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Mutation dynamics and fitness effects
followed in single cells
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Mutations have been investigated for more than a century but remain difficult to observe
directly in single cells, which limits the characterization of their dynamics and fitness effects.
By combining microfluidics, time-lapse imaging, and a fluorescent tag of the mismatch
repair system in Escherichia coli, we visualized the emergence of mutations in single cells,
revealing Poissonian dynamics. Concomitantly, we tracked the growth and life span of
single cells, accumulating ~20,000 mutations genome-wide over hundreds of generations.
This analysis revealed that 1% of mutations were lethal; nonlethal mutations displayed a
heavy-tailed distribution of fitness effects and were dominated by quasi-neutral mutations
with an average cost of 0.3%. Our approach has enabled the investigation of single-cell
individuality in mutation rate, mutation fitness costs, and mutation interactions.

T
he pace of evolution and possible trajecto-
ries depend on the dynamics of mutation
incidence and the effects of mutations on
fitness. Mutation dynamics has never been
analyzed directly. It is assumed to be Pois-

sonian, but mutagenesis characterized by bursts,
with transient mutation rate increases, has been
demonstrated in several organisms (1–3). Muta-
tion bursts may facilitate the acquisition of com-
binations of mutations, which is critical to the
evolution of complex traits (4). Effects of mu-
tations are known to range from beneficial to
deleterious or lethal, but estimating the entire
distribution of fitness effects (DFE), central to
evolutionary modeling, has proven challenging
(5). The DFE for spontaneous mutations has been

estimated with the mutation accumulation (MA)
approach (6–8), whereby independent lines of
individuals are propagated in conditions that
minimize the effects of natural selection and the
evolution of their fitness is tracked. The preci-
sion of such DFE estimations is limited because
of the small number of lines that can be moni-
tored, typically fewer than 100. In addition, only
an upper boundary for the average mutational
effect is obtained, or strong assumptions are made
regarding the DFE shape (9, 10). Finally, in MA
studies of microorganisms, the mutation sample
is biased, as natural selection purges lethal and
strongly deleterious mutations.
We quantitatively characterized the dynamics

of spontaneous point mutations arising from

replication errors, a major source of muta-
tions (11, 12), and their DFE in the bacterium
Escherichia coli. For real-time detection of muta-
tions in single living cells, we developed a mu-
tation visualization (MV) experiment. We also
designed a microfluidic MA (mMA) experiment,
which allowed us to track fitness in the complete
absence of natural selection in a high-throughput
fashion during the accumulation of mutations.
In mMA experiments, we grew cells in a “mother

machine” microfluidic chip (13) (Fig. 1A) and im-
aged them by phase-contrast microscopy to mon-
itor their growth and survival at the single-cell
level (14) (Fig. 1B and movie S1). The mother
machine contained a series of separate micro-
channels where cells grew in a single row (Fig.
1A). These microchannels were closed on one
side and retained the “mother” cell abutting the
dead end through consecutive divisions. There-
fore, at each generation, one individual was kept
independently of its fitness (Fig. 1C), thus elim-
inating natural selection. Malthusian fitness, the
exponential growth rate at the population level,
can also be defined at the single-cell level as the
cell exponential elongation rate. We imaged more
than 1000 microchannels in parallel, in con-
trolled and constant conditions, every 4 min
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Fig. 1. Experimental setup. (A) The mother
machine microfluidic chip, used for growing
E. coli cells during mMA and MV experiments.
mMA and MV experiments were performed
independently, using phase-contrast micros-
copy and epifluorescence microcopy, respec-
tively. (B) Phase-contrast images of one
microchannel over time in a mMA experiment.
We developed software that measures the
mother cell length (represented by yellow
boxes) at each frame and computes its fitness
at each generation (14). (C) The mother
machine allowed us to keep the mother cell
at each division, regardless of its fitness, thus
blocking natural selection. (D) Tracking point
mutation emergence in single cells with
YFP-MutL in the mutH strain, where all repli-
cation errors are converted into mutations.
(E) Overlay of red (from the constitutive
expression of tdCherry for automated cell
segmentation) and yellow (YFP-MutL) fluores-
cence images from an MV experiment. The inset
shows a magnified image of a cell with a
YFP-MutL focus (arrow).
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over the course of 3 days, which corresponded
to ~200 generations. We obtained ~105 fitness
measurements per experiment.
In MV experiments, cells grown in the mother

machine were imaged by fluorescence micros-
copy (14). We visualized mutations using a fusion
of yellow fluorescent protein (YFP) with MutL
mismatch repair protein, which forms fluores-
cent foci at replication errors (15) (Fig. 1, D and
E, and movie S2). To detect and track MutL foci,
we developed an automated image analysis pro-
cedure (14). The dynamics of mutations origi-
nating from replication errors depends on both
error production and repair. We examined the
dynamics of error production by eliminating er-
ror repair through inactivation of the mismatch
repair endonuclease MutH (14). Full inactiva-
tion was verified by control experiments (14). The
YFP-MutL protein forms transient foci (15) (movie
S2), and the average lifetime of the foci in the
mutH strain corresponds to the time between
the passage of two successive replication forks
(14) (fig. S1). This pattern shows that in mutH
cells, all MutL foci are converted into mutations
by the next round of DNA replication.
Replication errors might occur at a constant

rate with Poissonian dynamics, or alternatively,
bursts of errors might be produced from fluctua-
tions in intracellular composition, such as transient
nucleotide pool imbalances (1, 3). To investigate
these possibilities, we performedMV experiments
using mutH cells, tracking more than 3000 MutL
foci in mother cells and deriving their interarrival
times (the times between two successive focus
occurrences) (Fig. 2A). These interarrival times
were exponentially distributed and uncorrelated,
which is characteristic of a Poissonian process (14)
(Fig. 2, B and C, and fig. S2). In agreement with
this finding, the number of MutL foci appearing
between two frames followed a Poissonian dis-
tribution (fig. S3). As our method is limited by
optical resolution, we cannot detect bursts of rep-
lication errors if they occur at a single replication
fork on a short genomic region (typically less than
80 kilobases). In contrast, we can detect transient
hypermutator states if they affect several repli-
cation forks, as would be expected for metabolic
fluctuations, because different forks occupy dif-
ferent positions in the cell.
Our data indicate Poissonian dynamics rather

than dynamics characterized by bursts, but they
do not exclude some fluctuations in the repli-
cation error rate. In particular, we expect the er-
ror rate to depend on the number of replication
forks, which changes during the cell cycle (14).
We found a global proportionality between cell
size, a proxy for the stage in the cell cycle, and
the replication error rate across a range of cell
sizes (fig. S4). Further analysis of the relation-
ship between cell size and error rate revealed
steplike variations reminiscent of variations in
the number of replication forks (Fig. 2, D and E),
with error rates varying by a factor of ~3 during
a single cell cycle.
When exposed to certain external stresses,

bacteria trigger specific responses that transi-
ently increase the mutation rate (16–18). In our

MV experiments, a small fraction of cells expe-
rienced endogenous stress, as demonstrated by
reduced growth rate and/or abnormally large
cell size. We investigated whether such subpop-
ulations exhibit higher rates of replication error.
To take into account the different replication
fork numbers for different subpopulations, we
estimated the number of forks in single cells
and the mean error rate per fork in each sub-
population (14). Abnormally large cells and slow-
ly growing cells did not present elevated error
rates per fork (Fig. 2F and fig. S5), suggesting
that stress-induced mutagenesis (SIM) acts main-
ly at the level of error repair or that endoge-
nous stress in a favorable environment causes
limited SIM.
Visualization of mutations and fitness mea-

surements could in principle be combined into a
single time-lapse microscopy experiment. How-
ever, simply linking one mutation to one fitness
effect is impossible for two reasons: First, there
can be a substantial lag between the occurrence
of a mutation and its effect on fitness. Second, a
MutL focus indicates the insertion of an erro-
neous base in one of two newly replicated DNA
strands. Consequently, the progeny from a
cell with a MutL focus will contain a mixture
of mutant and nonmutant cells (14) (fig. S6).
Therefore, we performed mMA and MV experi-
ments separately, which allowed us to increase
the throughput of mMA experiments.
Using MV, we estimated mutation rates for

E. coli wild-type (WT) (~0.0022 mutation/hour)
and mutH mutant (~0.32 mutation/hour) strains
(14), which agree with estimations from whole-

genome sequencing of MA lines of WT and
mismatch repair–deficient cells (11). We then
performed a mMA experiment with WT cells,
which accumulated an average of ~0.1 mutation
per mother cell line over ~60 hours. As ex-
pected, the growth rate distribution for WT cells
was stable over time (Fig. 3A, left). In contrast,
for mutH cells, which accumulated ~20 muta-
tions per mother cell line over ~60 hours, the
mean growth rate slightly decreased (Fig. 3A,
middle), and some cells underwent a steplike
decrease in growth rate (Fig. 3B, blue trajectory)
or a total cessation of growth, indicating cell
death (fig. S7). Surprisingly, the average de-
crease in the growth rate of mutH cells during
mMA (~0.1% per hour) was smaller than what
would be expected from previous estimates of
the average effect of mutations (7, 19, 20). We
also performed mMA experiments using the strain
MF1 (14), which has a mutation rate ~20 times
that of the mutH strain (14) (table S1) because
of impaired proofreading (21). As expected, the
decrease in fitness in MF1 cells was ~20 times
that inmutH cells (Fig. 3A, right, and table S2).
We then characterized the DFE by developing

a nonparametric method, with no assumptions
about DFE shape (14). Using the probabilistic
framework of MA studies, we derived all the
moments of the DFE (14). For nonlethal mu-
tations, our estimate of mean fitness cost (Fig.
3C) is 0.31% ± 0.04%, which is lower than pre-
vious estimates (7, 19, 20). We found that the
DFE for nonlethal mutations has a coefficient of
variation (CV) of 9.5 ± 1.2, a skewness of 16.6 ±
0.7, and a kurtosis of 360 ± 90 (Fig. 3C). We also
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Fig. 2. Replication error dynamics. (A) The variables analyzed in MV experiments were the inter-
arrival times for YFP-MutL foci (d) and the number of new foci per mother cell. dn and dn+1 indicate
two successive interarrival times. (B) Histogram of focus interarrival times for a representative
mutH experiment (n = 1873 foci). The red line and dot are predictions under the Poisson process
hypothesis, which includes a correction accounting for discrete observation (14). PDF, probability
density function. (C) Correlation between two successive focus interarrival times for the data
in (B). Color indicates local density (inset). Red dots represent data binned according to dn.
(D) Theoretical number of forks as a function of time for a doubling time of 26 min. Chromosomes
are depicted in green, and the red dots denote replication forks. (E) Rate of replication error
as a function of cell size in single cells. Black dots, experimental data; red line, prediction based
on the number of forks (14). (F) Error rate per fork as a function of cell size and growth rate
for single cells. Data were binned according to either cell size or growth rate. Results are
means, and errors bars show ±2 SEM.
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obtained moments of higher order for the DFE
(table S3). These results indicate a distribution
that is wide, skewed, and heavy tailed, domi-
nated by quasi-neutral mutations relative to in-
frequent, strongly deleterious mutations, such as
the beta distribution in Fig. 3D.
The estimated DFE for MF1 was similar to the

DFE for the mutH strain (table S4), although
these strains have different mutation spectra
(11, 21). To further investigate the effect of the
mutation spectrum on the DFE, we performed
mMA experiments using a mutT mutant (fig. S8),
which has a mutation rate similar to that of the
mutH strain but a specific mutation spectrum
of >99% AT-to-CG transversions (11, 12, 14) (table
S1). Despite the differences in the way mutagen-
esis occurs, we found that the DFE for themutT
strain did not differ substantially from the DFE
for the mutH or the MF1 strain (table S4).
Steplike growth rate decreases such as those

shown in Fig. 3B (blue trajectory) occurred dur-
ing mMA in all mutator strains and not in the
WT strain. They might be provoked by a single
deleterious mutation, independently of previous-
ly acquired mutations, or by the accumulation of
interacting mutations. To investigate this issue,
we studied the rate of occurrence of growth rate
decreases inmutH andmutT cells. From the anal-
ysis of all single-cell trajectories (14) (fig. S9), we
defined two categories of cells: slow-growing cells
that underwent a >30% decrease in growth rate
(Fig. 4A, top) and fast-growing cells correspond-
ing to the rest of the population. The percentage
of fast-growing cells decreased exponentially over
time (14) (Fig. 4A, bottom), demonstrating that
>30% growth rate decreases are caused by single
deleterious mutations with >30% fitness cost.
These mutations occur at a constant rate, inde-
pendently of the accumulation of previous mu-
tations, and represent 0.3% of all mutations. As
expected from the quasi-optimal growth rate of
our mutH strain, our analysis of single-cell tra-
jectories detected no strongly beneficial muta-
tions (>20% effect) during mMA (14).
Likewise, to assess whether lethal mutations

occur at a constant rate, we studied survival
during mMA (14). The WT strain, accumulating
~0.1 mutation over the course of mMA, showed
age-related mortality (Fig. 4B, left), in agreement
with previous observations (13). The high–mutation-
rate mutH, mutT, and MF1 strains exhibited ad-
ditional mutation-related mortality (Fig. 4B, left).
During the first ~35 hours of mMA, when the
mortality rate for the WT was low and approx-
imately constant, the survival of themutH,mutT,
and MF1 mutator strains exponentially decreased
(Fig. 4B, right, and fig. S10). To further disentangle
age- and mutation-related mortality, we per-
formed a mMA experiment using the strain pMQ,
which has increased proofreading deficiency
compared with MF1 (21). pMQ cells died rapidly,
and their survival decreased exponentially (Fig.
4B, right, and fig. S11). These analyses demon-
strate that lethal mutations occur at a constant
rate in mMA, independently of previously ac-
quired mutations, and that ~1% of mutations
are lethal.
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Fig. 3. mMA analysis allows nonparametric DFE characterization. (A) Representative mMA results
for WT, mutH, and MF1 (dnaQ926) strains. For each time point, all single-cell growth rates for all
mother cells are plotted (WT strain, n = 1.8 × 105 cells; mutH strain, n = 1.1 × 105 cells; MF1 strain,
n = 2.6 × 104 cells). Color depicts growth rate density. The red line represents the mean growth
rate evolution. The black line indicates the mean of all growth rates. (B) Examples of single-cell
growth rate trajectories for the mutH strain (one color per cell line). (C) Nonparametric estimation
for the first four moments of the DFE allows calculation of the mean, the coefficient of variation
(CV), skewness, and kurtosis (for each calculation, the mean ± 2 SEM for three independent mutH
experiments is given). (D) Example of distribution with similar moments [beta distribution; parameters,
a = 0.0074 and b = 2.4, calculated to give the mean and CV as for the DFE in (C), giving skewness =
17 and kurtosis = 370]. The inset shows the same distribution on a log scale.

Fig. 4. Strongly deleterious (>30% cost) and lethal mutations occur at a constant rate during
mMA. (A) The top panel shows an example of a mutH growth rate trajectory (blue line) corresponding
to the occurrence of a strongly deleterious mutation in a mother cell. To analyze such events, we defined
two categories of mother cells, slow-growing cells that underwent an abrupt, >30% growth rate
decrease and fast-growing cells corresponding to the rest of the population.The bottom panel shows
the temporal evolution of the percentage of fast-growing cells (represented by blue dots, on a log
scale; we analyzed 5272 single-cell trajectories and found 156 strongly deleterious mutations).
The 95% confidence interval is narrower than the line thickness. The red curve is an exponential
fit (coefficient of determination R2 = 0.99). (B) The left panel shows survival curves of the population
for the WT (n = 1283 single-cell trajectories), mutH (n = 1480), mutT (n = 216), MF1 (n = 838),
and pMQ (n = 472) strains. The 95% confidence intervals are represented by the shaded areas
(they are narrower than the line thickness for n > 400). The right panel shows the same survival
curves on a log scale for mutH (data in blue, exponential fit in red; R2 = 0.99), MF1 (data in cyan,
exponential fit in red; R2 = 0.99), and pMQ (data in red, exponential fit in blue; R2 = 0.99) strains.
The plot is limited to ~35 hours, during which age-related mortality was low and approximately
constant. The 95% confidence intervals are represented by the shaded areas.
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Our results show that the accumulation of mu-
tations with <30% fitness cost does not change
the rate of lethal or strongly deleterious muta-
tions (>30% cost), as would be expected from the
saturation or induction of a buffering mecha-
nism (22, 23). We anticipate that examination of
various suboptimal genotypes in mMA experi-
ments would allow further investigation of
mutation interactions and provide a complete
picture of epistasis, central to the evolution of
sexual reproduction and recombination (24). Our
approach may also allow for investigation of how
the DFE and mutation dynamics change in
response to the environment, shedding light
on the adaptation potential of populations.
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