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Abstract 
Protein engineering often targets binding pockets or active sites which are enriched in epistasis—
non-additive interactions between amino acid substitutions—and where the combined effects of 
multiple single substitutions are difficult to predict. Few existing sequence-fitness datasets 
capture epistasis at large scale, especially for enzyme catalysis, limiting the development and 
assessment of model-guided enzyme engineering approaches. We present here a 
combinatorially complete, 160,000-variant fitness landscape across four residues in the active 
site of an enzyme. Assaying the native reaction of a thermostable β-subunit of tryptophan 
synthase (TrpB) in a non-native environment yielded a landscape characterized by significant 
epistasis and many local optima. These effects prevent simulated directed evolution approaches 
from efficiently reaching the global optimum. There is nonetheless wide variability in the 
effectiveness of different directed evolution approaches, which together provide experimental 
benchmarks for computational and machine learning workflows. The most-fit TrpB variants 
contain a substitution that is nearly absent in natural TrpB sequences—a result that conservation-
based predictions would not capture. Thus, although fitness prediction using evolutionary data 
can enrich in more-active variants, these approaches struggle to identify and differentiate among 
the most-active variants, even for this near-native function. Overall, this work presents a new, 
large-scale testing ground for model-guided enzyme engineering and suggests that efficient 
navigation of epistatic fitness landscapes can be improved by advances in both machine learning 
and physical modeling. 

 

Significance statement 
Predictive models for protein engineering seek to capture the relationship between protein 
sequence and function. While many methods and datasets exist for predicting the effects of 
single substitutions across a range of protein functions, fewer capture interactions among 
substitutions, which are much more difficult to predict. Even fewer do this comprehensively for a 
catalytic function. To provide a testbed for evaluating predictive models for enzyme engineering, 
we constructed and analyzed a 160,000-member enzyme sequence-fitness dataset at four 
interacting residues near the active site of tryptophan synthase, capturing significant non-additive 
effects of substitutions on catalytic function. It is necessary to predict and understand such 
interactions in order to efficiently traverse evolutionary landscapes and build machine learning 
models that accelerate protein engineering.  
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Main Text 

Introduction 
To engineer a protein for desired properties one must navigate the complex, and largely 
unknown, relationship between sequence and fitness, where fitness is defined by the engineer 
rather than evolution. The effects of amino acid substitutions on the multiple properties that 
determine protein fitness for a given task or application cannot be predicted reliably, especially in 
enzymes, which must guide substrates through intricate, often multi-step reaction pathways with 
high efficiency and selectivity. Currently, enzymes are optimized by directed evolution, in which 
sequential rounds of semi-rational or random mutagenesis and screening are used to accumulate 
beneficial mutations (1), a process that is time- and resource-intensive. Predictive models for 
protein fitness, including physical and machine-learning models, will help address urgent needs 
for new and better enzymes (2). However, the development of such models requires high-quality 
datasets for training, testing, and comparing new approaches. 

Most datasets used for developing and testing predictive models measure the effects of every 
amino acid substitution across many or even all residues in a protein sequence (3), providing 
information about single substitutions in the context of a single background sequence. Datasets 
like these provide no information about the effects of substitutions in different sequence contexts 
or how different substitutions interact with one another. In many instances, such effects are 
approximately independent (and therefore “additive”) (4, 5). When substitution effects are mostly 
independent, combining beneficial substitutions works well to generate improved variants (1), and 
simple models can often predict the fitnesses of double and even triple mutants from single-site 
data alone (6). Additivity breaks down, however, when substitutions interact, which can happen 
when residues are in close proximity or simultaneously interact with cofactors or substrates as in 
an enzyme active site (7). Because these sites are particularly important for improving fitness, 
efficient navigation of epistasis is important for many problems in enzyme engineering. 

In contrast to our rapidly improving ability to predict protein structure from sequence using 
machine learning methods (8–11), progress toward fitness prediction, most notably in epistatic 
regions of proteins, has been slow (12, 13). Combinatorial landscapes in which multiple sites are 
mutated simultaneously have been an important testing ground for prediction and navigation of 
epistatic effects (14–16), but few landscapes exist that deeply examine these interactions. There 
are a variety of landscapes that randomly sample single- and multi-mutants around a given 
starting sequence (17–20), but only a few that sample multi-mutants comprehensively via 
extensive mutagenesis at two or three sites simultaneously (21–23). Such landscapes are 
combinatorially complete, and every variant is characterized within a constrained search space, 
which enables exact calculation of all epistasis in the landscape (24). These landscapes can be 
used to test predictions of combined mutational effects and allow for direct comparison of 
laboratory evolution and machine learning-assisted methods via simulation (14, 15). The few 
existing 4-site-saturation landscapes measure binding (25, 26), a simpler function than enzyme 
catalysis which has proven to be more difficult for design (27, 28). We sought to measure a 
combinatorial fitness landscape of an enzyme active site, furnishing a dataset that would enable 
examination of epistasis in enzyme catalysis. By comparing this landscape to the well-studied 
GB1 binding protein landscape (26), we investigate how epistasis constrains evolution on protein 
fitness landscapes and use these analyses to inform protein engineering approaches and guide 
the development of new data-driven or physics-based methods for enzyme engineering. 
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Results 

Construction of multi-site-saturation combinatorial landscapes using a growth-based 
assay 
For this investigation, we chose the β-subunit of tryptophan synthase (TrpB), which synthesizes 
L-tryptophan (Trp) from indole and L-serine (Ser). TrpB has been extensively characterized and 
has a rich sequence diversity due to its presence in all kingdoms of life besides animals. Because 
Trp is essential for proteome replication and cell growth, a growth-based selection can be 
developed to measure fitness based on the activity of TrpB (Fig 1A). Such a growth-based 
selection has been demonstrated in a continuous evolution system, where TrpB variants were 
selected for their ability to complement Trp auxotrophy in yeast supplied with exogenous indole 
(29). We decided to monitor fitness in a similar fashion through a pooled-culture enrichment 
scheme that connects TrpB activity to growth rate. More-active TrpB variants in an Escherichia 
coli Trp auxotroph increase in frequency within the population over the course of selection. From 
measurements of the relative frequency of mutants through deep sequencing at various 
timepoints we can calculate a fitness value for each unique variant (Fig 1B) (30). 

We first constructed a strain of Trp-auxotrophic E. coli by deleting the trpA and trpB genes. 
Deletion of trpA avoids potential confounding allosteric interactions between the native E. coli α-
subunit of tryptophan synthase, TrpA, and the heterologous TmTrpB (31). TrpB variant Tm9D8*, 
derived from the hyperthermophile Thermotoga maritima, was selected as the parent enzyme. 
This variant was evolved to function in the absence of its native allosteric binding partner TrpA 
(32). Tm9D8* is also highly thermostable and exhibits high activity at E. coli growth temperatures 
(33), a useful feature for decoupling a substitution’s contribution to loss of catalytic activity from a 
loss of stability (4). Tm9D8* differs from wildtype TmTrpB by ten amino acid substitutions (P19G, 
E30G, I69V, K96L, P140L, N167D, I184F, L213P, G228S, and T292S). We verified that Tm9D8* 
could complement Trp auxotrophy with exogenous indole in Trp-dropout media (SI Appendix, Fig 
S1) and optimized indole concentration and expression conditions (Methods, Preliminary plate-
based independent growth assays, SI Appendix, Fig S2). 

We next created small libraries to validate the selection protocol against in vitro assays. Plate-
based independent growth rates and pooled-culture enrichment assays (Fig 1B) were performed 
for single- (20 possible variants) and double-site- (400 possible variants) saturation libraries using 
positions near the active site or ones that modulated TrpB activity in previous experiments. Plate-
based growth rate assays measured fitness by monitoring cell density of independent cultures 
over time (Methods, Preliminary plate-based independent growth assays, SI Appendix, Fig S3), 
whereas the pooled-culture enrichment assay fitness values were obtained by sequencing 
(Methods, Pooled-culture enrichment assay, SI Appendix, Fig S4). We compared both to the 
rates of Trp formation collected with in vitro lysate-based assays (34), observing a reasonable 
correlation across each of these activity measurements (SI Appendix, Fig S4–5). These results 
gave us confidence that the growth assays report on the rate of Trp synthesis (assay details in 
Methods, Preliminary in vitro rate of tryptophan formation assays).   

We then designed 3-site-saturation libraries (8,000 possible variants per library), targeting mainly 
residues in the active site known to impact activity as well as their neighbors. In total, 20 different 
residue positions were targeted in nine 3-site landscapes, with some overlapping positions (SI 
Appendix, Fig S6–7). These preliminary tests were designed to evaluate how well the pooled-
culture enrichment selection scaled to the larger library size, to identify residues that may 
participate in epistatic interactions, and to eliminate sites that were completely intolerant to 
mutation. As expected, we observed a range in the number of substitutions tolerated. Tolerance 
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to substitution also depended on the sequence context in which sites were mutated, indicating 
epistatic effects (SI Appendix, Fig S8–10).  

From among these positions, we chose four residues that displayed epistasis and provided a 
breadth of activities for a 4-site-saturation (160,000 variant) landscape: 183, 184, 227, and 228 
(Fig 1C). From the selection performed on the library at these four sites, 159,129 variants 
(99.45% of the total library) had sufficient sequencing coverage for quantification in both replicate 
experiments. Fitness values were calculated for all measured variants as described in Kowalsky 
et al. (35) for multiple timepoints and aggregated into a final fitness score per variant (Methods, 
Fitness score calculations, SI Appendix, Fig S11–12). Calculated fitness values of overlapping 
subsets of the 3- and 4-site libraries were highly correlated (SI Appendix, Fig S13). Analysis of 
the nearly one million unique codon combinations sampled showed that synonymous mutations 
had minimal impact on fitness, so these sequences were aggregated to report fitness for unique 
amino acid sequences (SI Appendix, Fig S14–15). The missing 871 fitness values were imputed 
for downstream analyses (Methods, Fitness score calculations, SI Appendix, Fig S16).  

Investigating the epistasis in combinatorial protein fitness landscapes 
The highest-fitness variant of the 4-site landscape—the global optimum—contained substitutions 
at all four sites (V183A, F184I, V227K, and S228G) with respect to the parent and is referred to 
hereafter as AIKG. Two substitutions, F184I and S228G, are reversions to wild-type residues in 
TmTrpB, consistent with the application of an assay designed to capture a near-native function. A 
third substitution, V183A, incorporates the fourth most-common residue at this position based on 
a multiple sequence alignment (MSA) for the parent Tm9D8* (referred to hereafter as VFVS), 
found in 10.41% of sequences (SI Appendix, Fig S17). The fourth V227K substitution was 
surprising: V227K occurs at near-noise levels (0.01%) in natural sequences (SI Appendix, Fig 
S17) but is clearly beneficial under the assay conditions. Overall, the sequences which were 
beneficial under these assay conditions appeared more diverse than what might be suspected 
based on an MSA (SI Appendix, Fig S18). Beyond AIKG, 227K occurred in all ten top variants 
and in nearly half of the top fifty (SI Appendix, Fig S19). Despite this strong preference, however, 
227K is not uniformly beneficial. For example, in the context of the parent sequence of VFVS, it 
essentially ablates activity and requires the S228G substitution before yielding an improved 
variant. 

For further analysis, we defined an activity threshold as 1.96 standard deviations above the mean 
fitness of all stop-codon-containing sequences (all of which are expected to be inactive) over both 
replicates. This threshold is the 97.5th percentile of a normal distribution fit to the fitnesses of the 
stop-codon-containing sequences. Sequences with fitness values below this threshold were 
classified as “inactive”, which left 9,783 “active” variants (6.11% of the library) whose activities 
could be reliably quantified (SI Appendix, Fig S20).  

Among the active TrpB and GB1 variants, we quantified pairwise epistasis (Methods, Pairwise 
epistasis calculations and analyses), including magnitude, reciprocal sign, and sign epistasis for 
all paths (Fig 2A). Magnitude epistasis, which occurs when the combined effects of two 
substitutions are in the same direction as expected but are not perfectly additive, is navigable by 
step-wise or recombination-based DE approaches. Since both additive and magnitude epistasis 
are navigable by traditional DE approaches, we binned additive mutations along with magnitude 
effects, which additionally avoids setting a tolerance for experimental deviation to determine truly 
additive vs. non-additive effects. Sign epistasis occurs when the effect of one of the substitutions 
changes direction in the context of the other—it is therefore only navigable by step-wise DE 
approaches if substitutions are made in the correct order, which is not known a priori. Finally, 
reciprocal sign epistasis occurs when the effects of both substitutions change direction when they 
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are made together and is therefore not navigable by DE approaches that use only beneficial 
substitutions. 

We examined the fractions of the different types of pairwise epistasis in the TrpB and GB1 
landscapes across all fitness quartiles of the starting variant (Fig 2B). Generally, magnitude 
epistasis dominates across all fitness quartiles, followed by sign epistasis, and finally by 
reciprocal sign epistasis. Previous work showed that the mean fraction of each type of epistasis 
could be impacted by the fitness of the initial variant for the GB1 landscape (26), but we were 
surprised to see that the mean fraction stayed fairly constant for the TrpB landscape (mean sign 
epistasis: Q1=35% vs. Q4=31%; mean reciprocal sign epistasis: Q1=9% vs. Q4=8%), with the 
variance of the distributions decreasing with increasing fitness (SI Appendix Fig S21, Table S12). 
The mean fraction was more variable across fitness quartiles in the GB1 landscape, supporting 
previous results, but changes were overall modest (mean sign epistasis: Q1=35% vs. Q4=28%; 
mean reciprocal sign epistasis: Q1=11% vs. Q4=5%). 

When grouping across pairs of positions for the pairwise analysis, we expected to see differences 
between the distributions of epistasis types for each pair, especially since the TrpB landscape is 
composed of two pairs of positions on either side of a cofactor. We were surprised to see how 
similar the fractions of each type of epistasis were across position pairs (Fig 2C,D), with averages 
ranging from 30–37% sign and 8–12% reciprocal sign for TrpB and 27–35% sign and 4–25% 
reciprocal sign for GB1 (SI Appendix, Table S13). The 41/54 pair in GB1 was a notable standout 
as it had significantly more reciprocal sign epistasis than the other pairs (25% vs. 13% for the 
next highest pair). The distributions were quite broad, however, and there was a wide range of 
fractions of each epistasis type for a given starting sequence (SI Appendix, Fig S22–23). The fact 
that the average fractions of each type of epistasis are so similar across six pairs of positions that 
are close in proximity in both a binding protein and an enzyme is striking. Further investigation of 
other multi-site saturation landscapes is required to probe the generality of this observation.  

Next, we quantified the magnitude of the epistasis types for both landscapes and compared all of 
these effects to a null model built from an additive landscape injected with noise based on that of 
the TrpB landscape (Methods, Construction of a null model). The null model had 74% magnitude, 
22% sign, and 4% reciprocal sign epistasis—significantly less sign and reciprocal sign epistasis 
than the TrpB and GB1 landscapes (SI Appendix, Fig S21–24, Table S13–14). Furthermore, the 
extent of these effects is much smaller than in the TrpB and GB1 landscapes (average absolute 
value of epsilon for each epistasis type (magnitude/sign/reciprocal sign) for null model: 
0.11/0.23/0.39; TrpB: 0.34/0.59/1.04; GB1: 0.41/0.78/1.56; SI Appendix, Fig S25–27). Finally, we 
examined how well a global epistasis model proposed by Otwinowski et al. (36), which seeks to 
capture how a nonlinear function may transform underlying additive interactions on a trait into 
epistatic ones, accounts for the epistasis found in the TrpB and GB1 landscapes (SI Appendix, 
Figure S28). We observed correlations of r2=0.59 for GB1 and r2=0.76 for TrpB between the true 
fitness and the fitness predicted by the global epistasis model, suggesting a mixture of both 
global and complex epistasis contributes to the epistasis in both landscapes. 

Epistasis constrains navigation of sequence-fitness landscapes 
To investigate how navigation of the landscape is constrained by epistasis, we first built 
directional graphs linking any active variant to the best variant in the landscape, AIKG, via single 
substitutions (Fig 3A, Methods, Path analyses). For this analysis, only direct paths were 
considered, with a maximum number of steps equal to the Hamming distance (HD) between the 
initial and final variants (i.e., we did not allow “side-steps” through other variants via 
extradimensional bypass (26)). Using these graphs, we determined the fraction of starting points 
which have at least one possible path to the top and found that, if no deleterious steps are 
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allowed, ~20% of the starting points cannot reach the global optimum, AIKG, via any single-step 
path, and therefore must navigate sign and/or reciprocal sign epistasis to do so (Fig 3B). 
Accounting for assay noise or a less restrictive evolutionary pressure, we looked at how changing 
the allowed magnitude of deleterious steps enabled access to more paths to the best variant. We 
allowed steps accompanied by a 0% to a 100% decrease in fitness (at which point all steps are 
allowed, and thus all paths accessible) and observed that even allowing any step up to 50% 
worse still resulted in 6.8% of starting variants having no possible pathway to the top. Such 
strongly deleterious substitutions are unlikely to accumulate during natural or laboratory evolution 
under an explicit selective pressure. During directed evolution, screening throughput is usually 
limiting, and resources must be allocated with care. There are far more deleterious substitutions 
than beneficial ones and no way to know which downward step eventually leads to a more-fit 
variant. This makes accepting deleterious substitutions a highly risky decision, as one must 
effectively take a blind chance. In reality, such variants would be discarded and prevented from 
reaching the global optimum in an evolutionary search.  

These evolutionary constraints can be investigated in more detail using empirical cumulative 
distribution functions (ECDFs) that represent the fraction of variants that have at least a given 
fraction of paths accessible to the top variant (Fig 3C). The greater the number of variants that 
display a low fraction of accessible paths to the top (e.g., 1/24 paths), the more left-shifted the 
ECDF. When no deleterious steps are allowed, only ~25% of the paths to the top variant are 
accessible from the median starting variant (the ECDF at y = 0.5). To enable the median starting 
variant to have all paths to the top variant accessible, one must be willing to accept steps with up 
to a 90% reduction in fitness. 

We next examined the local optima, defined as variants where no single substitution of an active 
variant yields an improvement. For TrpB, there are 520 total optima (5.3% of the active variants), 
one of which is the global optimum, AIKG (SI Appendix, Fig S29). The second and third highest 
optima, CLKG and VLCS, have fitness values of 0.93 and 0.75, respectively. Of the 519 local 
optima, 510 (98.3%) could be escaped via two simultaneous substitutions, while the remaining 
nine required three simultaneous substitutions. The GB1 landscape has only 29 total optima (26). 
We also examined the local optima within the null model landscape, finding that experimental 
noise may make low-fitness regions appear more rugged. This landscape had 87 local optima, 
which were all below 10% of the max fitness (SI Appendix, Fig S29). Accounting for this, the TrpB 
landscape still had 175 local optima with fitnesses above that of the highest fitness local optimum 
in the null model landscape—over five times as many as GB1. These data could perhaps suggest 
that enzyme fitness landscapes are inherently more rugged (e.g., perhaps due to higher 
sensitivity to substitutions for ground states and transition states), but we caution against 
generalizing before many more such comparisons are made, because ruggedness is highly 
dependent on site- and selection-based factors as well. 

For further characterization of the local optima, we focused on the top 20 (fitness values ranged 
from 0.38–1). Allowing no downward steps, we observed a tendency for the number of starting 
variants with at least one path to the local optimum to decrease as the fitness of the local 
optimum decreased (SI Appendix, Fig S29–30). This could be due to multiple factors, one of 
which is that more of the paths must pass through variants with higher fitnesses than the optima, 
which would make them inaccessible. A strong correlation between optima fitness and basin of 
attraction size (number of variants that can access an optimum) has also been reported (22). 
Most of the top 20 local optima remained reasonably accessible, however, meaning they could 
trap single-step experimental approaches. Altogether, these results suggest that the TrpB 
landscape is enriched in evolution-constraining epistasis compared to GB1, and experimental 
paths may be trapped more easily at local optima.  
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We also examined how the effects of epistasis influence the results of directed evolution. We 
considered three different directed evolution approaches that can also serve as competitive 
benchmarks for predictive approaches: Method 1) site-saturation mutagenesis (SSM) at each of 
the four sites in parallel followed by recombination of the best variants at each site; Method 2) 
single-step sequential SSM, using the best variant at one site as the parent for the next until all 
four sites have been examined, starting from any of the sites; and Method 3) SSM at each site in 
parallel followed by direct synthesis of the top N additivity-predicted variants — 96 variants in this 
case (Fig 3D). Because we enforced the sampling of every single substitution during the site-
saturation mutagenesis steps, we would expect to obtain the max fitness every time with each of 
these approaches if the landscapes exhibited no epistasis. Only Method 2 has the potential to 
navigate sign and reciprocal sign epistasis, as it samples a new sequence context in each round 
of SSM, and therefore can discover previously deleterious substitutions that have become 
beneficial (37). However, the substitutions must be made in the correct order, which is unknown a 
priori, for it to be efficient.   

For both the TrpB and the GB1 data, we saw the same pattern of performance: Method 3 
performed the best, then Method 2, and then Method 1 (Fig 3E, F), starting from one of the top 
9,783 variants in either landscape (the number of active variants in the TrpB landscape). The 
same simulations were run for the null model, where the same pattern of performance was 
observed, but with a much higher probability of reaching the global maximum for all methods (SI 
Appendix, Fig S31, Table S15). This suggests that the epistasis due to noise alone is insufficient 
to exert a strong influence over the outcome of directed evolution on this landscape. Increasing 
the number of variants tested in the second round of Method 3, N, improved the results slightly 
(SI Appendix, Fig S32). Note, however, that Method 3 requires direct synthesis of these N 
sequences, which can result in significant extra cost over Methods 1 and 2. Changing the number 
of starting points used for GB1 changed the results significantly, with simulations starting from 
any active variant performing much worse (SI Appendix, Fig S33). If simulations are allowed to 
start from any variant (active or inactive), the performance was also much worse for both 
landscapes (SI Appendix, Fig S34). The performance drop was similar for the two landscapes for 
Methods 1 and 3, but Method 2 on GB1 saw a much less drastic drop in performance, working 
better than Method 3 on average. This suggests that Method 2 may be more robust than Method 
3 and able to increase fitness more reliably in noisy, low-fitness regimes. These results in 
combination with time and cost considerations provide guidelines for selecting an experimental 
approach to explore epistatic regions of sequence space. 

Experimental design enables capture of enzymatic parameters of interest 
The conditions of the pooled-culture enrichment assays and the starting sequence for this 
experiment were chosen to improve the chances of capturing enzyme-specific attributes and 
avoid the dominance of stability effects. To verify that this was indeed the case, we compared 
observed fitness values with catalytic parameters of select variants and measured stability 
changes. As noted previously, sequences with K227 dominated the growth assay despite lysine 
at this site being nearly non-existent across known TrpB-like sequences. This suggested to us 
that K227 may exert some deleterious effect that is not observed under the assay conditions but 
is subject to natural selection. For example, it may increase the KM for indole such that it is not 
competitive under physiological conditions but works well when indole is added exogenously at 
200 µM, as in this assay. Alternatively (or additionally), K227 may be highly destabilizing, but not 
enough to unfold the thermostable TmTrpB variant at E. coli growth temperatures. (Indeed, this 
possibility motivated the use of a thermostable parent sequence at the outset of this study.) 
Therefore, we chose a set of variants to characterize in more depth, including all variants in the 
single possible path from Tm9D8* to the top variant (Fig 3A), as well as the four other variants in 
the top five (CLKG, ALKG, CIKG, and VLKG), which also all contained K227. 
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To assess stability, we determined the temperature at which a 1-hour incubation causes an 
irreversible 50% reduction in activity as compared to a room temperature incubation (T50) (Table 
1, SI Appendix, Table S16, Fig S35–36, Methods, T50 measurements). The only possible upward 
path between Tm9D8* (VFVS) and AIKG first requires F184I, which exerts no effect on T50, 
followed by S228G, which imparts a >1 °C increase. From here, two large decreases in stability 
come from the remaining two substitutions: a change of more than -7.2 °C from V227K and -1.7 
°C from V183A to 91.0 °C — a T50 about 8.0 °C lower than the starting variant under these 
conditions. All five top variants (all of which contain K227) exhibited T50 values similar to AIKG  
(90.1–93.2 °C, or 5.8–8.9 °C below the starting variant). Drops in stability this large would likely 
lead to loss of function under native conditions, where proteins are typically only marginally more 
stable than the optimal growth temperature of their host (38), suggesting one reason why K227 is 
absent from the evolutionary record despite emerging as highly fit at E. coli growth temperatures. 

Additionally, we measured the kinetic parameters of the starting variant, Tm9D8* (VFVS), the 
best variant (AIKG), and VIVG, the variant with two wild-type reversions and high stability in the 
middle of the path from Tm9D8* to AIKG. All three enzymes were expressed and purified for 
characterization via Michaelis-Menten kinetics (Table 1, Methods, Enzyme purification, 
crystallography, and measurement of kinetic parameters, SI Appendix, Fig S37–39). We 
observed that the kcat values for the three enzymes roughly mirrored the fitness values we 
obtained for them in the high-throughput growth assay. We also observed that the two wild-type 
reversions caused a significant decrease in KM for indole in VIVG, while the KM of AIKG for indole 
was similar to Tm9D8*.  

Importantly, while AIKG displays a higher rate of Trp formation at the 200 µM indole 
concentration used during the growth assay, it reacts more slowly than VIVG at indole 
concentrations below ~50 µM (SI Appendix, Fig S38), which may better represent its native 
conditions. Both AIKG and VIVG had KM values for Ser roughly half that of Tm9D8* (Table 1). 
These results, coupled with the decrease in stability, help explain how K227 can be nearly non-
existent in native TrpB enzymes but optimal in this near-native assay. The observation of such 
effects was enabled by a highly thermostable parent enzyme that decouples mutation effects on 
stability from effects on activity.  

Classifying active and inactive variants using off-the-shelf fitness predictors 
Given the complexity of enzyme catalysis, we suspected that structure-based predictors of the 
fitness effects of substitutions that work well for a small binding protein (15, 39) may not be as 
useful for an enzyme. Instead, we recognized that the abundance of TrpB sequences can be 
used to generate deep multiple sequence alignments (MSAs) that are more amenable to 
evolutionary-scale predictors (40, 41), especially since we assayed a near-native function of 
TrpB. We analyzed the enzyme data with both Triad protein design software using a Rosetta 
energy function (Protabit, Pasadena, CA, USA: https://triad.protabit.com), which provides a score 
that aims to predict stability, and EVmutation (40), which gives a score that aims to predict the 
fitness effect of a given set of substitutions based on conservation and evolutionary couplings. As 
a starting structure for the Triad calculations, we obtained a 2.15-Å resolution structure of 
Tm9D8* (PDB ID: 8VHH, SI Appendix, Table S17). We found that EVmutation is the better 
classifier of active and inactive variants for the TrpB landscape, despite performing poorly for 
GB1, which has a much less diverse MSA (Fig 4A). However, neither EVmutation nor Triad is 
well correlated to fitness for TrpB (Fig 4B) or GB1 (Fig 4C). Despite this, sampling variants above 
a threshold from EVmutation can increase the fraction of fit variants sampled as well as 
significantly improve the mean fitness of a sample. A Triad score threshold is less successful for 
TrpB, struggling to enrich in both fraction active and mean fitness despite working well for GB1. 
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Discussion 

TrpB is conserved across all domains of life, acting in primary metabolism to perform the final 
step of Trp biosynthesis. Here we provide a combinatorially complete, 160,000-variant fitness 
landscape of substitutions at four residues in the active site of this ubiquitous enzyme, the first 
landscape of its kind that reports on enzyme catalysis. The topography of this landscape reflects 
significant epistasis, which results in many indirect adaptive paths and local optima that can 
stymie traditional directed evolution methodologies. We expect this landscape to provide a useful 
testing ground for laboratory and predictive protein engineering approaches as we learn to 
navigate epistatic enzyme fitness landscapes. 

To generate a landscape useful for examining epistasis, we first generated nine 3-site libraries 
(8,000 variants each) across 20 different sites, aiming to identify sites that were permissive 
enough to retain a significant number of active variants to analyze. From this we identified four 
sites in TrpB enriched in epistatic mutations to construct the full 160,000-variant library. The 
resulting landscapes and the epistasis they contain reflect the fitness of the TrpB variants under 
the selected experimental conditions, which can influence the extent of the epistasis in a 
landscape (42). Calculation of pairwise epistasis of both the TrpB and previous GB1 landscapes 
showed that both have significant sign and reciprocal sign epistasis that occurs between all 
sampled positions and for initial variants of all fitness levels. This epistasis was shown to 
constrain the ability of directed evolution to reach the fitness peak, and our evolution simulations 
showed that some methods are more effective than others. However, the methods we tested 
require the measurement of different numbers of variants, a different number of evolution rounds, 
and different costs. For example, although site-saturation mutagenesis at all positions followed by 
testing of the top 96 additively predicted variants performed the best, direct synthesis of variants 
can be expensive. If synthesis cost is a major factor, other methods might be better choices, at 
the cost of time.  

The assay conditions in this study were designed to capture catalytic parameters, but ultimately 
the high-throughput fitness measurements are scalar quantities resulting from the aggregate 
influence of factors such as stability, substrate binding, catalytic rate, and environment on growth 
of the E. coli expressing TrpB. The emergence of the destabilizing but activating K227 
substitution suggests that catalytic rate is a prominent factor contributing to the calculated fitness 
values. However, here we characterized only a few of the most active variants; loss of stability 
could have caused catastrophic loss of fitness for others that were not observed (43). Emerging 
high-throughput stability (44) and kinetics measurements (45) could further disentangle the 
contributions of stability and activity within this fitness landscape. 

Navigation of epistatic landscapes is made more efficient by recognizing that the sources of 
epistasis are diverse, and these non-linear effects can arise due to changes in any of the myriad 
factors contributing to fitness. Our results also show that the epistasis of both the GB1 and TrpB 
landscapes arises from both global and complex (local) epistasis, increasing the complexity that 
must be considered. Within complex functions such as catalysis, there can be many potential 
sources of epistasis. For example, beneficial substitutions that reduce stability may remain 
beneficial if they still meet minimal stability requirements, but when combined they could push the 
protein over the stability threshold and ablate activity altogether (46–48). Alternatively, epistasis 
can arise via a change in the rate-limiting catalytic step (49). Even if perfect predictors existed for 
each factor contributing to fitness, any single predictor may break down in regimes where another 
factor dominates. Alone, methods that predict specific attributes of protein fitness cannot be 
expected to accurately model a sequence-fitness landscape, especially of a complex enzymatic 
task. However, we can envision a multi-modal approach where models predicting specific facets 
of enzyme fitness are aggregated into a final fitness prediction for a specific set of conditions. 
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These methods might be composed of supervised and semi-supervised data-driven models, 
physics-based approaches, or a combination, leveraging the information of datasets across 
different attributes of protein fitness. Developing such approaches will require time, testing, and 
data, and this epistatic enzyme landscape provides a compelling and useful challenge for them 
through close examination of an instance where traditional laboratory evolution methods struggle. 

Materials and Methods 

Construction of Trp-auxotrophic Escherichia coli strain and Tm9D8* plasmids 

The Trp auxotroph used for the 3- and 4-site pooled-culture enrichment assays was constructed 
from BW25113, a K-12 derivative and the parent strain for the Keio collection of single-gene 
knockouts (50), using λ red-mediated gene replacement (51). Both trpA and trpB were deleted 
and replaced with a kanamycin resistance cassette to use a selection for the strain. Initial studies 
were done in an alternate NEB® 5-alpha strain (New England Biolabs, Catalog # C2987H) where 
trpA and trpB were replaced with a chloramphenicol resistance cassette. Further details in SI 
Appendix, Escherichia coli Trp knockout strain construction. 

Two different Tm9D8* constructs were made for this study. For the pooled-culture enrichment 
assays, Tm9D8* was cloned into the arabinose-inducible pBAD24 backbone while for in vitro 
assays and protein expression for purification, the pET22b(+) backbone was used. pBAD24-
sfGFPx1 was a gift from Sankar Adhya & Francisco Malagon (Addgene plasmid # 51558; 
http://n2t.net/addgene:51558; RRID:Addgene_51558) (52). Further details in SI Appendix, 
Tm9D8* plasmid construction. 

Preliminary in vitro rate of tryptophan formation assays 

Protein was expressed for in vitro assays in T7 Express cells (New England Biolabs, Catalog # 
C2566H) in 96-well deep-well plates using the pET22b(+) vector. Colonies were picked into each 
well and grown to stationary phase overnight in Luria Broth containing 100µg/mL carbenicillin 
(LBcarb). These cultures were used to inoculate expression plates of Terrific Broth containing 100 
µg/mL carbenicillin (TBcarb). Upon completion of expression, E. coli cells were pelleted by 
centrifugation, the supernatant was decanted, and pellets were frozen for later use. Further 
details in SI Appendix, Deep-well plate protein expression. 

Single-site saturation preliminary data were obtained from Wittmann et al. (34) and double-site 
saturation preliminary data were obtained using the same procedure starting from deep-well 
expression plates described above. Sequences were obtained using evSeq (34). 

DNA library construction and cloning methods 

In this study, libraries were constructed using NNK degenerate codons or the 22-codon-trick (53). 
Constant regions of target constructs were amplified using Phusion® High-Fidelity DNA 
Polymerase according to manufacturer recommendations (New England Biolabs, Catalog # 
M0530L). For small libraries (1- or 2- site libraries) degenerate primers were used directly for 
amplification off the plasmid template. However, to reduce bias in the larger 3- and 4-site 
libraries, inner primers were first used to amplify regions adjacent to the variable positions via 
PCR. These fragments were then purified and used as template for a second PCR where 
degenerate primers introduced the variation of the library. Fragments were assembled into 
circular plasmid using NEBuilder® HiFi DNA Assembly (New England Biolabs, Catalog # E2621X) 
following manufacturer instructions.  

Smaller libraries (1- or 2-site) were transformed directly into Trp auxotroph cells, but higher 
efficiency was needed for the 3- and 4-site libraries. Therefore, assembled circular plasmid DNA 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2024. ; https://doi.org/10.1101/2024.06.23.600144doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.23.600144
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

 

was first transformed into NEB® 10-beta electrocompetent E. coli (New England Biolabs Inc., 
Catalog # C3020K). These cells were incubated overnight, and plasmid was prepared via 
miniprep the following day. These plasmid preps were used as the source of library DNA for 
downstream pooled-culture enrichment assays. More details on library construction (including 
primers) are available in SI Appendix, DNA library construction. 

Preliminary plate-based independent growth assays 

Libraries were first transformed into the Trp auxotroph strain (SI Appendix, Preparation of Trp 
auxotroph electrocompetent cells and electroporation). These libraries were plated onto LB agar 
supplemented with 35 µg/mL kanamycin and 100 µg/mL carbenicillin. Liquid LBcarb,kan was 
inoculated with single colonies, and cultures were grown overnight at 37 °C, 220 rpm, and 80% 
humidity for 16–20 h. Cultures were diluted 20- to 200-fold into Trp-dropout media (see SI 
Appendix, Trp-dropout media) into UV-transparent microplates (Caplugs/Evergreen Catalog # 
290-8120-0AF) to a total volume of 200 µL. Plates were then incubated at 37 °C and 240 rpm 
with a 2 mm amplitude in a Tecan® SPARKTM. Absorbance at 600 nm (OD600) was measured 
every 10 min for 12–48 h to monitor cell culture density. Between readings the plate remained 
covered.  

Pooled-culture enrichment assay 

To perform the pooled-culture enrichment assay, electrocompetent Trp auxotroph cells were 
transformed with the relevant DNA library. After a 1-h rescue, cells were transferred to LBkan,carb 
and incubated overnight at 37 °C and 220 rpm for 16–20 h. At this point, cells were either used 
directly or diluted 1:1 with sterile 50% glycerol, aliquoted, and frozen at -80°C for later use. 
Frozen aliquots were prepared by thawing on ice and transferring into LBcarb,kan and incubated 
overnight at 37 °C and 220 rpm for 16–20 h. From here, the LB culture was pelleted by 
centrifugation at 5,000 g, the supernatant was decanted, and the pellet was resuspended in Trp-
dropout (Trp-DO) media (single- and double-site libraries) or 1X PBS, pH 7.4 (triple- and 
quadruple-site libraries) (Invitrogen, Catalog # AM9625). The resuspension was once again 
pelleted by centrifugation at 5,000 g, and the supernatant was decanted to remove as much Trp 
in the solution as possible. The pellets were then resuspended in Trp-DO media to the OD600 
reported in Tables S7–S9. 

Cells were incubated in Trp-DO media at 37 °C and 250 rpm in total volumes of 25 (1-, 2-, or 3-
site libraries) or 50 mL (4-site library), with 1.5-mL samples collected at each timepoint seen in 
Tables S7–S9. These samples were centrifuged at 5,000 g for 5 minutes and stored at -20 °C 
until further use and sequencing preparation. 

Sequencing library preparation and data pre-processing 

All libraries were prepared via a two-step PCR approach with attempts to minimize amplification 
cycles so as to reduce bias introduced by PCR. In the first step, primers that included 
complementarity to the region of interest, a 10-nucleotide random sequence (10xN), and handles 
for Illumina barcodes were used in a two-cycle PCR. These PCR products were digested with 
ExoCIP (New England Biolabs, Catalog # E1050L) and used as template for a second, 10-cycle 
PCR using IDT® for Illumina® DNA/RNA UD Indexes Set A, Tagmentation (Illumina, Catalog # 
20027213). Samples were then digested with DpnI according to manufacturer directions (New 
England Biolabs, Catalog # R0176L), and the DNA products isolated via magnetic bead cleanup 
using Agencourt AMPure XP (Beckman Coulter, Catalog # A63880) according to manufacturer 
recommendations. Sample concentrations were measured using Quant-iTTM PicoGreenTM 
(ThermoFisher Scientific, Invitrogen, Catalog # P7581) and pooled equimolarly for submission to 
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high-throughput sequencing with an Illumina HiSeq2500. Further details in SI Appendix, 
Sequencing library preparation. 

Processing of the sequencing data was performed to provide filtered and aligned data for 
determining accurate, sequence-dependent codon/amino acid counts. Forward and reverse reads 
were filtered independently using fastq-filter (https://github.com/LUMC/fastq-filter) with an 
average read quality (option –q) of 25 (or an error rate of 0.00316 across the 51 sequenced 
bases). Corresponding forward and reverse reads were then matched, retaining only pairs of 
reads that passed both filters. The first 13 bases of each read were trimmed to remove sequence- 
and experiment-specific identifiers. Pairs of files were then aligned using minimap2 
(https://github.com/lh3/minimap2) using the following process: `minimap2 –ax sr ref.fasta 
forward.fastq reverse.fastq -k 5 -w 3`, where ref.fasta is a fasta file containing 
the Tm9D8* (parent) reference sequence, forward.fastq is the filtered and trimmed forward 
fastq file, and reverse.fastq is the matching filtered and trimmed reverse fastq file. The option 
-w 3 was used due to the trimmed reads being short (min 38 bp) to provide a sufficiently small 
window for proper alignment. (The -k 5 option is based on the standard ratio of k/w ~1.5.) 
Aligned reads were then filtered based on the following criteria: both reads must align with no 
indels, starting at the first aligning base of the trimmed forward read in the Tm9D8* sequence with 
a total length for each aligned forward and reverse read equal to the expected value. For 
example, the 4-site library started at base 517 and spanned 193 bases to the beginning of the 
reverse read. Codon identities for each position were then indexed from these filtered and aligned 
reads for determining fitness. Python scripts and documentation can be found in the associated 
code. 

Fitness score calculations 

Fitness calculations were determined based on theory proposed by Kowalsky et al. to obtain 
specific growth rates for each variant (35). For each timepoint captured, a specific growth rate, μ�, 
was calculated for each unique amino acid sequence as follows: 

μ� �  ln ����
����

1

 

where ��� and ��� represent the concentration of E. coli harboring the given amino acid sequence 
� in the initial population and the population at time 
 respectively. These values were calculated 
based on the OD600 of the culture and the frequency of sequence in each population. Sequences 
with fewer than an average of ten sequencing counts at 
 � 0 or zero counts in either replicate at 
any other timepoint were omitted from the fitness calculation pipeline. We observed that 
sequences containing stop codons, which can be presumed non-functional, had slightly non-zero 
μ� values. Therefore, we subtracted the average μ���� from each μ�. Finally, we divided this value 
by the background-subtracted μ�	
 for that timepoint to normalize the maximum fitness of each 
landscape to 1. 

itness � μ� � μ����
μ�	
 � μ���� 

Fitness values were then calculated for each timepoint in a landscape and averaged for each 
replicate where applicable (all landscapes besides 3-site landscapes A, B, and C). The activity 
threshold was imposed at this point by enforcing that the fitness for a variant in each replicate 
was at least 1.96 standard deviations above the mean fitness (97.5th percentile) of all stop-codon-
containing sequences. Therefore, for the 4-site landscape, variants were labeled active if 
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��,�������

��	
������
� 0.05397  and 

��,�������

��	
������
� 0.05369 and inactive if not, resulting in just 1.05% of the 

stop-codon-containing sequences being labeled active. In libraries where only one replicate was 
sequences (3-site landscapes A, B, and C), the 99.5% percentile was used for the single replicate 
(2.576 standard deviations above the mean). Finally, the fitness values for the two replicates 
were averaged together to obtain a final fitness metric for each sequence. Timepoints were 
omitted from several of the 3-site libraries when there was minimal fitness separation of stop-
codon-containing sequences and remaining variants (as compared to later timepoints) or there 
was poor correlation between variant fitnesses in both replicates likely due to sample preparation 
error (see Table S8 for details). To enable the analyses in this paper, fitness values for the 
missing variants in the 4-site landscape were imputed with the sklearn KNN imputer (Fig S16), 
and the imputed scores reported previously by the authors were used for GB1 (26). 

Pairwise epistasis calculations and analyses 

Fraction of pairwise epistasis was calculated using python and functions that classify each type 
into one of the three categories: magnitude, sign, and reciprocal sign epistasis. Notably, for this 
analysis additive effects were grouped into magnitude. For each unique starting variant (00), all 
possible double substitutions (11) were tested such that all variants within the set of 00, 01, 10, 
and 11 were active and an epistasis type was assigned. Doing this for all possible double 
substitutions, we computed the fraction of each type of epistasis for the starting variant. In order 
to reduce the impact of noisy, low fitness measurements, we only classified epistasis for sets of 
variants (00, 01, 10, 11) where all variants had fitness greater than or equal to that of the 
minimum fitness of active variants.  These results were sorted into quartiles based on the fitness 
values of the starting variant to create the distributions. 

Epsilon was calculated as described by Khan et al. (54) for all variant sets using the initial variant 
as the reference: 

� � ln ���

��
��� � ln ���
�

��
��� � ln ���
�
��
��� 

Since variant sets were defined with a directionality between a pair of variants (00 to 11), each 
pair of variants was examined twice, once considering each variant as the initial. This resulted in 
perfectly symmetric distributions of epsilon. To reduce the redundancy of the resulting 
distributions, we examine the absolute value of epsilon in this text. 

Construction of a null model 

To construct the null model, we began with the parent, VFVS, and sampled all single substitutions 
from there. We then calculated the fold-change in activity relative to parent for each of these 
substitutions and used them to calculate a perfectly additive landscape. To add noise to the 
landscape, we fit an exponential distribution to the distribution of differences in fitness between 
the two replicates of the TrpB landscape and sampled from it, randomly adding or subtracting the 
value from the fitness. The resulting landscape had the same parent fitness as the TrpB 
landscape and a maximum fitness of 1.23. The activity threshold was defined as the minimum 
fitness of the of a variant labeled “active” in the TrpB landscape, resulting in 5,404 active variants. 

Path analyses 

For each active variant, networkx (55) was used to construct a directed graph from that variant to 
the best variant in the landscape, AIKG. For this analysis, any fitness below zero was set to zero. 
No imputed variants were used as starting points, but they were used as intermediate variants 
when necessary, so that no graphs had missing nodes. The number of direct paths possible to 
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the top variant were counted allowing downward steps ranging from 0% to 90% decrease in 
fitness. The same analyses were run for each of the top twenty local optima. 

Determination of local optima 

Local optima were determined by looking at all non-imputed variants classified as active. For 
each of these variants, all single substitutions were made in silico. If no single-substitution variant 
had a higher fitness than the original, that original variant was classified as a local optimum. To 
determine if two simultaneous substitutions could enable escape from the local optimum, all 
double substitutions were made in silico. If at least one double-substitution variant had a higher 
fitness than the original, that original variant was said to be able to escape the local optimum via 
double-site saturation mutagenesis. Details can be found in the associated code. 

Simulations of directed evolution 

Method 1: Site-saturation mutagenesis combine best. For every variant classified as active, 
all nineteen substitutions are made in silico at each of the four positions independently in the 
background of the initial sequence. The best amino acid at each position is obtained and the 
sequence consisting of these amino acids is built. The best variant from among the initial 
sequence, all single-site mutagenesis variants, and the recombined variant is reported as the 
maximum fitness achieved. 

Method 2: Single-step site-saturation mutagenesis greedy walk. For every variant classified 
as active and each possible order of sampling positions (M! where M = number of positions) site-
saturation mutagenesis is performed iteratively in silico with M rounds. For the first position, all 
nineteen substitutions are tested for that position in the starting background of the other positions. 
Once the best residue for that position is determined, it is fixed, and the next position is targeted, 
and so on until all positions have been targeted once. The fitness of the final variant is reported 
as the max fitness achieved. 

Method 3: Site-saturation mutagenesis calculate and test top N. For every variant classified 
as active, all nineteen substitutions are made in silico at each of the four positions independently 
in the background of the initial sequence. Using these M x 19 + 1 (starting variant) datapoints, 
fitness scores for all 20M possible combinations are calculated as the product of the fold-change 
for each single substitution over the initial sequence. These sequences are then ranked, and the 
best N are tested in silico. The max fitness achieved is reported as the maximum fitness of the 
initial sequence, any of the single substitutions, and the top N predicted sequences. 

Generating off-the-shelf fitness predictions 

Using the methods from Wittmann et al. (15) we obtained fitness predictions using both Triad 
estimates of ∆∆G and EVmutation (40). For Triad (https://triad.protabit.com), the crystal structure 
obtained here was used as the starting point for the calculations and EVmutation 
(https://evcouplings.org/) used Tm9D8* as the starting sequence with a bitscore of 0.3. 

Enzyme purification, crystallography, and measurement of kinetic parameters 

T7 Express cells were transformed with pET22b(+) harboring the enzyme sequence of interest 
and plated onto LB agar supplemented with 100 µg/mL carbenicillin. Single colonies were 
transferred into 5-mL liquid LBcarb and grown overnight at 250 rpm and 37 °C. Expression cultures 
were started by inoculating 250 mL of TBcarb with 1 mL of each overnight culture and 
subsequently grown at 300 rpm and 37 °C. After 6 h of outgrowth, 250 µL of 1 M IPTG were 
added to each culture and the cultures were grown an additional 22 h at 300 rpm and 30 °C. 
(Note: Expression levels of TmTrpB were found to be high when cultures were dense at the time 
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of induction; OD600 was not measured.) Cultures were pelleted via centrifugation at 5,000 g for 20 
min and then frozen at -20 °C. 

For purification, cell pellets were thawed at room temperature before resuspension with 10 mL of 
lysis buffer containing 25 mM potassium phosphate, 100 mM NaCl, and 20 mM imidazole, pH 8.0 
(Buffer A) supplemented with 200 µM PLP, 0.02 mg/mL DNAse I, 1 mg/mL lysozyme, and 0.1X 
BugBuster®. This cell suspension was incubated at 37 °C and 220 rpm for 1 h and, as all 
enzymes displayed T50 measurements much greater than 75 °C, was followed by a 30 min heat 
treatment at 75 °C to further disrupt remaining E. coli proteins. The lysate was clarified by 
centrifugation at 14,000 g for 20 min and the supernatant was collected. Gravity columns 
containing 2.5 mL Ni-NTA (Qiagen, Catalog # 30210) were pre-equilibrated with >10 column 
volumes (CV) of Buffer A. Clarified lysate was then added to the columns, and they were washed 
with another 10 CV of Buffer A. Protein was eluted with 50% Buffer A and 50% of an elution 
buffer made with 25 mM potassium phosphate, 100 mM NaCl, and 500 mM imidazole, pH 8.0 
(Buffer B). An additional 1 mM PLP was added to each sample, and they were buffer exchanged 
into KPi by dialysis. 

Protein concentrations were obtained with the Pierce BCA Protein Assay Kit (ThermoFisher 
Scientific, Catalog # 23225), and purified protein was frozen in aliquots on dry ice. Protein was 
used directly from these aliquots for crystallography with no buffer exchange. Full crystallography 
and structure determination protocols are provided in SI Appendix, Tm9D8* crystallization, 
Tm9D8* crystal structure determination. 

Enzyme parameters, including KM and kcat, were determined via Michaelis-Menten kinetics by 
collecting 290 nm absorbance continuously over 500 seconds with a UV spectrophotometer 
(Shimadzu, Catalog # EW-83400-20) for reactions containing enzyme (62.5–250 nM), indole 
(1.56–500 µM), Ser (0.05–20 mM), and DMSO (4%) in KPi. Indole KM was collected at 20 mM 
Ser and Ser KM was collected at 200 µM indole (the concentration used for the growth rate 
assay). Initial rates were obtained using linear or exponential fits of the data within a time frame 
not impacted by burst phase kinetics. These rates were fit with a Michaelis-Menten model to 
obtain estimates for KM and kcat. 

T50 measurements 

Using the plasmids prepared via site-directed mutagenesis, variants were expressed as 
described in “Deep-well plate protein expression” with six biological replicate wells for each 
variant. Frozen pellets were fully thawed at room temperature and then resuspended by light 
vortexing in lysis buffer composed of 1 mg/mL lysozyme, 0.1X Bug Buster®, 0.2 mg/mL DNase I, 
and 200 µM PLP in 50 mM KPi. Plates were incubated at 37 °C, 220 rpm, and 80% humidity for 1 
h and then clarified by centrifugation at 4,500 g for 10 min. Clarified lysate for each variant was 
pooled into individual 15-mL conical centrifuge tubes and stored at 4 °C until needed. 

For heat treatments, 40 µL of clarified lysate was aliquoted into full-skirted PCR plates and 
incubated at the reported temperature for 1 h using a gradient on a Mastercycler® X50s 
(Eppendorf, Catalog # 6311000010). Room temperature controls were incubated for 1 h on the 
benchtop in 200-µL PCR tubes. Room temperature controls were then added to the PCR plate, 
and all samples were centrifuged for 8 min at 4,000 g to remove accumulated debris. Rate of Trp 
formation was measured as described in Wittmann et al. (34) using 20 µL lysate, 20 µL KPi, and 
160 µL of reaction master mix. 
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Figures and Tables 

 

Figure 1. Overview of TrpB-based combinatorial landscapes. A An E. coli strain with deletions of the 
trpA and trpB genes is transformed with plasmid harboring TrpB. When provided with exogenous indole, 
TrpB expressed from the plasmid produces Trp, enabling proteome and cellular replication at levels that 
reflect TrpB activity. B For each landscape, the E. coli Trp auxotroph transformed with a plasmid library is 
used as a starter culture to inoculate two replicate flasks and to obtain an initial timepoint, T0. Samples at 
different timepoints are collected in duplicate for 36–44 h and prepared for sequencing. C The 4-site-
saturation library targeted two pairs of positions: 183/184 and 227/228 (blue). The pyridoxal 5’-phosphate 
(PLP) cofactor of TrpB is colored green, an indole mimic modeled based on PDB ID: 4HPX in lavender (56), 
and two important catalytic residues are orange, demonstrating the proximity of the selected sites to the 
catalytic core of TrpB. 
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Figure 2. Examining the epistasis in the TrpB and GB1 landscapes. A The types of pairwise epistasis 
where both single substitutions are beneficial (top) or one single substitution is beneficial while the other is 
deleterious (bottom). B Distributions of the three types of pairwise epistasis within the TrpB and GB1 
landscapes separated by quartile of the fitness (Q1, Q2, Q3, Q4) of the starting variant, differentiating 
epistasis prevalence among low-fitness variants (Q1) to high-fitness variants (Q4). C Distributions of the 
three types of pairwise epistasis across all unique pairs of sites for TrpB. D Distributions of the three types of 
pairwise epistasis across all unique pairs of sites for GB1. 
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Figure 3. Investigation of evolutionary constraints in enzyme fitness landscapes. A Path map from the 
parent variant (Tm9D8*, VFVS) to the top variant in the landscape (AIKG). Nodes are labeled with the amino 
acids at positions 183, 184, 227, and 228 along with the fitness of that variant. Paths are colored by the 
change in fitness between the two variants. B A path map like the one pictured in A can be built connecting 
every detectably active variant to the top variant for a total number of path maps equal to the total number of 
active variants. Considering each of these maps, the fraction of maps with at least one possible path to the 
top variant is colored in blue while the fraction with no possible paths is colored in red. When no downward 
steps are allowed, max % decrease in fitness allowed = 0% and only strictly neutral or beneficial 
substitutions are allowed. This stringency is relaxed by accepting increasingly deleterious substitutions up to 
100% (where all paths are accessible). C An empirical cumulative distribution function built from all possible 
starting points and displaying the fraction of paths reaching the top, given a specified cutoff. The x-axis 
denotes the fraction of possible paths to the top variant, and the y-axis denotes the fraction of starting 
variants which have up to that fraction of paths possible to the top variant. D Three different baselines of 
directed evolution methodologies. E The max fitness achieved from each starting point is plotted as a violin 
and empirical cumulative distribution function (ECDF) for each of the three directed evolution simulation 
methodologies. We show the results for the 4-site-saturation landscape on TrpB and on GB1. For the ECDF, 
color indicates the simulation method, with TrpB results in the lighter shade and GB1 results in the darker. A 
left-shifted curve indicates fewer starting variants can achieve a high max fitness.  
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Figure 4. Assessment of simple fitness predictors on the TrpB landscape. A Receiver operating 
characteristic (ROC) curve for performance of EVmutation and Triad as classifiers of active and inactive 
variants for the TrpB and GB1 landscapes. The dashed black line represents the performance of a non-
predictive model. Left- and up-shifted curves indicate better performance. B True TrpB fitness plotted versus 
EVmutation or Triad scores. C True GB1 fitness plotted versus EVmutation or Triad scores. For plots in both 
B and C, the blue line indicates the fraction of variants above the predictor threshold which are active while 
the dashed red line indicates the average fitness of the variants above the predictor threshold. 
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Table 1. Enzymatic parameters measured for selected variants. 

 

variant

enzymatic parameter Tm9D8* (VFVS) VIVG AIKG

kcat (min-1) 22.6 ± 0.3 51.1 ± 1.0 67.1 ± 1.1

KM,serine (mM) 0.30 ± 0.04 0.18 ± 0.01 0.17 ± 0.02

KM,indole (µM) 22.9 ± 1.4 4.2 ± 0.6 20.2 ± 1.5

kcat/KM,indole (M-1s-1) 1.6 ± 0.1×104 2.0 ± 0.3×105 5.5 ± 0.4×104

T50 (°C) 99.0 ± 0.6 >100 91.0 ± 0.3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2024. ; https://doi.org/10.1101/2024.06.23.600144doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.23.600144
http://creativecommons.org/licenses/by-nc-nd/4.0/

