Exos d'oraux.

ATS 2015 (PERDIGUES Xavier)

1. Etudier la convergence de $\int_0^{+\infty} \frac{e^{-t}-1}{t} dt$ et de $\int_0^{+\infty} \frac{e^{-2t}-e^{-t}}{t} dt$. Montrer que $\lim_{x\to 0} \int_x^{2x} \frac{e^{-t}}{t} dt = \ln(2)$. (indication : $\frac{e^{-t}}{t} = \frac{e^{-t}-1}{t} + \frac{1}{t}$)

Montrer en dérivant par rapport à x que $\int_x^{2x} \frac{e^{-t}}{t} dt = \int_0^x \frac{e^{-2t} - e^{-t}}{t} dt + ln(2)$. 2. Condition sur z pour que (z-1)(\bar{z} -2i) soit un imaginaire pur.

ATS 2015 (HAUT Bertrand)

- 1. Intégrer l'équa diff : y'+ycos(x) = $\sin(x)\cos(x)$ 2. Module et argument de $\frac{(1+i)(1+e^{2ix})}{1-e^{2ix}}$.

ATS 2015 (inconnu)

- 1. Rayon de la série entière $\sum \frac{n^{2n}}{(n+1)!} x^n$.
- $2. \lim_{+\infty} \sqrt{x + \sqrt{x + \sqrt{x}}} \sqrt{x}.$

ATS 2015 (ROSLYJ Maxime)

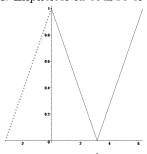
- 1. Montrer que $\sqrt{n+1} \sqrt{n} \le \frac{1}{2\sqrt{n}}$ (on poura utiliser le théorème des accroissements finis)
- 2. Convergence de la suite $u_n = 1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}}$.
- 3. (S) $\begin{cases} x+y+z=1\\ mx+y+(m-1)z=m\\ x+my+z=m+1 \end{cases}$. Ecrire le système sous forme matricielle. On appelle A la matrice 3-3 ainsi obtenue.

Trouver les conditions sur m pour que A soit inversible.

Discuter des solutions de (S) selon les valeurs de m.

Calculer A^{-1} lorsque A est inversible.

4. Expliciter la courbe ci-dessous. (elle est 2 pi périodique) Calculer a_0 ; a_n ; ...



ATS 2015 (BONHOMME Benjamin)

- 1. Un système linéaire conduit à une matrice 3-3. Est-elle diagonalisable?
- 2. $f(x) = \sqrt{4 x^2 y^2}$. Donner son ensemble de définition. Calculer $\frac{df}{dx}$ et $\frac{df}{dy}$. Intégrer sur un morceau de camenbert.

3. (exo bonus) $\overset{\circ}{D}=\{(x,y)\epsilon\mathbb{R}^2/x\geq 0;y\geq 0;x+y\leq 1\}$

Calculer $I = \iint_D xy(x+y)dxdy$

ATS 2015 (LONGE Morgan)

- 1. Rayon de S(x) = $\sum \frac{(-1)^n x^n}{(2n)!}$, de T(x) = $\sum \frac{x^{3n}}{(3n)!}$ et de $U(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{4^n}$. Calcul de S et U.
- $2. \ x = 2$ - $2i\sqrt{3}$. Trouver les racines quatrièmes de x de deux façons différentes (forme trigo et algébrique) En déduire la valeur de $\cos(\frac{11\pi}{12})$ et $\sin(\frac{11\pi}{12})$.

ATS 2015 (DETROIT Charly)

- 1. $\begin{cases} x + (t+1)y = 1 \\ tx + (t+4)y = 2 \end{cases}$ Résoudre en discutant selon la valeur de t.
- 2. $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$. Montrer que la suite $(u_n)_{n \in \mathbb{N}}$ converge vers \sqrt{a} . Calculer $\sqrt{10}$ avec huit décimales.

ATS 2015 (NIEF Clément)

- 1. Convergence de $\int_0^{+\infty} \frac{\ln(1+t^{\alpha})}{t^2} dt$.
- 2. Montrer que $arctan(\frac{p}{q}) + arctan\left(\frac{q-p}{p+q}\right) = \frac{\pi}{4}.$

ATS 2016 (ALIBERT Lucas)

- 1. Intégrer l'équa diff : sin(x)y'(x) cos(x)y(x) + 1 = 0
- 2. Trouver les racines doubles de $P(X) = (X+1)^7 X^7 1$.

Factoriser P(X) dans \mathbb{C} , puis dans \mathbb{R} .

ATS 2016 (EDEL Lucas)

- 2. $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$. Vérifier que $A^2 + A = 2I$. En déduire l'inverse de A.

exo supplémentaire : dériver $\int_{r^3}^{2x} e^{t^2} dt$.

ATS 2016 (CHAPILLON Laurent)

- 1. Trouver les complexes z tels que $1+z^2+z^4+\ldots+z^{14}=0$.
- 2. $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$. A est-elle inversible? Si oui, calculer son inverse.

ATS 2016 (DUSSET-JAMART Olivier)

- 1. Calcul de $\sum_{k=0}^{n-1} \frac{\cos(kx)}{(\cos x)^k}$.
- 2. Convergence et valeur de $I = \int_0^{+\infty} \frac{1}{ch(x) + 2sh(x)} dx$.

ATS 2016 (PICONNEAUX Charlène)

- 1. dérivées et variatons de $\frac{1}{x} \int_0^x e^{\sqrt{t}} dt$.
- 2. Calcul de $\int_0^1 \sqrt{x^2+2x} dx$. 3. Résoudre l'équation $z^2-(11-5i)z+24-27i=0$.

ATS 2017 (BAKARI Imrane)

- 1. Intégrer l'équa diff : $(x^2-1)y'+xy+1=0$ sur] -1;1[2. CV et calcul de $I=\int_{-\infty}^{+\infty}\frac{x^3+x}{1+x^6}dx$

ATS 2017 (POMMEY Thibault)

- 1. Calcul de $\sum_{n\geq 0}\frac{\cos(nx)}{2^n}$ 2. $M=\begin{pmatrix}2&-2&1\\2&-3&2\\-1&2&0\end{pmatrix}$ Montrer que $M^2+2M-3I=0$. En déduire que M est inversible et calculer M^{-1} .

3. $xy' + 2y = x^2$

ATS 2017 (CALACA Corentin)

- 1. Résoudre dans $\mathbb{C}\left\{\begin{array}{l} 2zz'=1\\ z+2z'=\sqrt{3}iz \end{array}\right.$ 2. $F(x)=\frac{1}{x}\int_0^x e^{\sqrt{t}}dt$. Dérivée et sens de variation
 3. $M_a=\begin{pmatrix} 1 & a & 1 & a^2-a\\ 0 & a-1 & a & a^2-a\\ 1 & a & a & 0\\ 0 & a-1 & 3a-1 & 0 \end{pmatrix}$. Trouver a pour que l'application soit bijective.
- 4. Calculer $\int_{-1/2}^{1/2} \frac{2x^2}{x^4-1}$

ATS 2017 (LACOUR Corentin)

- 1. $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$. Montrer que $A^2 = 2I A$. En déduire que A est inversible et calculer A^{-1} .
- 2. Donner une matrice diagonalisable dans \mathbb{C} , mais pas dans \mathbb{R} .
- 3. Etudier la suite $u_0 > 0$ et $u_{n+1} = \frac{1}{2+u_n}$. 4. (bonus) y'' + 9y = 3; y(0) = 1 et y'(0) = 0

ATS 2018 (SLAGMAN Anthonin)

- 1. Intégrer l'équa diff (x-2)y'+y+1=0
- 2. Résoudre dans $\mathbb{C} z^4 2z^2 + 5 = 0$

ATS 2018 (CUBY Corentin)

- 1. Discuter suivant les valeurs de m du nombre de points d'intersections de « y=mx » et « $y=e^x$ »
- 2. On donne une matrice A telle que $A^2 + 4A 12I = 0$

Montrer que A est inversible et calculer A^{-1} .

Quel est le reste de la division de X^n par $X^2 + 4X - 12$?

En déduire la valeur de A^n pour n entier naturel

ATS 2018 (VAN MERRIS Alexis)

1. Résoudre
$$z(z^2+2)(z-3)^2(z^2+z+1)=0$$

Dessiner les solutions dans le plan complexe

Combien y en a-t-il sur le cercle unité?

2.
$$xy' - y - (x^2 + 1) = 0$$

Intervalles de \mathbb{R} où l'on résout cette équa diff?

Résoudre

Existe-t-il des solutions globales?

3. Résoudre $sin^3x + cos^3x = 1$

(on pourra étudier la fonction $sin^3x + cos^3x$)

ATS 2018 (LAMRCHE Arthur)

- 1. Résoudre dans $\mathbb{C} z^4 2z^2 + 5 = 0$
- 2. DL à l'ordre 3 en 0 de $\frac{x}{e^x-1}$

ATS 2018 (CORNOT Maxime)

1. Calculer
$$A=\int_0^{1/2}\frac{dx}{\sqrt{1-x^2}}$$
 $B=\int_0^{1/2}\frac{xdx}{\sqrt{1-x^2}}$ $C=\int_0^{1/2}\frac{x^2dx}{\sqrt{1-x^2}}$ Indication : (pour C, on peut faire une IPP; l'intégrale qui apparaît est A-C)

2. Résoudre $x^8 - 1 = 0$ dans \mathbb{R} , puis dans \mathbb{C} . Factoriser alors $x^8 - 1$ dans \mathbb{C} , puis dans \mathbb{R} .

ATS 2018 (MARCELLIN Gael)

- 1. Etude de la série de terme général $u_n = \ln(1 \frac{1}{n^2})$
- 2. Rang de la matrice $A = \begin{pmatrix} a & b & \cdots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix}$.

ATS 2018 (ANDRIANO Gaetan)

1. Justifier l'existence des intégrales $I = \int_0^{\pi/2} ln(sin(x)) dx$ et $J = \int_0^{\pi/2} ln(cos(x)) dx$

Montrer que I=J grâce à un chgt de variable

Calculer I+J et en déduire I.

2. Etude de la paramétrée $\left(\frac{1}{1+t^2}; \frac{t^2}{1+t^2}\right)$

Etudier le chgt $t \hookrightarrow \frac{1}{t}$. Comment réduire l'intervalle d'étude?

ATS 2018 (SAVE Baptiste)

1. $A \in M_2(\mathbb{R})$ est telle que il existe p entier tel que $A^p = 0$

On montreque $A^2 = 0$. Pour cela, on suppose qu p est le plus petit entier tel que $A^p = 0$.

Ainsi, comme $A^{p-1} \neq 0$, il existe un X de \mathbb{R}^2 tel que $A^{p-1}X \neq 0$.

11. Montrer que la famille $(X; AX; A^2X)$ est liée.

On a donc trois réels a; b et c non tous nuls tels que $aX + bAX + cA^2X = 0$.

- 12. On multiplie alors par A^{p-1} . Montrer que a=0.
- 13. Montrer que b=0.
- 14. En déduire que $A^2X = 0$, puis que $A^2 = 0$
- 15. Existe-t-il une matrice M telle que $M^2=\begin{pmatrix} 1 & -1/2 \\ 2 & -1 \end{pmatrix}$ 2. Dls à l'ordre 2 en 0 de $\sqrt{1+x}$; de $\sqrt{\frac{1+x}{1+2x}}$ et de $\ln\left(\sqrt{\frac{1+x}{1+2x}}\right)$