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INTRODUCTION: The fitness landscape is a
foundational concept in evolutionary biology that
has also served to study complex optimization
problems in multiple other disciplines. It is an
analog to a physical landscape in which a loca-
tion corresponds to a genotype, and the eleva-
tion at that location corresponds to the fitness
of an organism with this genotype. Darwinian
evolution canbe viewed as an exploration of such
a landscape by evolving organisms, in which the
highest peaks correspond to the best-adapted
organisms.WhenSewallWright coined the land-
scape concept in 1932, he was concerned that
biological fitness landscapes may have an as-
tronomical number of peaks,most ofwhichmay
have low fitness. In such landscapes, evolving
populations are likely to become trapped on
low fitness peaks from which natural selection
cannot help them escape. For almost 80 years
after Wright’s discovery, virtually all work on
landscapes remained theoretical, and even though
experimental landscape studies are becoming
more frequent now, we still do not knowwheth-
er rugged landscapes impair adaptive evolution.

RATIONALE: To tackle this fundamental ques-
tion experimentally, we created a large bio-
logical fitness landscape (>260,000mutants) by
CRISPR-Cas9gene editingof thekeyEscherichia
colimetabolic gene folA, which encodes dihy-
drofolate reductase. We mapped the fitness
landscape of this enzyme by exhaustively mu-
tating nine nucleotides at three amino acid
positions that can confer resistance to the
clinical antibiotic trimethoprim. We passaged
sixfold replicated mutant libraries of all
folA variants in an antibiotic-containing en-
vironment and used deep sequencing to ob-
tain fitness estimates for nearly 99.7% of all
sequence variants. Our nearly combinatorially
complete data allowed us to determine the
ruggedness of this high-dimensional land-
scape. We identified its fitness peaks, their
basins of attraction, and evolutionarily accessi-
ble paths to these peaks. To find out whether
landscape ruggedness impairs adaptive evolu-
tion, we simulated the evolutionary dynamics
on this landscape under various population
genetics scenarios.

RESULTS:We found that the landscape is high-
ly rugged. It has 514 fitness peaks,most of which
have low fitness. Nonetheless, the landscape
hasmultiple properties of a smooth landscape.
These include an abundance of monotonically
fitness-increasing paths to high fitness peaks,
large basins of attraction of these peaks, and
easy reachability of these peaks by >75% of
evolving populations. Furthermore, most evolv-
ing populations can access multiple high fit-
ness peaks. All 74 high fitness peaks effectively
share one enormous basin of attraction (104,496
variants). This leads to low predictability of
evolution on the molecular level because each
population can takemultiple alternative paths
that lead to different high fitness peaks. High
fitness peaks remain accessible under various
evolutionary dynamics on the landscape.

CONCLUSION: Our work shows that adaptive
evolution on realistic high-dimensional and
rugged fitness landscapesmay be easier than
commonly thought. Our finding calls for new
and improved theory to understand the counter-
intuitive geometry of realistic high-dimensional
fitness landscapes.▪
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Empirical fitness landscape
of dihydrofolate reductase.
We edited the E. coli genome to
create a fitness landscape
of all 643 codons encoding
three consecutive amino
acids (A, Ala; D, Asp; L, Leu)
of the protein dihydrofolate
reductase. We measured
the fitness of each genotype
in this landscape in the
presence of the antibiotic
trimethoprim using a mass
selection experiment and
deep sequencing. Even
though the landscape is
highly rugged, adaptive
evolution can find the highest
peaks from most starting
locations via short and
abundant fitness-increasing
paths. [Created with
BioRender.com]
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Fitness landscape theory predicts that rugged landscapes with multiple peaks impair Darwinian
evolution, but experimental evidence is limited. In this study, we used genome editing to map the fitness
of >260,000 genotypes of the key metabolic enzyme dihydrofolate reductase in the presence of
the antibiotic trimethoprim, which targets this enzyme. The resulting landscape is highly rugged and
harbors 514 fitness peaks. However, its highest peaks are accessible to evolving populations via
abundant fitness-increasing paths. Different peaks share large basins of attraction that render the
outcome of adaptive evolution highly contingent on chance events. Our work shows that ruggedness
need not be an obstacle to Darwinian evolution but can reduce its predictability. If true in general, the
complexity of optimization problems on realistic landscapes may require reappraisal.

T
he fitness landscape is a nearly century-
old foundational concept in evolutionary
biology (1). Its influence extends to multi-
ple other disciplines, including ecology
(2), synthetic biology (3), chemistry (4),

computer science (5, 6), the social sciences (7),
and engineering (8). It is an analogy to a phys-
ical landscape, in which individual spatial loca-
tions correspond to genotypes, and the elevation
at each location corresponds to the genotype’s
fitness. The best-adapted genotypes occupy the
highest peak(s) of such a landscape. A popu-
lation evolving bynatural selection explores such
a landscape, and natural selection drives the
population uphill to the nearest peak (1, 9, 10).
A fitness landscape can be single-peaked or

multipeaked (“rugged”) (11). Ruggedness can
pose a fundamental challenge to evolution’s
ability to find a landscape’s highest peaks, be-
cause a population evolving under the influ-
ence of natural selection can only travel on
accessible paths through the landscape, that is,
paths in which each mutational step increases
fitness (9, 12). The reason is that natural se-
lection favors high fitness genotypes and does
not allow a population to traverse low fitness
valleys between a local peak of intermediate
fitness and nearby higher fitness peaks (9, 13).
Theory predicts that in highly rugged land-

scapes, most evolving populations will become
trapped at local peaks of low fitness (14). The
relationship between landscape ruggedness and
peak accessibility has been studied with var-
ious theoretical models developed in the 20th
century (15), such as the NK (16), “house of
cards” (17), and “roughMount Fuji”models (18),
which may not capture important features of
empirical landscapes (19, 20). Because most

research on adaptive landscapes remained the-
oretical until recent decades (9, 11), we still
know little about the ruggedness, and even less
about the accessibility, of high fitness peaks in
empirical fitness landscapes.
Early experimental studies tomap empirical

landscapes measured the fitness of <103 geno-
types (21–31). Later studies mapped up to 105

genotypes that were generated by random
mutagenesis of a reference (wild-type) geno-
type. The resulting fitness data are dense around
the wild type but sparse everywhere else be-
cause ofmissing information on double, triple,
and higher-order mutants (32, 33). In other
words, such data do not fulfill the important
requirement of combinatorial completeness,
which means that the fitness of all allele com-
binations at themutagenized locimust be known
to permit an exhaustive search of evolutionary
paths. Some studies achieved combinatorial
completeness by quantifying biochemical prop-
erties that may be correlated with fitness, such
as the binding of biological molecules in vitro
(34–38). Only the most recent works have
created large and combinatorially complete
fitness landscapes in microorganisms such as
Saccharomyces cerevisiae andEscherichia coli.
However, these works focused on other aspects
of landscapes, such as the prevalence of higher-
order epistasis (39, 40), themolecular principles
underlying genotype-phenotype relationships
(41), the allosteric effects of mutations (42),
and the evolution of specificity in protein in-
teractions (43, 44).
Here, we address the fundamental question

of the relationship between ruggedness and
peak accessibility by mapping a large and
combinatorially complete in vivo fitness land-
scape of theE. coli folA gene, which encodes the
essential metabolic enzyme and antibiotic re-
sistanceproteindihydrofolate reductase (DHFR).
We find that this landscape is rugged, but its
ruggedness does not preclude evolving pop-
ulations from accessing high fitness peaks.

Experimental design and reproducible
fitness measurements
We performed CRISPR-Cas9 (45) deep muta-
genesis to edit the folA gene on the bacterial
chromosome, randomizing nine nucleotide
positions in a part of the gene that is both
conserved and implicated in the evolution of
antibiotic resistance (Fig. 1A). The result is a
combinatorially complete library of almost 49

(262,144) DNA genotypes. They include all pos-
sible (643) combinations of codons that encode
three successive amino acids of DHFR (wild-
type sequence: 26A-27D-28L) (fig. S1). Missense
mutations at these positions provide high re-
sistance to the clinically important antibiotic
trimethoprim, which inhibits DHFR. We selec-
ted these three positions because they frequent-
ly acquire resistancemutations in experimental
evolution (46, 47) and because their proximity
to each other facilitates gene editing.
We exposed a population of E. coli cells ex-

pressing this library to a sublethal dose of tri-
methoprim and measured the fitness of library
members through deep sequencing in a sixfold
replicated mass-selection experiment. The re-
sulting data comprise folA variant frequencies
before and after selection for 99.7% (261,382/
262,144) of all possible variants (48). Variant
frequencies were highly consistent between
replicates (Pearson’s pairwise correlation co-
efficient r between replicates: 0.946 ≤ r ≤ 0.999;
fig. S2). We used these frequencies to calculate
the fitness of all DHFR variants relative to the
wild type. Population genetic theory shows (49)
that it is best to represent all fitness values on
a natural logarithmic scale (48). On this scale,
the fitness of thewild type has a value of 0, and
that of a variant with relative fitness 1 corre-
sponds to an exponential growth rate that is
e1 ≈ 2.718 times higher.
The fitness values we measured are highly

consistent with values obtained in a smaller in-
dependent experiment (N = 250 variants,
Pearson’s r = 0.972, P = 2 × 10−158; fig. S3, A and
B). Additional experiments confirmed that the
genetic background of ourE. coli strain did not
substantially alter the relative fitness of our
DHFR variants (fig. S3, C and D) (48). Finally,
to validate our fitness estimates, we isolated
30 DHFR variants and measured their growth
rate and resistance to trimethoprim in single
cultures expressing individual DHFR variants.
We found that relative fitness was highly cor-
related with the growth rate and resistance ob-
served in single cultures (figs. S3 to S5; Pearson’s
r = 0.993, P = 2.3 × 10−27 for growth rate;
Pearson’s r=0.987,P= 1.1 × 10−23 for resistance).

Functional DHFR variants vary widely in fitness
and contain few amino acids at a key position

Most DHFR variants (93%, 243,303/261,332)
have very low fitness (Fig. 1B). The distribution
of their fitness values is consistent with that
of variants with two stop codons (fig. S6).
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Because DHFR catalytic activity bears a nearly
linear relationship with E. coli fitness (50, 51),
we conclude that DHFR is inactive in these
variants. We thus refer to these variants as
nonfunctional, to distinguish them from the
remaining 18,029 functional variants. The func-
tional variants show highly variable fitness.
Among them are high fitness variants identi-
cal to several previously characterized folAmu-
tants (52) with clinically relevant trimethoprim
resistance levels that exceedwild-type resistance
by two orders ofmagnitude (fig. S7). Almost all
functional variants have a negatively charged
aspartic or glutamic acid at position 27 (Asp27

or Glu27; fig. S8A). This amino acid position is
highly conserved inDHFR (53) and highly prev-
alent in an alignment of 5000 orthologous
DHFR proteins from proteobacteria (Fig. 1C).
Consistent with a previous study that reported
a functionalmutant with a cysteine at position
27 (Cys27) (54), we identified many functional
Cys27 variants, even though the Cys27 allele is
absent from the 5000 proteobacterial sequences
we studied. Despite the importance of position
27, it does not solely determine the sequence-
function relationship, which depends on inter-

actions betweendifferent positions. For example,
Asp27 and Glu27 alleles confer high fitness in
combinationwith different sets of amino acids
at positions 26 and 28 (fig. S9).

The fitness landscape is rugged

To study the DHFR fitness landscape, we rep-
resented our data as a network or graph, in
which each node (vertex) represents a DHFR
variant and is associated with the variant’s fit-
ness. Any twoDHFR variants that differ at one
nucleotide position are immediate (one-mutant)
neighbors connected by an edge, which repre-
sents a singlemutational step. An evolutionary
path through this network consists of several
consecutive mutational steps. We restricted
such paths to functional DHFR variants by
removing all nonfunctional variants whose
neighbors comprise only other nonfunctional
variants. In contrast, we retained nonfunc-
tional variants that have at least one func-
tional neighbor in the network, reasoning that
raremutationsmay create a functional variant
from a nonfunctional neighbor.
Fifty-two percent of DHFR variants (135,178)

in this network are contained in the largest

connected subgraph [or “giant component”
(55)], which constitutes the fitness landscape
we analyze. Even though functional variants
make up only 13% of genotypes (18,019/135,178)
of this landscape, they form a densely con-
nected part of the landscape (fig. S8, B and C),
with as many functional-to-functional edges
(50%, 161,015/324,044) as nonfunctional-to-
functional edges. Almost 95% of functional
variants have the maximal possible number
of 27 (9 × 3) one-mutant neighbors, whereas
nonfunctional variants have only one neighbor
on average (fig. S8, B and C).
Next, we quantified our principal indicator

of ruggedness, the number of peaks (9, 11, 14),
that is, the number of DHFR variants that have
higher fitness than all their one-mutant neigh-
bors.We found that the landscape has 514 peaks
and is thus rugged (Fig. 2A). To compare, a
maximally rugged (uncorrelated) random NK
landscape would contain a similar number of
peaks (14) (see supplementary text section S1).
Most of these peaks (408/514) have low fitness,
meaning that they are less fit than the wild type
(fitness < 0). Thirty-three peaks have intermediate
fitness (from 0 to 1) and are enriched with

A

B C

Fig. 1. Creation of combinatorially complete library and distribution of
fitness effects. (A) Experimental design. We used CRISPR-Cas9 gene editing to
create a library of DHFR variants. We targeted a 9-nt segment of the folA
gene on the E. coli chromosome, which encodes three amino acids of DHFR
(A26-D27-L28; A, Ala; D, Asp; L, Leu). In the folded protein, these three amino acids
lie inside the substrate binding pocket (Protein Data Bank ID6XG5). We edited the
segment with degenerate oligonucleotides to obtain a library comprising 99.7% of
all theoretically possible DHFR genotypes for this segment. We used this library
to perform a mass selection experiment by growing six parallel cultures at the half-
inhibitory concentration of trimethoprim (0.4 mg/ml). We amplified the variable
DHFR region and performed Illumina paired-end deep sequencing. We determined

sequencing read counts for each variant before and after selection and used them
to calculate relative fitness. [Created with BioRender.com] (B) The distribution
of fitness effects in the library. The dashed red line indicates the cutoff value for
nonfunctional variants (−0.508), the blue solid line marks the fitness of the
wild-type variant, and the insets show the tail of the distribution near the wild type.
N = 261,332 variants. The inset indicates that the distribution has a heavy tail
near the wild type. (C) The frequency of amino acids at positions 26, 27, and 28.
The panels show the frequency of amino acids in the library before selection
(left panel) and after selection (middle panel). The right panel shows the
corresponding amino acid frequencies in DHFRs from proteobacteria, based on
an alignment of 5000 orthologous folA sequences.
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Cys27 variants. The remaining 73 peaks have
high fitness (>1) and consist exclusively of Asp27

and Glu27 variants (Fig. 2, A and B). Only one
Asp27 peak has a fitness of <1, which equals
0.87. For simplicity, we will refer to all Asp27

and Glu27 peaks (including this peak) as high
fitness peaks.
Because the location of different peaks in a

landscape may affect their evolutionary acces-
sibility, we sought to determinewhether peaks
are close together in the landscape. We did
so by computing the genetic (nucleotide) dis-
tance between all pairs of the 514 peaks, that
is, the minimal number of single-nucleotide
changes that are needed to convert one peak
into the other. We compared the resulting dis-
tance distribution with that of all pairs of 514
variants chosen at random from the landscape.
Their mean distances are very similar and lie
within 1% percent of each other (d = 6.67 for
peaks versus d = 6.61 for random variants, two-
sided Kolmogorov-Smirnov test D = 0.03, P <
10−308, N = 131,841; Fig. 2C). This pattern also
persists if we consider amino acid distances
instead of nucleotide distances (Fig. 2D). Most
importantly, the pattern extends to the high
fitness peaks (i.e., Glu27 and Asp27; fig. S10). In
sum, the DHFR landscape has many fitness
peaks that are scattered across the landscape
(fig. S11).

Fitness peaks are highly accessible

Considering the ruggedness of the landscape,
one might expect that any one peak may only

be accessible from a small fraction of variants.
To find out, we first examined for each var-
iant and peak whether accessible paths exist
from the variant to the peak. Such paths con-
sist only of beneficial (fitness-increasing) mu-
tational steps, because fundamental population
genetic principles dictate that weakly delete-
rious mutations are unlikely to go to fixation
in an organism such as E. coli, with its large
effective population size of 108 individuals (56).
More specifically, we determined the size of

each peak’s basin of attraction—the total num-
ber of variants from which the peak is acces-
sible. The size of this basin varies considerably
depending on peak fitness and which amino
acid is present at the critical position 27 (Fig.
3A). In our dataset, low fitness peaks generally
have small basins, with a median size of only
28 variants (0.02% of all variants). Interme-
diate fitness peaks (Cys27) have larger basins,
with amedian size of 7667 variants (5.7%).Most
notably, high fitness peaks (with Glu27 and
Asp27) have very large basins, whose median
size comprised the majority (69% or 93,597) of
variants. In general, peaks with higher fit-
ness had significantly larger basins of attrac-
tion (Spearman’s r = 0.61, P = 6.8 × 10−55,N =
514; fig. S12).
The large basin size of the Asp27 or Glu27

peaks indicates their accessibility. However,
even though accessible paths to any one high
fitness peak may exist, they may be few com-
pared with the total number of paths. To ex-
clude this possibility, we focused on all variants

within a peak’s basin of attraction and enum-
erated all shortest paths (accessible and inac-
cessible) from each variant to the peak. Not
unexpectedly, the number of total paths in-
creases exponentially with a variant’s distance
from a peak (Fig. 3B). Among these paths, the
fraction of accessible paths is very high at
modest distances to a peak but decreases with
increasing path length (Fig. 3C). For example,
at two, three, four, and five mutational steps
away from a peak, 86, 62, 39, and 21% of all
paths are accessible, respectively. At the dis-
tance of nine mutational steps, only 1% of
paths remain accessible.
In a perfectly smooth landscape, the length

of the shortest accessible path from any one
variant to a high fitness peak equals the ge-
netic distance between the variant and the peak.
In contrast, in a rugged landscape, even the
shortest accessible pathmaymeander through
the landscape and thus be much longer than
this genetic distance (52). However, despite our
landscape’s ruggedness, this is not the case.
Specifically, the mean length of the shortest
accessible path between a variant and a high
fitness peak (mean ± SD = 6.65 ± 1.9 muta-
tions) is less than one mutation longer than in
a smooth landscape (6.06 ± 1.22 mutations,
two-sided Kolmogorov-Smirnov test D = 0.15,
P < 10−308,N = 6,748,190) (Fig. 3D). Thus, high
fitness peaks have large basins of attraction
containing many short and accessible paths.

Adaptive evolution can easily reach high
fitness peaks via short paths

Even though high fitness peaks appear highly
accessible, their proportion (14%) is small com-
pared with the majority of low fitness peaks.
Would selection drive most evolving popula-
tions to one of the many (408) low fitness
peaks? To find out, we first simulated adaptive
evolution in the strong-selectionweak-mutation
regime (48, 57). This choice ismotivated by the
extremely low mutation rate for the 9-nt (nu-
cleotide) mutational target in the E. coli ge-
nome [(9 positions) × (2.2 × 10−10 mutations per
position per generation)] (58). In this regime,
adaptive evolution effectively becomes an adap-
tive walk (48).
We simulated 106 such walks, each starting

from a randomly chosen DHFR variant (func-
tional or nonfunctional). For all immediate
neighbors that are only one mutational step
away from this variant, we then calculated the
fixation probability of the corresponding mu-
tation. To this end, we used a well-established
expression derived by Kimura for the proba-
bility that a new mutation sweeps through a
population and becomes fixed (48, 59). This
expression takes into account the fitness dif-
ference of the mutant to the starting variant,
as well as the influence of genetic drift, whose
strength falls with increasing effective popula-
tion size. BecauseE. colihas very largepopulations
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Fig. 2. Fitness peaks. (A) The distribution of fitness estimates and corresponding standard errors for 514 variants
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(>108 individuals), most fixation events are
driven by selection. A population takes eachmu-
tational step with a probability that corresponds
to this fixation probability. We repeated this
procedure for every step of an adaptive walk
until the walk reached a fitness peak.
Despite the predominance of low fitness

peaks in our landscape, 76.5% of the adaptive
walks reached a high fitness peak (Fig. 3E).
These high fitness peaks exhibited trimeth-
oprim resistance at least two orders of mag-
nitude higher than the wild-type resistance
(fig. S7). Analyzing the evolutionary trajectories
leading to Asp and Glu peaks, we observed that
78% of walks began with acquiring a Glu27 or
Asp27 allele, before converging to high fit-
ness peaks (fig. S13, A and B). This suggests
that the fitness advantage of Asp27 and Glu27

alleles, together with strong selection, drives
populations to high fitness peaks (fig. S14).
However, additional analysis revealed that
nearly all accessible paths in our landscape lead
to high fitness peaks, regardless of the selection
gradients along these paths (see supplemen-
tary text sectionS2). On average, each variant
has 1200.4 ± 1685.8 shortest accessible paths

leading to high fitness peaks (mean ± SD, N =
134,662), compared with only 1.9 ± 5.7 paths
to low fitness peaks (fig. S13D). Notably, adap-
tive walks tend to find peaks via relatively
short paths, requiring only 5.6 ± 2.1 mutational
steps (mean±SD,N = 765,181) (Fig. 3F). Hence,
most populations can easily reach high fitness
peaks via short and abundant paths.
High fitness peaks are consistently accessi-

ble to Darwinian evolution across the different
assumptions we tested in the adaptive walk
simulations (fig. S15). However, these simu-
lations overlook population dynamics and dem-
ographic stochasticity, which could influence
peak accessibility by introducing clonal compe-
tition (60) or allowing populations to stochas-
tically escape fitness peaks (61). To address
this limitation, we performed individual-based
simulations at realistic population sizes and
mutation rates (48, 56, 62). When simulating
evolution in 2600 populations for 100,000 dis-
crete generations (fig. S16), we found that
73.1% of populations reach a high fitness peak
(fig. S15), with the majority requiring fewer
than 10,000 generations to do so (median ±
interquartile range = 4870 ± 10,552 generations;

fig. S17). These populations underwent 5.2 ± 1.8
selective sweeps (mean ± SD, N = 2034; fig.
S15F), a number that agrees with the mean
length of adaptive walks (5.6 ± 2.1 mutational
steps). In sum, individual-based simulations
confirm the high evolutionary accessibility of
Asp and Glu peaks, despite the competition
between clones (fig. S17, C to F) and rare cases
of fitness peak escape (fig. S17, A and B).

Simultaneous accessibility of peaks leads to
contingent evolution

Because high fitness peaks have enormous ba-
sins of attraction, we hypothesized that var-
iants must be members of multiple basins. To
quantify this overlap between different basins,
we first determined the proportion of variants
shared by any two basins. We found that Glu27

and Asp27 peaks shared 90.1 ± 6.4% (mean ±
SD, N = 2701) of the variants in their basins
(Fig. 4A). In contrast, the basins of the Cys27

peaks shared amuch smaller proportion of their
variants on average (mean ± SD = 22 ± 29%,
N = 903). Furthermore, the basins of Asp and
Glu peaks shared only 1.6 ± 1.6% (mean ±
SD, N = 3182) variants with those of Cys27

CB

ED F

A

Fig. 3. High fitness peaks are easily accessible. (A) Basin size of fitness peaks
depends on the amino acid at position 27 (horizontal axis). Basin size is shown
both as the number of variants in the basin (left vertical axis) and as the percentage
of the total number of the variants in the landscape (right vertical axis). (B) The
landscape contains many paths to high fitness peaks. The vertical axis shows the
total number of any shortest paths per variant to a high fitness peak. The horizontal
axis shows the length of the shortest path. Red and blue boxplots summarize the
number of paths for any shortest paths and accessible shortest paths. Each box
spans the interquartile range (IQR), each horizontal line inside a box indicates
the median value, and each whisker extends to the minimum or maximum value
within a 1.5 IQR interval. The data values beyond the 1.5 IQR interval are not shown.
N = 5,509,409,778 paths. (C) Proportion of accessible paths depends on path
length. The vertical axis shows the proportion of accessible paths leading to high

fitness peaks. Blue circles indicate the mean proportion of accessible paths at each
length. N = 4,876,880 variant-peak pairs. (D) Length of shortest accessible paths.
The blue line shows the length of shortest accessible paths leading from individual
variants to each fitness peak. The red line shows the distribution for the length
of any shortest path between corresponding variant-peak pairs (N = 6,748,190).
(E) Cumulative distribution of fitness values reached by 106 adaptive walks starting
from randomly selected variants. Dashed vertical line (x = 0): fitness of the wild
type; dotted vertical line (x = 0.87): fitness of the lowest among all high fitness
(Asp27/Glu27) peaks. (F) Length of adaptive walks. The vertical axis shows the length
of adaptive walks that reached a high fitness peak. The horizontal axis shows the
genetic distances between each starting variant and the attained peak. Red line
(y = x): length of the shortest possible path to a high fitness peak, which is given by
the genetic distance. Elements of boxplots are as in (B) (N = 765,181).
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peaks (Fig. 4B). In other words, only a small
proportion of variants had simultaneous ac-
cess to both Asp27/Glu27 andCys27 peaks. Overall,
77% (104,496/135,176) of variants (functional
and nonfunctional) had access to more than
one high fitness peak. Notably, 47.5% of all
variants in the landscape had simultaneous
access to all 74 high fitness peaks (Fig. 4C).
Such simultaneous accessibility of multiple

peaks can give rise to evolutionary contingency—
the dependence of a historical process on chance
events—because adaptive evolution starting
from the same location can lead to different
high fitness peaks. To test this hypothesis, we
simulated 106 additional adaptive walks, such
that 1000 walks started from each of 1000 ran-
domly chosen starting variants. Adaptive walks
originating from the same variant collectively
reached 31 different high fitness peaks (mean ±
SD = 29.5 ± 17.8 peaks, median 31; Fig. 4D),
confirming that simultaneous peak accessibil-
ity renders the identity of an attained fitness
peak contingent on chance events during adap-
tive evolution.
During adaptive evolution, not all high fit-

ness peaks are equally likely to be found by a
population starting from a particular variant.
For instance, 36 ± 25% (mean ± SD) of adap-
tive walks starting from the same location
in the landscape reach a single, most com-
monly attained high fitness peak (Fig. 4E).
But even walks converging to the same peak
are likely to use different paths (fig. S18), which
is another manifestation of contingency in our

landscape. In sum, the large size and highly
overlapping basins of attraction of different
peaks render evolution on our DHFR land-
scape highly contingent on stochastic events.

Discussion

The DHFR fitness landscape that we mapped
through CRISPR-Cas9 gene editing is highly
rugged, harboring 514 (mostly low) fitness peaks.
At the same time, the landscape displays mul-
tiple properties expected from a smooth land-
scape, including an abundance ofmonotonically
fitness-increasing paths to high fitness peaks,
enormous basins of attraction of these peaks,
and easy reachability of these peaks by most
evolving populations. High peak accessibility
in a rugged landscape contradicts thepredictions
of classical computational models of random
fitness landscapes, such as the NK landscape
(16). More biologically realistic models are
needed to explain our findings.One suchmodel
requires a trade-off between fitness in the
presence and absence of antibiotics, which is
not consistent with our data (fig. S19) (63). The-
oretical explanations of our observations thus
remain an exciting task for future work.
Our metric of ruggedness—the number of

peaks—correlates with other such metrics
(9, 11, 64). Among the most widely used is the
incidence of reciprocal sign epistasis (fig. S20A),
which refers to a nonadditive interaction be-
tween mutations, in which a combination of
two deleterious mutations produces a positive
fitness effect. This type of epistasis causes non-

monotonic fitness changes alongmutational paths
and can create local fitness reduction that sep-
arates fitness peaks (65). However, reciprocal
sign epistasis is necessary but not sufficient for
the existence of multiple peaks (20, 65, 66). In
our landscape, we found that 12.5% of mutant
pairs show reciprocal sign epistasis (fig. S20B).
This value falls within the range of other com-
binatorially complete landscapes (8 to 22%)
(40, 64, 67), where peak accessibility has not
been directly determined. In complex land-
scapes like these, the relationship between peak
accessibility and reciprocal sign epistasis may
also be complex, and simple proxies of rugged-
nessmay be less useful indicators of landscape
navigability than is commonly assumed.
Despite the presence of reciprocal sign epis-

tasis, high fitness peaks remain accessible via
short and abundant paths (Fig. 3). As a result,
extradimensional bypasses (38, 68, 69) (i.e.,
indirect and longer paths that detour around a
local fitness reduction) do not play a major
role in rendering fitness peaks accessible (sup-
plementary text section S3 and fig. S20, C and
D). In our analyses, we initially focused on
epistatic interactions between two nucleotide
positions. When exploring epistasis at three or
more positions (70), we identified the existence
of such higher-order interactions (fig. S21, A
to D). However, no more than three orders
are needed to explain 93% of fitness variation
in the landscape (fig. S21, E to K), and the
strongest interactions frequently involve nu-
cleotide positions within one codon (fig. S21, B

Fig. 4. Overlap of basins of attraction and evolu-
tionary contingency. (A) The heatmap shows
the fraction of variants shared by different basins
of attraction. Each row and each column correspond
to one peak, and peaks are classified according to
the amino acid at position 27. A value of one (red)
means that the basins of the corresponding peaks
comprise identical sets of variants, and a value
of zero (yellow) means that two basins do not
share any variants. The results are presented
as a symmetric matrix of pairwise fractional overlaps
between pairs of all 514 peaks. (B) A magnified
portion of the matrix including only peaks containing
Asp27, Glu27, and Cys27. The basins of high fitness
peaks (Glu27 and Asp27) share more than 90%
of their variants. (C) Distribution of the number of
high fitness peaks (Asp27/Glu27) that are accessible
to each variant (N = 135,178). (D) The distribution
shows the number of high fitness peaks discovered
by a total of 1000 populations evolving through
adaptive walks that start from the same variant.
Data are based on 106 adaptive walks, such that
103 walks started from the same variant among 103 randomly chosen starting variants. Adaptive walks starting from 21% (209/1000) variants did not reach any
high fitness peaks (vertical bar at x = 0). For the remaining starting variants, adaptive walks reached multiple high fitness peaks. (E) Adaptive walks preferentially
attain some high fitness peaks. The vertical axis shows the percentage of adaptive walks (out of 1000) that reached the most preferred peaks (horizontal axis). Each
gray line summarizes the data for 1000 adaptive walks started from the same variant. To reduce visual clutter, gray lines are shown for only 24 randomly selected
starting variants (24 gray lines). The black bold line shows the mean percentage for all 1000 starting variants.
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and C). Finally, we detected another type of
epistatic interaction, known as diminishing
returns epistasis. This epistasis manifests as
a reduction in fitness gains from beneficial
mutations as evolving populations approach
the maximum fitness (fig. S22). Diminishing
returns epistasis represents a form of global
epistasis, as it universally affects most muta-
tions at high fitness levels (71, 72).
Because the effective population size of E. coli

exceeds 108 individuals (56), selection is much
stronger than genetic drift. For any organism
with a large population size, even subtle differ-
ences in fitness canbeselectedupon.Forexample,
synonymousmutations can have ameasurable
effect on fitness, because of codon-specific ef-
fects on mRNA stability, and on the rate and
fidelity of translation (73–76). We thus consid-
ered all mutations (including synonymous
mutations) in our landscape as non-neutral.
However, we note that any existing technolo-
gies tomeasure fitness are limited bymeasure-
ment error. Specifically, even in our sixfold
replicated experiments with high sequencing
coverage, we had low power to detect fitness
differences of <5% (fig. S23). Such fitness dif-
ferences exist between 11% of all mutational
neighbors in the DHFR landscape. When we
consider these differences to be effectively
neutral, high fitness peaks remain accessible
albeit through longer adaptive walks (fig. S24).
Similarly, small population size does not sub-
stantially affect peak accessibility (fig. S24).
Thus, our main findings are not affected by
the neutrality assumption.
The simultaneous accessibility of multiple

fitness peaks results in evolutionary contin-
gency at the genotype level, because different
populations arrive atdifferenthigh fitnesspeaks.
Previous studies highlighted that genetic drift,
mutational stochasticity, and epistasis can create
such contingency (52, 77, 78). Our observations
show that such contingency can even arisewhen
drift is negligible. Genotypic contingency does
not preclude the predictability of phenotypic
evolution (46, 52, 77, 79, 80), asmost populations
attained high fitness in a given environment.
However, different genotypes with similar

fitness in one environment can have different
fitness in another environment. This creates
bifurcation points at which evolutionary tra-
jectories can diverge in a new environment
(78). Some of our high fitness genotypes illus-
trate this principle, as they differ in their fitness
on a chemically modified version of trimeth-
oprim (81). Whereas DHFR alleles Glu27 and
Thr26 provide resistance against this modified
antibiotic, allele Arg28 does not. All three al-
leles occur among the high fitness peaks of our
landscape (Thr26 occurs in 15 peaks, Glu27 occurs
in 34 peaks, and Arg28 occurs in 1 peak).
Depending on the peak it started from, a pop-
ulation subject to this modified antibiotic would
follow different evolutionary trajectories.More-

over, deformation of landscapes as a result of
an environmental change may open up new
evolutionary paths unavailable in a previous
environment (62, 82–84). Therefore, given the
frequent interactions between genotype and
environment (85), genotypic contingency is
likely to cause phenotypic divergence (78).
Our landscape is one of the largest empirical

landscapes currently available, but it covers
only a small segment of a single gene, whose
variation constitutes a tiny fraction of sequence
space. This is an unavoidable limitation of any
empirical landscape study. It also makes gen-
eralization difficult because the choice of muta-
tional target can affect the properties of a
reconstructed landscape (86). However, some
features explaining the high navigability of
our landscape may also apply to other land-
scapes. First, Glu27 and Asp27 peaks essentially
share one enormous basin of attraction. The
reason is that glutamate and aspartate are
physiochemically similar amino acids that are
encoded by similar codons in the standard
genetic code. More generally, the genetic code
has evolved to minimize the effect of muta-
tions on the physicochemical properties of
amino acids (87, 88), suggesting that basins
of attraction shared by adaptive peaks with
functionally similar amino acids should be
common in biological landscapes.
Second, we deliberately targeted a conserved

gene that encodes a key metabolic enzyme in
which a single mutation can lead to profound
fitness and pleiotropic effects (50, 89). Conse-
quently, only 7% of variants resulted in a func-
tional enzyme.Despite this constraint, functional
variants formed a landscape with many fitness-
increasing paths. If this phenomenon also exists
in the landscapes of other conserved genes, it
may help explain how pathogenic bacteria can
evolve antibiotic resistance by altering essen-
tial protein targets of antibiotics (e.g., RNA
polymerase, DNA gyrase, topoisomerase IV,
anddihydropteroate synthase) (90). A landscape
derived from a less-conserved gene would have
harbored many more functional variants and
thus potentially even more paths accessible to
Darwinian evolution than we observed. In con-
trast, fitness landscapes in which amino acid
positions have even stronger functional inter-
actions (such as an enzyme’s catalytic triad)
might be evolutionarily more constrained.
Future experiments using different mutation-
al targets, organisms, and sampling designwill
showwhether rugged yet highly navigable land-
scapes are typical or unusual.
When Sewall Wright coined the concept of

an adaptive landscape nearly a century ago, he
was concerned that multipeaked landscapes
may prevent adaptive Darwinian evolution
driven by natural selection (1). Simple theoret-
ical models developed in the 20th century sup-
port this concern (14, 16), but experimental
evidence has been lacking. The landscape we

studied shows that ruggedness need not im-
pairDarwinianadaptation, even though it creates
an enormous potential for contingent evolu-
tion. Our results suggest that we will need to
refine our current theoretical understanding
of the relationship between landscape rugged-
ness and navigability. Improved landscape the-
ory will have to capture realistic properties of
empirical landscapes, such as the sparsity of
high-order epistasis (19), the adaptational trade-
offs between different fitness components
(63), strong local correlation in fitness among
genotypes (41), and dense connectivity of se-
quence space (38, 69, 91). Because applica-
tions of landscapes extend to different fields
(4–8), including ecology (2), synthetic biology
(3), and biomedicine (92), better data and the-
ory on complex landscapes may also require
other fields to reevaluate the challenges of
optimization problems on their landscapes.
Even though a small fraction of peaksmay have
high fitness, in landscapes like that of DHFR,
these peaks can easily be discovered by blind
Darwinian evolution.

Materials and methods summary

Full materials andmethods are provided in the
supplementarymaterials (48). Inbrief,we edited
a 9-nt segment of the E. coli chromosomal gene
folA using the no-SCAR protocol (45). To en-
able deep mutagenesis, we had to solve two
problems. First, to allow cells with nonfunc-
tional DHFR variants to grow, we integrated
an inducible dfrB9 gene, which encodes an
alternative dihydrofolate reductase (unrelated
to E. coli DHFR), into the chromosome (figs.
S25 to S28). Second, to overcome a reduction
in the efficiency of gene editing caused by mis-
match DNA repair, we used a DNA repair–
deficient strain of the E. coli K12MG1655 (figs.
S25 and S29). During gene editing, we trans-
formed cells with a degenerate oligonucleotide
encoding all possible codon combinations for
positions 26, 27, and 28 of DHFR. We induced
the expression of the guide RNA and of Cas9
and recovered cells by activating dfrB9 expres-
sion. We stored the resulting DHFR mutant
library at −70°C.
To measure fitness, we recovered the mu-

tant library for 9 hours in M9-medium (0.4%
glucose, 0.2% casamino acids) in the absence
of dfrB9 expression (fig. S30). Next, we inoc-
ulated 5 × 106 cells into fresh M9 medium
(0.4% glucose, 0.2% casamino acids) contain-
ing 0.4 mg/ml of trimethoprim and incubated
the resulting culture for 14 hours at 225 rpm
and 30°C (fig. S31). We performed selection in
six parallel replicate cultures. We isolated DNA
fromall replicatesbefore andafter trimethoprim
selection and used it in a polymerase chain
reaction to amplify a 214–base pair (bp) DNA
fragment that spans the 9-nt mutated genome
locus. We used a commercial sequencing ser-
vice (150 bp paired-end Illumina NovaSeq
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6000 at Eurofins Genomics, Germany) and
implemented a custom analysis pipeline to
count DHFR variants using a conservative de-
tection threshold (=100 complete read pairs
combined in all replicates before selection; fig.
S32). We applied generalized linear regression
to estimate the selection coefficient for each
detected variant relative to the wild type (48).
We used fitness data and genetic distance

information to reconstruct the DHFR fitness
landscape as a graph (network), where nodes
(vertices) represent variants and edges (links)
represent single-nucleotide substitutions. In
general, we only considered fitness-increasing
edges accessible to Darwinian evolution. We
determined fitness peaks (variants with only
incoming edges), evolutionarily accessible paths
(sequences of strictly fitness-increasing edges),
basins of attraction (sets of all variants with
evolutionarily accessible paths to a given peak),
and pairwise overlaps among basins of attrac-
tion. For all the above analyses, we used the
igraph v.1.3.4 library in R v.4.1.3 (93).
To study adaptive evolution in our land-

scape, we performed numerical simulations
assuming strong selection andweakmutation,
resulting in populations being genetically mo-
nomorphic most of the time (occupying a
single genotype in the landscape), which al-
lowed us to model evolution as an adaptive
walk on the landscape (57). For each such walk,
we chose as a starting genotype a random
nonpeak variant in the graph. We then used
Kimura’s fixation probability (48, 59, 94) to
stochastically draw a next variant among the
genotype’s one-mutationneighbors and repeated
this process for, at most, 50 mutational steps
(fixation events) or until the randomwalk had
reached a fitness peak. In other random walk
simulations, we either always selected the fit-
test neighbor (greedy walks), or we assumed
a uniform fixation probability for all fitness-
increasing mutations. We performed a total of
106 stochastic simulations, except for the deter-
ministic greedy random walk, where we per-
formed 134,664 such simulations using custom
R code and the igraph library (48, 93). More-
over, we performed 2600 individual-based
simulations of haploid asexually reproducing
populations for 100,000 generations using the
simulation platform simuPop (48, 95).
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Editor’s summary
How many mutations does it take to move from one genetic fitness peak to another in a fitness landscape? Papkou et
al. performed mutagenesis to survey the combinatorial genotypic space of nine nucleotides encoding three successive
amino acids in a protein targeted by antibiotics in Escherichia coli. The authors found that most genotypes had low
fitness, but that traveling between high fitness peaks required surprisingly few mutations. This work represents an
exhaustive examination of more than 260,000 genotypes, surveying a nearly complete network of mutational paths to
answer a long-standing question. —Corinne Simonti
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