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Memory and modularity in cell-fate
decision making
Thomas M. Norman1*, Nathan D. Lord1*, Johan Paulsson1 & Richard Losick2

Genetically identical cells sharing an environment can display markedly different phenotypes. It is often unclear how
much of this variation derives from chance, external signals, or attempts by individual cells to exert autonomous pheno-
typic programs. By observing thousands of cells for hundreds of consecutive generations under constant conditions, we
dissect the stochastic decision between a solitary, motile state and a chained, sessile state in Bacillus subtilis. We show
that the motile state is ‘memoryless’, exhibiting no autonomous control over the time spent in the state. In contrast, the
time spent as connected chains of cells is tightly controlled, enforcing coordination among related cells in the multi-
cellular state. We show that the three-protein regulatory circuit governing the decision is modular, as initiation and
maintenance of chaining are genetically separable functions. As stimulation of the same initiating pathway triggers
biofilm formation, we argue that autonomous timing allows a trial commitment to multicellularity that external signals
could extend.

Cell-fate decisions often result from explicit extracellular triggers1–3. It
is now appreciated that internal stochastic fluctuations4–10 can also
drive a cell to switch fates even in the apparent absence of external
signals11–17. Neighbouring cells in the developing gonad of Caenorhabditis
elegans compete to become ventral uterine or anchor cells18, and sub-
populations of growing Escherichia coli cells probabilistically enter a
quiescent, antibiotic-resistant state14,19. But whether occurring in the
body of a nematode or in shaking culture, these decisions take place
against a backdrop of environmental change driven by continued growth.
With rising interest in quantitative properties of gene networks20,21, one
central question is how much of a cell’s behaviour can be attributed to
the environment and how much to the internal program, that is, the
behaviour the network would implement were the environment fixed.

A prototypical situation arises in the conversion of bacteria from
free-living, planktonic cells into sessile, multicellular communities
known as biofilms22,23. Like many complex fates, biofilm formation
is a product not just of a cell’s individual behaviour, but also of rein-
forcement by environmental cues created by nutrient depletion, the
production of matrix24, quorum sensing25, and hypoxia26. Here we use
a microfluidic device to investigate the earliest stages of multicellular
growth by the soil bacterium Bacillus subtilis. Our approach removes
confounding environmental influences while allowing for high-
throughput quantitative imaging, thereby revealing the cell’s internal
programs of development.

B. subtilis provides a natural model system for decision making.
During the exponential phase of growth, it exists in two states: as
individual, motile cells and as long, connected chains of sessile cells27.
Switching between these states has been thought of as a bet-hedging
strategy28–30, with motile cells acting as foragers and chains represent-
ing periodic attempts to settle down and start a colony. At the heart of
the decision is a simple three-protein network between SinI, SinR and
SlrR (refs 31, 32). Commitment to each state is controlled by a double-
negative feedback loop in which SinR represses the slrR gene, and SlrR
binds to and titrates SinR (Fig. 1a). Motility corresponds to the SlrRlow

state in which SinR represses the gene for SlrR and other chaining-
associated genes. Chaining occurs during the SlrRhigh state in which

SlrR forms a complex with SinR, both titrating its activity against
chaining genes and redirecting it to repress motility-associated genes33.
Although both states are present during exponential growth, the
chained state is strongly reinforced during biofilm formation by fur-
ther antagonism of SinR by SinI, which is produced in response to
environmental signals34,35. This three-gene network thus supports a
two-state process of decision making that can be influenced by envir-
onmental signals.

Visualizing fate switching in real time
Microfluidic systems that allow individual cells to be imaged over time
as the growth medium is replenished provide an excellent opportunity
to examine autonomous developmental programs. Extracellular sig-
nalling is removed, and cells cannot accumulate and starve themselves.
Building on previous studies14,36–40, we constructed microfluidic chan-
nels from polydimethylsiloxane (PDMS, Fig. 1b) that were sized to
accommodate chains of B. subtilis (75mm long and 1.6mm wide). A
unique feature of our design is the shallow side channels that surround
the cells, creating a ‘bath’ of medium that enables efficient feeding over
long length scales41. The channels are closed on one end, and on the
other they empty into a feeding channel that supplies fresh medium (by
diffusion) and washes away excess cells as they are pushed out by
growth. To prevent cells from swimming out of the channels, the ability
of the flagellum to generate force was disrupted through a straight
flagellum mutation42.

Only motile cells expressed the flagellin gene (Supplementary Video 1)
as visualized with a Phag-mKate2 reporter (coloured green), and only
chains expressed matrix genes as visualized with a PtapA-cfp reporter
(coloured red). We therefore used these reporters as proxies for the
corresponding phenotypic states. B. subtilis interconverted between
the motile and chained states while growing in the channels (Fig. 1c
and Supplementary Video 2), leading to anticorrelated flagellin and
matrix gene expression. In keeping with the premise that the chains
had switched to the SlrRhigh state, imaging of slrR (visualized with a
PslrR-mKate2 reporter, artificially coloured green) and matrix coexpression
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revealed that slrR was expressed in chains (Fig. 1d), and that matrix and
slrR expression were tightly correlated in time (Fig. 1e).

Several million cell divisions were imaged, but we only report data
for the fates of the uppermost cell in each channel, as these could be
monitored throughout the experiment without being washed away
(Fig. 2a and Supplementary Video 2). We thus tracked the histories of
thousands of individual bacteria through ,300 generations of growth.
To define more precisely the motile and chained states, we found
thresholds on the matrix reporter that coincided with onset of matrix
expression and the subsequent return of motility, but similar results
were obtained for a range of thresholds (Extended Data Fig. 1). All
measured properties remained constant in time and across the device:
a generation time of ,27 min was sustained for as long as 7 days
(Extended Data Fig. 2), chaining occurred at a uniform rate (Extended
Data Fig. 3), and within each lineage there was no correlation between
the lengths of successive visits to the motile state (Fig. 2b) or the chained
state (Extended Data Fig. 4). The switching behaviour was thus homo-
geneous throughout the device and experiment duration, reflecting a
stochastic process at steady state. With the influence of environmental

changes removed, we next set out to characterize the autonomous
motility and chaining programs.

Memoryless motility and timed chaining
We monitored transitions between motile and chained states to determine
whether cells exercise temporal control, or if they exit states indepen-
dently of their history. The latter memoryless behaviour would imply
exponentially distributed residence times between events and thus a
coefficient of variation (standard deviation divided by mean) in res-
idence times of CV 5 100%, whereas other switching mechanisms could
exploit history-dependence to produce narrower distributions. We
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Figure 1 | Tracking cell-fate switching in Bacillus subtilis. a, Genetic logic
governing the motile and chained states. b, Top and isometric schematics of
microfluidic channels in which individual bacteria are held. Channels connect
to a larger channel through which medium is continuously replaced and excess
cells are washed away. c, Kymograph showing a single cell (highlighted in
yellow) of strain TMN690 (Phag-gfp PtapA-mKate2 hagA233V) transitioning
from motile growth (marked in green by expression of a Phag-gfp reporter for
flagellin) to chained growth (marked in red by expression of a PtapA-mKate2
reporter for matrix expression). Frames are taken 10 min apart. d, Kymograph
showing co-expression of matrix and slrR reporters in TMN1180 cells
(PtapA-cfp PslrR-mKate2 hagA233V). e, Average co-expression profiles of
matrix (blue curve) and slrR (red curve) reporter expression in chains
(TMN1180, 25 events).
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Figure 2 | Dynamics of cell-fate switching. This figure examines chaining in
strain TMN1157 (Phag-mKate2 PtapA-cfp hagA233V). a, The uppermost cell’s
fate was tracked in each channel, yielding traces of flagellin (Phag-mKate2, green
curve) and matrix (PtapA-cfp, red curve) reporter expression. Five chaining
events are shaded. AU, arbitrary units. b, Correlation between subsequent
residence times in the motile state. c, Schematic of ageing curves. Memoryless
switching (blue dashed curve) between states gives rise to horizontal curves,
whereas deterministic timers (green dashed curve) create curves descending
with slope 21 from the average duration of the state hTi. Many other
mechanisms are bounded by these extremes (Supplementary Information): for
example, progression through a series of discrete, exponentially distributed
steps yields the grey curve. d, Distribution of motility periods (307 events). Red
curve shows exponential fit. Inset shows log transformed cumulative
distribution function of motility period duration (black curve) and the
exponential fit (red curve). e, The ageing curve for the motile state (black curve)
is compared to the expectation for memoryless switching adjusted for
undersampling of long motility periods (blue dashed curve; see Supplementary
Information) and that for a timer (green dashed curve). f, Distribution of chain
durations (440 events). g, Ageing curves for chains (blue curve) in cells wild
type for slrR (TMN1157) and pulses (red curve) in slrR mutant cells
(TMN1158, which is TMN1157 mutated for slrR). All qualitative features of
distributions were replicated in at least three separate experiments and
quantitative parameters in at least two.
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further quantified history dependence by asking how each state ‘ages’,
as measured by mean residual lifetime curves, that is, the expected time
left in a state given that the system is still there, as a function of time.
Memorylessness produces horizontal ageing curves (blue line in
Fig. 2c) whereas perfect timing produces linearly decreasing curves
with a slope of 21 (green curve in Fig. 2c)43.

The distribution of residence times in the motile state was almost
perfectly exponential with a mean of ,81 generations (,36 h) and
CV < 100% (Fig. 2d) after correcting for the length of the experiment
(see Supplementary Information). The ageing curve also conformed
to the expectation for an exponential random variable (Fig. 2e), and
we observed no correlations between the residence times of successive
events. Thus, despite the complex underlying circuit, cells decide to
chain according to the simplest possible switching scheme: a motile
cell does not ‘remember’ when it last chained, and the probability of
chaining is the same whether the cell has been motile for one genera-
tion or hundreds of generations.

Chains displayed a radically different behaviour. The residence
time distribution was sharply peaked at a mean of 7.6 generations
and had a 28% relative standard deviation (Fig. 2f), resembling a
gamma distribution with a shape parameter of 13 and with an ageing
curve prototypical of tight timing before eventually flattening out
(Fig. 2g). Thus, whereas motile cells set long average residence times
and allow widely variable commitments, chains instead orchestrate
briefer, tightly timed transitions. This difference makes teleological
sense given their respective lifestyles. As motile cells grow as indivi-
duals, their properties are insensitive to how long they remain motile,
leaving no obvious reason to keep track of the residence time. In
contrast, any decision that depends on coordination among progeny
will require some degree of memory. Chains have strong incentives to
preclude both very short and very long commitments. The chained
phenotype accumulates over time, where chaining for T generations
produces chains of length 2T. Relatively small differences in T then
translate into great differences in chain length. Memoryless exit from
the chained state would in fact have extreme consequences, where
many chains would break down almost instantaneously whereas
others could contain millions of cells. The narrow time distribution
guarantees a minimum chain length while preventing a high fraction
of cells from effectively entering the chained state irreversibly.

Memoryless initiation from noisy antagonism
Slow and memoryless switching can arise from positive feedback
loops, in which rare fluctuations allow the system to break out of
the basin of attraction of each stable point44. Indeed, one of the key
features of the motility-chaining decision network is the SinR–SlrR
double negative feedback loop. As expected, mutating slrR eliminated
chaining: over the course of a 6-day experiment, we saw sustained
high expression of flagellin in all cells and observed no morphological
evidence of cells growing as connected groups. However, our sensitive
time-lapse microscopy allowed us to detect exceedingly rare and weak
expression signals, showing that an slrR mutant exhibited small and
infrequent bursts of matrix expression (Fig. 3a and Supplementary
Video 3). We refer to these events as pulses, to distinguish them from
chains that pair high matrix expression with repression of flagellin.
We note that they also appear in the wild-type data, but fail to trigger
expression of slrR (Extended Data Fig. 5). Notably, the residence times
between subsequent initiation attempts, whether resulting in chains
or pulses, followed indistinguishable exponential distributions for
wild-type cells and the slrR mutant (Fig. 3b). Removal of SlrR thus
abolished the chaining phenotype, but left the memoryless process of
initiation perfectly intact.

Having determined that initiation arose from a factor upstream of
the feedback loop, we examined the SinI protein that antagonizes SinR
during biofilm formation. SinI was sufficient to drive chaining, as cells
containing an IPTG (isopropyl b-D-1-thiogalactopyranoside)-inducible
sinI gene rapidly chained upon induction. It was also necessary: cells

mutant for SinI did not chain, and pulses were absent in cells doubly
mutant for SinI and SlrR (red curve in Fig. 3c). These results suggest
that noisy antagonism of SinR by SinI drives spontaneous chaining in a
way that is quantitatively independent of the SlrR feedback control
system, as discussed below.

To test how cells control the duration of the chained state, we briefly
switched (10 min) on the inducible sinI gene to provide a defined
initiating signal (Fig. 4a and Supplementary Video 4). Notably, the
ageing behaviour of the resulting chains was virtually identical to that
of spontaneously occurring chains (see Figs 4b and 2g). Even switching
on SinI synthesis a second time in cells that had started to revert from
chaining (3 h after first pulse) or using a longer initiating signal led to
no increase in the average duration of the resulting chains (Extended
Data Fig. 6). The chained state is thus stereotyped: once a signal to
chain is registered, the same program is executed in a way that is
independent of the nature of the initiating signal or of the history of
the cell. This tight timing is an intrinsic property of the SinR–SlrR
feedback loop rather than the initiating event, as the spontaneous
pulses seen in slrR mutant cells showed little evidence of temporal
organization (red curve in Fig. 2g). Furthermore, chains lasted longer
than pulses under both spontaneous and induced conditions (Figs 4c, d),
suggesting that the feedback loop coordinated action after the initiating
signal had faded. Indeed, adding an additional copy of slrR to strengthen
feedback led to longer chaining events (Extended Data Fig. 7). Thus, we
again see network modularity45: just as the SinR–SlrR feedback loop
did not affect the initiation of chaining, the duration of the chained
state was independent of the initiation process.

To dissect how cells time their exit from the chained state, we ana-
lysed the temporal pattern of gene expression during hundreds of
chaining events. Examining the rate of gene expression in these traces
(Methods) revealed two distinct phases: a build-up phase of matrix
expression was followed by a pure dilution phase when expression was
negligible and levels exponentially decreased due to growth (Fig. 4e).
Motility then reinitiated once levels fell below a threshold. The two
phases were approximately equal in length, with the duration of the
dilution phase more narrowly distributed than the build-up phase
(CVbuild-up 5 0.44, CVdilution 5 0.23).
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Figure 3 | Memoryless initiation of chaining. a, An example trace of flagellin
(Phag-mKate2, green curve) and matrix (PtapA-cfp, red curve) reporter
expression from slrR mutant cells (TMN1158). Seven matrix pulses are shaded.
AU, arbitrary units. b, Log transformed cumulative distribution functions of
times between subsequent initiations (of pulses or chains) in cells from wild
type (blue curve, TMN1157, 399 events) or mutant for slrR (red curve,
TMN1158, 296 events) strains. Plotted this way, exponential distributions yield
straight lines. This result separately reproduced in a strain with different
fluorescent reporter proteins. c, Example matrix expression traces in slrR
mutant cells (blue curve, TMN1158), and in slrR mutant cells further deleted
for the initiator (sinI) (red curve, TMN1198).
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Expression rates in the build-up phase varied substantially between
chains at any given time (Extended Data Fig. 8), but also over time in
any given cell. By ensuring that each chain committed to an extended
build-up phase, SlrR allowed cells to effectively ‘time-average’4 over
such noisy expression rates as the total amount of accumulated pro-
tein reflected the average of a long history of expression. Because the
build-up phase was longer than the correlation time of the random
expression process, the variability between chains in matrix gene
expression decreased substantially as the build-up phase progressed
(Fig. 4f).

Variation in the outcome of the build-up phase meant that cells
with higher expression require more time to dilute, but the mechanism
of dilution naturally suppresses this heterogeneity. First, because the
dilution rate is set by cell growth rather than by a noisy reaction net-
work, dilution can potentially extend the time spent in the state without
adding heterogeneity. Indeed, we found that the dilution phase pro-
ceeded largely deterministically: the reporter’s intensity at the onset of
dilution precisely predicted the exit time, and the trajectories were well
described by exponential decay (Extended Data Fig. 9). The threshold
marking the end of dilution and entrance into the motile state thus

seemed high enough that random segregation of molecules between
daughter cells at low numbers10,46 was made irrelevant. Second, the
exponential nature of dilution—reducing levels twofold every generation—
further tightened control by making the timing robust to heterogeneity
in the initial level of protein. Specifically, the time spent diluting then
depends logarithmically rather than linearly on the initial amount.
Cells that, by chance, have much more or less protein initially, will
then vary marginally in the time spent diluting. Indeed, the 30% devia-
tions in matrix abundance at the onset of dilution was reduced to a 23%
deviation in the dilution time, closely following the expectation from a
noise-free exponential dilution process (Supplementary Information).
Thus, by extending the build-up phase in chains, SlrR is responsible for
translating widely variable initiating signals into a precisely timed
pattern of gene expression.

Memory enables multicellular cooperation
The choice between motility and multicellularity is central to the lives
of many bacteria, as cells must relinquish their autonomy to benefit
from living together22,23. The chaining program may underlie the
earliest steps of multicellularity: by coordinating behaviour across
many generations, the tight timing provided by SlrR enforces coop-
eration among the progeny of a cell that initiates a new sessile com-
munity. The long-term commitment to chaining seen during biofilm
formation could in turn rely on continued initiation or on feedback
mechanisms that lock cells into the multicellular state. Although we
saw no evidence that SlrR feedback could provide the requisite com-
mitment, the initiator SinI is indeed strongly expressed both in res-
ponse to desirable niches (for example, plant polysaccharides)47 and
growth-related stresses (for example, starvation or hypoxia)24,26. Our
results show that different environmental signals are channelled into
the same robust chaining behaviour, and cessation of the stimulus
ultimately leads to coordinated exit. Maintenance is thus contingent
on continued stimulation, but even small signals will suffice to renew
commitment. The role of SlrR feedback may thus be to provide a well-
defined ‘trial period’ of multicellular growth, the continuation of
which is periodically re-evaluated.

Regulation of chaining weaves together stochastic gene expression,
transcriptional feedback and post-translational regulation. Any quan-
titative property of the decision could therefore have been a product of
several factors acting together. Yet observation of thousands of chain-
ing decisions free from environmental influences revealed a modular
network that separates initiation from control of the residence time;
eliminating one function leaves the other intact in quantitative detail,
allowing the overall behaviour to be explained in terms of these two
pieces. This type of excitable dynamics, in which the system is ran-
domly kicked out of a stable state but returns after a well-defined
excursion, is often explained in terms of linked feedback loops, and
has been implicated in other B. subtilis decision networks16,17. In this
case, however, an exceedingly simple alternative mechanism may
explain most of the behaviour. SinR and SinI are known to form an
inactive complex with binding constants in the nanomolar range48.
Because more SinR is produced than SinI, SinR typically titrates out all
free SinI molecules, thereby acting as a buffer against small fluctua-
tions. However, a rare persistent accumulation of SinI levels transi-
ently reverses the roles, leading to a buffering pool of free SinI instead.
This mechanism can generate long periods of virtually no free SinI
(corresponding to the motile state) followed by long stretches of SinI
dominance, which induces chaining. The memory in the chained state
is in turn largely explained by the production-dilution mechanism
above, in which feedback could have a role in narrowing the prob-
ability distribution of time spent producing matrix proteins.

Other systems may also display memory and memorylessness for
the times spent sessile and motile, respectively49, but we suspect any
broader principles will follow from the sensitivity of a phenotype to
the time spent in the state. Decisions that aim only to set the occu-
pancy of a particular state14,15,19 do not require explicit timing, and
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Figure 4 | SlrR executes a stereotyped chaining program. a, Example matrix
and flagellin traces from strains where chaining (top panel, TMN1195 5 Phag-
mKate2 PtapA-cfp hagA233V Pspank-sinI) or pulsing (bottom panel, TMN1196,
which is TMN1195 mutated for slrR) were inducible by addition of IPTG.
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profiles for chains arising spontaneously (blue curve, TMN1157, 198 events)
and pulses arising spontaneously in slrR mutant cells (red curve, TMN1158, 278
events). Shaded regions denote 61 standard deviation. Average profiles are
scaled to reflect the average height difference between chains and pulses.
d, The same analysis for chains (blue curve, TMN1195, 26 events) and pulses
(red curve, TMN1196, 42 events) induced by addition of IPTG. e, Matrix
expression during chaining naturally breaks down into a build-up phase
(red curve), where synthesis of new proteins dominates, and a subsequent
dilution phase (blue curve). Grey curve shows the calculated synthesis rate
(see Supplementary Information) used to call the two phases. f, Long build-up
phases reduce noise in matrix expression by time averaging. The plot shows the
fraction of chains achieving a build-up phase of a given duration (black curve)
and the variability in matrix expression of those chains (red curve). Similar
results have been obtained in three replicate experiments.
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may therefore randomize commitments with memoryless switching.
In contrast, when the effectiveness of a cell-fate choice is tied to
population size50, timed decision making could again be used to
ensure cooperation among progeny. In metazoans, stochastic cell-fate
decisions are often stabilized after the fact by lateral inhibition18.
Timing the adopted state could provide an initial window of commit-
ment to give extracellular feedback time to take hold. Our approach—
observing the cell’s intrinsic dynamics while keeping everything else
static for extended periods of time—may reveal that many complex
developmental choices can be explained by surprisingly simple
dynamical principles in individual cells.

METHODS SUMMARY
Strains were grown to high density and loaded into freshly cast and bonded
microfluidic chips. A straight flagellum mutation in all strains (hagA233V) pre-
vents the flagellum from generating force so that motile cells cannot swim out of
the channels. Fresh LB medium was continuously supplied using syringe pumps,
and an automated fluorescence microscope maintained at 37 uC was used to
image cells every 10 min. When needed, 10-min pulses of 100mM IPTG were
used to induce chaining. The top cell in each channel was segmented (Extended
Data Fig. 10) and its fluorescence was quantified using a Matlab analysis pipeline.
Resulting reporter traces were used to produce residence time distributions by
finding thresholds on the matrix reporter that identified when the signal was first
distinguishable from background, and when motility reporter expression subse-
quently returned. The time between these two points was defined as the duration
of a chain or pulse, and the time between subsequent peaks was defined as the
time spent motile. The log transform of a cumulative distribution function F(t) is
2log[1 2 F(t)], which for exponential distributions yields a straight line. For a
distribution of times T, the ageing curve is m(t) 5 E[T 2 t j T . t]. Average chain
and pulse profiles were compiled by normalizing each peak height to 1, registering
the leading edges and averaging the aligned peaks. This normalization removes
variation due to peak height but leaves variation due to timing behaviour intact.
Chain ‘build-up’ and ‘dilution’ phases were identified by fitting matrix reporter
traces to a kinetic model and extracting expression rates at each point. The build-
up phase extends from beginning of the chain to the point where the dilution rate
is fivefold larger than the matrix expression rate, and the dilution phase comprises
the remainder of the chain.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Strain construction. All strains were derived from Bacillus subtilis NCIB3610
using standard molecular biology techniques. Strain genotypes, full construction
details and a list of primer sequences are provided in the Supplementary
Information. To prevent motile cells from swimming out of the channels, all
strains bore a hagA233V straight flagellum mutation, which impairs the ability
of the flagellum to generate force while leaving its construction intact42.
Microfluidic device fabrication. The master mould for the device was fabricated
in four layers by ultraviolet photolithography using standard methods (for detailed
protocol, see Supplementary Information). For each layer, Shipley or SU-8 (Microchem)
photoresist was applied to a silicon wafer by spin coating to appropriate thickness
(corresponding to the channel height) and patterns were then created by exposing
the uncured photoresist to ultraviolet light through custom quartz-chrome photo-
masks (Toppan Inc.).

Microfluidic devices were fabricated by moulding channel features into a poly-
dimethylsiloxane (PDMS) slab and then bonding that slab to a glass coverslip. To
produce the slab, dimethyl siloxane monomer (Sylgard 184) was mixed in a 5:1
ratio with curing agent, poured onto the silicon wafer master, degassed under
vacuum, and cured at 65 uC overnight. Holes to connect the feeding channels to
the external tubing used for medium perfusion were then introduced using a
biopsy punch, and individual chips were cut and bonded onto KOH-cleaned
cover slips using oxygen plasma treatment the day of the experiment. Bonded
chips were baked at 65 uC for at least an hour before use.
Cell preparation and device loading. Immediately before use, the microfluidic
device was passivated with a 10 mg ml21 solution of bovine serum albumin (BSA).
B. subtilis cells were grown to late stationary phase in LB to decrease their size and
thus increase efficiency of loading. They were then passed through a 5mm filter
(Pall Acrodisc) to remove chains, concentrated by centrifugation, and injected into
the feeding channel. The chip was mounted on a custom-machined platform that
could be inserted into a standard bench-top centrifuge, and cells were forced
into the cell channels by centrifugation. Syringes containing LB medium with
0.1 mg ml21 BSA were connected to the device using Tygon tubing (VWR), and
were pumped at a flow rate of 3ml min21 using syringe pumps (New Era Pump
Systems). BSA was provided as a lubricant to prevent cells (and chains in particu-
lar) from adhering to the surface of the main feeding conduit as they are pushed out
of the device.
Microscopy and image acquisition. The microfluidic device was mounted on a
fluorescence microscope immediately after loading. We used a Nikon Eclipse Ti
inverted microscope equipped with an Orca R2 (Hamamatsu) camera, a 360
Plan Apo oil objective (NA 1.4, Nikon), an automated stage (Ludl), and a
Lumencor SOLA fluorescent illumination system. Image acquisition was per-
formed using Matlab scripts interfacing with mManager51. The microscope was
encased in a custom-built incubator that maintained it at 37 uC throughout the
experiment. The following filter sets were used for acquisition: GFP (Semrock
GFP-1828A), mKate2 (Semrock mCherry-B), CFP (Semrock CFP-2432C), YFP
(Semrock YFP-2427B). The slrR/tapA co-expression experiment was performed
on an almost identically configured microscope that instead had a Lumencor
SPECTRA fluorescent illumination system. Exposures were done at very low
illumination intensities with 2 3 2 binning (CCD chip dimension of 1,344 3

1,024 pixels, pixel size of 6.45 mm 3 6.45 mm) and typical acquisition periods of
200–500 ms. The Lumencor light sources produce little ultraviolet or infrared
light, obviating the need for supplementary filters to block these wavelengths.
Cells were allowed to equilibrate in the device for several hours before imaging,
and all data before the first chain or pulse in each lineage was ignored in sub-
sequent analysis. Images were acquired every 10 min and saved as 16 bit TIFFs.
Focal drift was controlled through the use of the Nikon PerfectFocus system and a
custom-built, image-based autofocus that imaged a sacrificial position over many
planes.
Induction of chaining with IPTG. To induce chaining, two syringes carrying
either LB with 0.1 mg ml21 BSA or LB with 0.1 mg ml21 BSA and 100mM IPTG
(isopropyl b-D-1-thiogalactopyranoside) were connected via soft tubing to a
Y-junction connector that fed into a common line connected to the device. The
line that was not in use was clamped shut with a binder clip. Each syringe was

loaded into an independently controlled syringe pump, and a pulse of IPTG was
produced by switching to the IPTG-bearing syringe for 10 min.
Image processing and lineage construction. All data analysis was based on a
custom Matlab image processing pipeline described in detail in the Supplemen-
tary Information. For each image, the top cell in each channel was identified as
summarized in Extended Data Fig. 10. The mean fluorescence intensity within
these cells was then calculated for each fluorescence channel. A simple tracking
algorithm was used to follow cells as they grew and divided, producing long
lineages lasting the duration of the experiment. Cell division events were iden-
tified by looking for instances where a cell’s calculated area dropped to less than
60% of its previous value. If a tracked cell died spontaneously, the algorithm
continued the lineage from the dead cell’s closest relative.
Measuring residence times in the two states. Motility and chaining durations
were called by examining the trace of PtapA-cfp fluorescence within a lineage. To
identify the level of background fluorescence, rough peaks were identified using a
peak-finding algorithm (N. C. Yoder, available at http://www.mathworks.com/
matlabcentral/fileexchange/25500-peakfinder) on traces smoothed with a Savitzky–
Golay filter, and the average fluorescence outside these peaks was subtracted from
all traces. Final peak boundaries were called where the matrix reporter signal
crossed pre-defined thresholds. These thresholds were chosen to correspond to
phenotypic transitions: onset of matrix gene expression defines the beginning of
the peak, and onset of motility gene expression defines the end (Extended Data
Fig. 1). We note that the main conclusions of the paper are insensitive to the
threshold values (Extended Data Fig. 1). All peaks were manually curated before
calculating statistics.

With the cell-fate history of each lineage in hand, we compiled statistics
describing residence time in the chained state (chain/pulse periods) and residence
time in the motile state (subsequent initiation times and motility periods). We
define a chain or pulse period as the duration of matrix expression within a peak
(identified as described above) and the motility period as the duration of unin-
terrupted motility gene expression between chaining events. In Fig. 3b, we instead
measured the time between the start times of consecutive peaks (‘subsequent
initiations’), meaning either chains or pulses. Owing to the long average residence
time in the motile state, long motility periods are difficult to sample adequately.
We account for this issue in the calculation of motility-related statistics, and include
a complete discussion of the correction in the Supplementary Information.
Log transformation. We define the log transformation of a cumulative distri-
bution function F(t) as 2log[1 2 F(t)]. This transformation facilitates compar-
isons, as exponential distributions are transformed to straight lines.
Memory (mean residual lifetime). We measured the memory associated with
each state using the mean residual lifetime, defined as m(t) 5 E[T 2 t jT . t] for a
distribution of residence times, T. The mean residual lifetime at time t is the
average amount of time a cell will remain in its current state given that it has
already spent t time units there.
Average expression profiles. Average profiles of matrix gene expression during
pulses and chains were created by normalizing all measured events’ heights to 1,
aligning the events’ leading edges, and averaging the expression values at each
time point. This procedure normalizes away variability in peak height so that
variation between average traces derives primarily from differences in timing.
Identifying chain build-up and dilution phases. Each chaining event was
decomposed into ‘build-up’ and ‘dilution’ phases based on rates of matrix reporter
synthesis and dilution that were calculated from each trace. Briefly, traces were
smoothed using a Savitzky–Golay filter, the resulting polynomial was differen-
tiated, and the rate of expression was inferred from a kinetic model of gene
expression (see Supplementary Information) that assumed a time varying syn-
thesis rate and exponential degradation of reporter. The build-up phase was
defined as the time over which the synthesis rate of reporter was at least 20% of
the dilution rate, and the dilution phase was the remaining time in which dilution
dominated.

51. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of
microscopes using microManager. Curr. Protoc. Mol. Biol. Ch. 14, Unit14.20
(2010).
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Extended Data Figure 1 | Ageing behaviour is independent of choice of
threshold. Initially, the duration of a chaining event was called as the time
between when matrix expression was first detectable to when flagellin
expression began to increase. However, to compare chains (in strain
TMN1157) and pulses (in strain TMN1158), we examined whether it was
possible to call the end point using only the matrix reporter, as flagellin
expression does not fall during pulses. In both methods, the beginning of a
chain was called as the time when the matrix signal was first detectable
above background fluctuations (,0.033 arbitrary fluorescence units, AU;
see Supplementary Information). a, To call the end of a chain using only the
matrix signal, various thresholds were applied. The figure plots the difference in
chain duration between this single reporter method for different thresholds and
the two reporter method. A threshold of 0.15 AU called the duration of
chaining to within 20 min of the two-reporter method and was used throughout
the text to call the end of the events. b, To show that the primary conclusions are
unchanged by the choice of threshold, the ageing curves for the chained state
are plotted for all thresholds shown in the previous panel. As the motile state is
extremely long in comparison to the chained state, properties of the motile state
are completely insensitive to how we called chains.
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Extended Data Figure 2 | Cell growth is homogeneous in time. Sliding
window average of division time plotted as a function of time (in strain
TMN1158). Each point in the curve represents the average of all division times
that occurred within a 250-min window. The grey shaded area denotes 61
standard deviation, whereas the red shaded error denotes 61 standard error of
the mean. A flat trend indicates that conditions in the device do not change in
time.
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Extended Data Figure 3 | Chaining incidence is constant in time. Histogram
of the number of chaining events observed in successive 330-min windows in
the experiment described in Fig. 2 of the main text. As the number of observed
lineages was constant throughout the experiment, these measurements
reflect the average chaining rate in each window. A flat trend occurs when
this average rate is constant in time, and thus that the factors controlling the
switching decision have reached stationarity. Chains occurring early in our
experiments were excluded from subsequent analysis to avoid any transient
effects associated with adapting to growth in the device (Supplementary
Information).
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Extended Data Figure 4 | Successive visits to the chained state are
uncorrelated. Scatter plot of the durations of sequential visits to the chained
state within each wild-type lineage (440 events), analogous to Fig. 2b for the
motile state. Note that some points fall on top of each other owing to the
discrete nature of the measurements.
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Extended Data Figure 5 | SlrR is expressed strongly only in chains. Average
expression traces of slrR during chains (blue curve, 25 events) and pulses (green
curve, 14 events) seen in strain TMN1180 (PtapA-cfp PslrR-mKate2 hagA233V).
AU, arbitrary units.
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Extended Data Figure 6 | Chaining program is independent of cellular state.
To test whether the initial state of the cell influenced the chaining program, cells
(of strain TMN1195) were forced to chain with a burst of expression from an
IPTG-inducible sinI gene (created by switching to medium containing 100mM
IPTG for 10 min). When some cells began to return to the motile state (3 h
later), a second IPTG treatment was administered. a, Average matrix
expression profiles in chains induced by single pulses of IPTG (blue curve) or
two consecutive IPTG pulses (red curve). The average amount of time spent as a
chain after the second IPTG treatment was similar to the time seen in the
chained state after a single treatment (260 min versus 280 min, 177 and 28
events, respectively). b, Scatter plot comparing matrix expression level
(in arbitrary fluorescence units, AU) at the time of the second IPTG treatment
to the duration of the ensuing chain, indicating that the state of the cell at the
time of treatment had no effect on the subsequent chain duration. c, 10 min
(blue curve, 84 events) and 20 min (red curve, 99 events) IPTG treatments were
used to induce chaining, resulting in near identical distributions of chain
durations. Note that the 10-min data set contained two exceptionally long
chaining events that explain the slightly higher average duration.
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Extended Data Figure 7 | Strongly enhanced commitment to the chained
state in strains overexpressing slrR. The figure shows an example trace of a
chain made by the strain TMN1206 (PtapA-cfp Phag-mKate2 hagA233V
ywrK::PslrR-slrR), which bears an additional copy of the gene for SlrR under its
native promoter. In this strain, most chains last long enough that they are
eventually pulled out by the flow of fresh medium running through the device.
Using the time to fall-out as a lower bound for the average duration of the
chaining state suggests that the chained state lasts at least ,420 min (,15.5
generations) in these cells. AU, arbitrary units.
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Extended Data Figure 8 | Variation in matrix expression rate over time
during build-up phase. As described in the main text, chaining events can be
naturally broken down into a build-up period, when new synthesis dominates,
and a subsequent dilution period, where new synthesis is minimal. The rate of
matrix reporter expression was calculated at each time point during the build-
up period for all chaining events, producing a time-varying distribution of
possible expression rates. The figure plots the coefficient of variation of this
distribution, showing that expression rates show a roughly constant CV of ,0.5
over much of the build-up period. Note that most chains have ceased the build-
up phase by about 250 min in, so the end of the graph is less informative. This
figure should be compared with Fig. 4f, which shows that the CV in the
abundance of the matrix reporter decreases over the same period due to the
time averaging principle described in the main text.
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Extended Data Figure 9 | Dilution phase is well described by a deterministic
model for exponential decay. Scatter plot comparison of observed and
predicted dilution phase durations in spontaneous chains. Expected dilution
times were derived from a deterministic model for exponential decay of the
reporter (Supplementary Information). Close proximity to the line y 5 x (red
line) indicates that the data are well described by the model.
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Extended Data Figure 10 | Image processing used for image quantification.
a, Cells are identified using a constitutively expressed YFP construct. b, Images
are rotated so that channels are oriented vertically. c, Images are contrast
enhanced to better identify cell boundaries. d, Cells are preliminarily
identified by edge detection. e, The mask identifying cells is improved by
morphological processing. f, Mother cells are identified (highlighted in white).
g, Superposition of segmented cell boundaries and rotated data YFP image.
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