2}$$

$$cos p - cos q = -2 sin \frac{p+q}{2} sin \frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right), \text{ ch } t = \frac{1}{2} \left(e^{t} + e^{-t} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right), \text{ sh } t = \frac{1}{2} \left(e^{t} - e^{-t} \right)$$

$$e^{at} = e^{at} \left(\cos(\beta t) + i \sin(\beta t) \right), \text{ où } a = \alpha + i\beta$$

$$\left(\alpha + \mathcal{U} \right)^{3} = \alpha^{3} + 3\alpha^{2} \mathcal{U} + 3\beta^{2} \alpha + \mathcal{U}^{3}$$

a) Limites usuelles

Comportement à l'infini

$$\lim_{t \to +\infty} \ln t = +\infty ;$$

$$\lim_{t \to +\infty} e^t = +\infty :$$

$$\lim_{t \to +\infty} e^t = +\infty$$

$$\lim_{t\to-\infty}e^t=0$$
;

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

si
$$\alpha < 0$$
, $\lim_{t \to +\infty} t^{\alpha} = 0$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t\to 0} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	· ch 1	sh r
e ^t	e ^t	sh t	ch /
$t^{\alpha} \ (\alpha \in \mathbb{I}$ $\sin t$	R) $\alpha t^{\alpha-1}$ $\cos t$	· Arcsin t	$\frac{1}{\sqrt{1-t^2}} - \cdots$
cos t	-sin t	Arc tan t	$\frac{1}{1+t^2}$
tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$	$e^{at} \ (a \in \mathbb{C})$	ae at

Opérations

$$(u+v)'=u'+v'$$

$$(m)' = n'n + m'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u}$$

$$\left(\frac{u}{u}\right)' = \frac{u'v - u'}{u}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$\left(e^{u}\right)=e^{u}u$$

$$(\ln u)' = \frac{u'}{u}$$
, u à valeurs strictement positives

$$\left(u^{a}\right) = a \ u^{a-1} u'$$

c) Calcul intégral.

Valeur moyenne de f sur [a, b]:

$$\frac{1}{b-a}\int_a^b f(t)\,\mathrm{d}t$$

Intégration par parties :

$$\int_a^b u(t) v'(t) dt = \left[u(t)v(t)\right]_a^b - \int_a^b u'(t) v(t) dt$$

d) Développements limités

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon (t)$$

$$\frac{1}{1+t} = 1 - t + t^2 + \dots + \left(-1\right)^n t^n + t^n \varepsilon \left(t\right)$$

$$\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + \dots + (-1)^{n-1} \frac{t^n}{n} + t^n \varepsilon (t)$$

$$\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \epsilon(t)$$

$$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \epsilon(t)$$

$\left[(1+t)^{\alpha} = 1 + \frac{\alpha}{1!}t + \frac{\alpha(\alpha-1)}{2!}t^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}t^n + t^n \in (t) \right]$

e) Equations différentielles

Equations 11	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ of G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
equation caracteristique;	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{r_1 t}$ où r est la racine double de l'équation caractéristique Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant ⊿	complexes conjuguées de l'équation caractéristique.

3. PROBABILITES

- a) Loi binomiale $P(X = k) = C_n^k p^k q^{n-k}$
- où $C_n^k = \frac{n!}{k!(n-k)!}$; E(X) =
- $\sigma(X) = \sqrt{npq} \quad \text{many}$

b) Loi de Poisson

P(X = k) =	$e^{-\lambda} \lambda^k$
1 (x - x) -	k!

$$E(X) = \lambda$$

$$V(X) = \lambda$$

1	. : 0,2	0,3	0,4	0,5	; 0,6
	. 0,2	. 0,5	0,4	0,2	, 0,0
0	0,8187	0,7408	0.6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0.3193
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0.0198
4	0,0000	0,0003	0.0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	.: 0,0000;	0,0000

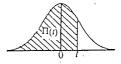
							<u>.</u>				
1	ī	1.5	2	3	4 .	5	6	7	8,	9	10
0 .	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.005	0.000
1	0.368	0.335	0,271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0 .091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	800.0	0.030	0.065	0.103	. 0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10			!	0.001	0.005	810.0	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12		ļ	·		0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0:030	0.050	0.073
14	ļ	ļ				0.000	0.002	0.007	0.017	0.032	0.052
15	İ				•	1	0.001	0.003	0.009	0.019	0.035
16		1	ł				0.000	0.001	0.005	0.011	0.022
17						-		100.0	0.002	0.006	0.013
18		1						0,000	0.001	0.003	0.007
19	}				Ì				0.000	0.001	0.004
20										0.001	0.002
21			1							0,000	0.001
22											- 0,000

c) Loi exponentielle

Fonction de fiabilité : $R(t) = e^{-\lambda t}$

 $E(X) = \frac{1}{\lambda}$ (M.T.B.F.

 $\sigma(X) = \frac{1}{\lambda}$


BTS du groupement C

d) Loi normale,

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2\pi}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE N(0,1)

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

		9.1	100								
İ	1	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	80,0	0,09
	0,0	0,500 0	0,504 0	. 0,508.0	0,512 0	0,5160	0,5199	0,523 9	0,527 9	0,5319	0,535 9
ļ	0,1	0,539 8	0,543 8	0,5478	0,5517	0,555 7	0,559 6	0,563 6	0,567 5	0,5714	0,5753
-	0,2	0,579 3	0,583 2	0,5871	0,591.0	0,5948	0,5987	0,602 6	0,606 4	0,6103	0,6141
	5,0	0,617.9	0.621 7	0,625 5	0,6293	0,633 1	0,636 8	0,640 6	0,644 3	48.0 کہ 0	0,6517
	0,4	0,655 4	0.659 1	0,662 8	0,6664	0,670 0	0,673 6	0,677 2	0,680 8	0,6844	0,6879
	0.5	0,6915	0,695.0	0,698 5	0,7019	0,705 4	0,708 8	0,7123	0,715 7	0,7190	0,722 4
	0,6	0,725 7	0,729 0	0,732 4	0,7357	0,7389	0,742 2	0,7454	0,748 6	0,7517	0,754 9
	0,7	0,758 0	0,761 1	0,764 2	0,7673	0,770 4	0,773 4	0,7764	0,779 4	0,7823	0,7852
	0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,8051	0,807 8	0,810 6	0,8133
	و,0	0.815.9	0,818.6	0,821 2	0,823 8	0,825,4	0,828 9	0,8315	0,834 0	0,836 5	0,838 9
		**		·							
,- î	1,0	0,841.3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,8599	0,862 1
	1,1	0,864 3	0.8665	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0.188,0	0,883.0
	1,2	0,884 9	0.8869	8 888,0	0,8907	0,892.5	0,894 4	0,896 2	0,898 0	0,8997	0,9015
	1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,914 7	0,9162	0,9177
	1.4	0,919 2	0.9207	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,9319
	1,5	0,933 2	0.934 5	0.935 7	0,9370	0,938 2	0,939 4	0.940 6	0,941 8	0,942 9	0,9441
	1,6	0,945 2	0,9463	0,9474	0,9484	0,949 5	0,950 5	0,9515	0,952 5	0,953 5	0,9545
	1,7	0,955 4	0,9564	0,9573	0,958 2	0,9591	0,959 9	0,9608	0,961 6	0,962.5	0,9633
	1,8	0,964 1	0,964 9	0,965 6	0,9664	0,9671	0,9678	0,968 6	0,969 3	0,969 9	0,970 6
	1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,9744	0,975 0	0,975 6	0,9761	0,9767
		ar f			'	1					
	2,0 -	0,977 2	0,977 9	0,978 3	0,9788	0,979 3	0,9798	0,980 3	0,9808	0,981 2	0,9817
	2,1	0,982 1	0,982 6	0,983 0	0.983 4	0,983.8	0,984 2	0,984 6	0,9850	0,9854	0,9857
	2,2	0,986 1	0.9864	0,9868	0.987 1	0,987 5	0,987 8	0,988 1	0,9884	0,9887	0,989,0
	2,3	0,989 3	0,989 6	0,9898	0,990 1	0,9904	0,990 6	0,990 9	0,991 1	0,9913	0,9916
	2,4	0.9918	0,992 0	0,992 2	0.992 5	0.9927	0,992 9	0,993 1	0.9932	0,993 4	0,993 6
	2.5	0,993 8	0,9940	0,9941	0,9943	0.9945	0,994 6	0,9948	0,9949	0,995 1	0,9952
	2,6	0,9953	0,9955	0,995 6	0,9957	0,9959	0,996 0	0,9961	0,9962	0,9963	0,9964
	2,7	0,996 5	0,9966	0,9967	0,9968	0,996 9	0,997 0	0,997 1	0,997 2	0,9973	0,9974
	2,8	0.9974	0,997 5	0,997 6	0,997 7	0,9977	0,9978	0,997 9	0.9979	0,998 0	0,9981
	2.9	0,9981	0,998 2	0.998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,9986	0,998 6
		ــــــــــــــــــــــــــــــــــــــ	1							·	

TABLE POUR LES GRANDES VALEURS DE !

t 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,8 4,0 4,5 \(\tau\)_10, \(\tau\)_0,998 65 0,999 04 0,999 31 0,999 52 0,999 66 0,999 76 0,999 841 0,999 928 0,999 968 0,999 997			1									
TI(0 0.998 65 0.999 04 0.999 31 0.999 52 0.999 66 0.999 76 0.999 841 0.999 928 0.999 968 0.999 997	ſ	,	3.0	3.1	3.2	3.3	3,4	3.5	3,6	3,8	4,0	4,5
	1	ПО	0.998 65	0.999 04	0.999 31	0,999 52		0,999 76	0,999 841	0,999 928	0.999 968	0,999 997

Nota: $\Pi(-t) = 1 - \Pi(t)$

Formulaire de mathématiques

BTS du groupement C