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Abstract
Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain

this diversity remain poorly understood. We hypothesized that an obligate and mutual

exchange of metabolites, as is very common among bacterial cells, could stabilize different

genotypes within microbial communities. To test this, we developed a cellular automaton to

model interactions among six empirically characterized genotypes that differ in their ability

and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-

cost ratio) and extrinsic parameters (i.e. metabolite diffusion level, environmental amino

acid availability), we show that obligate cross-feeding of essential metabolites is selected

for under a broad range of conditions. In spatially structured environments, positive assort-

ment among cross-feeders resulted in the formation of cooperative clusters, which limited

exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters’

periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within popula-

tions, while amino acid supplementation to the environment decoupled obligate interactions

and favored auxotrophic cells that saved amino acid production costs over metabolically

autonomous prototrophs. Together, our results suggest that spatially structured environ-

ments and limited nutrient availabilities should facilitate the evolution of metabolic interac-

tions, which can help to maintain genotypic diversity within natural microbial populations.

Author Summary

Natural bacterial communities are usually very species-rich and bacterial cells within these
communities often exchange metabolites with each other. Whether and to which extent
obligate metabolic interactions can contribute to maintaining the observed bacterial diver-
sity, however, is not known. In this study, we address this question computationally, by
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simulating populations of six different bacterial strains that differ in their requirement to
obtain amino acids from the environment as well as their propensity to release other
amino acids. By systematically varying key variables such as the cost of metabolite produc-
tion, the speed with which metabolites diffuse in the environment, as well as the amino
acid availability in the environment, we show that a cooperative exchange of essential
amino acids is evolutionary stable over a broad range of biologically realistic conditions. In
particular spatially structured environments, such as bacterial biofilms, and moderate
costs of metabolite production favored metabolic interactions. Finally, our work identifies
obligate metabolic interactions as a powerful ecological mechanism to maintain different
bacterial genotypes with microbial communities.

Introduction
Bacteria are ubiquitous and play a fundamental role in sustaining life, for example by driving
global bio-geochemical cycles [1, 2]. Natural microbial communities are phylogenetically
highly diverse assemblages and, in many cases, consist of several thousand interacting species
[3]. Recent advances in next generation sequencing demonstrated that even seemingly identical
bacterial species from the same microbial community show an enormous variability on the
genomic, epigenetic, metabolic, or phosphoproteome levels [4–7].

However, the enormous diversity that is frequently observed within bacterial communities is
difficult to reconcile with natural selection, which predicts competition for local resources
should reduce genotypic diversity witin bacterial species. Moreover, also when different bacterial
species compete for the same resources only those should be able to survive that are best adapted
to utilizing these resources (i.e. competitive exclusion principle) [8, 9]. A variety of mechanistic
explanations have been proposed to explain the unexpectedly high diversity within microbial
communities. For example, the partitioning of resources [10] or their utilization at differential
rates [11] can allow different organisms to coexist in the same environment. Alternatively, the
competitive monopoly of particularly dominant species can be prevented by disturbance [12],
demographic trade-offs [13], predation [14], or non-transitivity of competitive interactions [15].

Ecological niches are not only generated by the abiotic environment, but also by biotic inter-
actions (e.g. competition and mutualism). Moreover, multiple bacterial strains of the same or
different species can coexist when they engage in metabolic interactions such as the cross-feed-
ing of metabolic by-products [16, 17] or the exchange of essential nutrients [18]. In both cases,
frequency-dependent selection has been suggested to benefit both partners when rare, thus sta-
bilizing these types of interactions in the long-run [13, 18].

While the release of metabolic by-products is most likely incidental and not selected for, an
active investment into the production of costly metabolites such as co-factors or amino acids to
benefit other bacterial cells (hereafter cooperative cross-feeding) requires explanations concern-
ing the formation and evolutionary stability of such interactions. In particular, it is not clear
how these kinds of interactions can be stable against the invasion of types that reap benefits
without contributing to the production of the released metabolite. Despite this seeming para-
dox, cooperative cross-feeding is very common in the microbial world [19–22] and has been
shown to readily evolve under laboratory conditions [23, 24].

Several plausible explanations could account for the frequent occurrence of cooperative
metabolic interactions among microorganisms. First, the preference of microorganisms to exist
in spatially-structured biofilm communities could enhance local feedbacks among producing
cells and thus increase reciprocity [25–28]. As a consequence, metabolite-producing genotypes
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may form clusters, which could help to exclude non-producing genotypes from cooperative
benefits [29, 30]. Second, the costs of producing certain metabolites may be off-set by receiving
others, for which production costs are saved [31, 32]. This ‘division-of-labor’ effect could tip
the benefit-to-cost ratio in favor of metabolic cross-feeding. Third, the availability of certain
metabolites (e.g. amino acids) in the environment may fluctuate over time. While metabolite-
replete conditions may strongly select for the loss of biosynthetic genes and, therefore, favor an
uptake from the environment [33], subsequent metabolite depletion could promote cross-feed-
ing among newly-evolved auxotrophic genotypes [34].

Until now, it remains unclear how much these factors can—singly or in combination—pro-
mote the emergence of cooperative cross-feeding of essential metabolites within genetically
diverse bacterial populations. Here we address these issues in a cellular automaton modeling
approach called CELL-ABC (Cellular Automaton of Bacterial Cross-feeding) to simulate the
release of metabolites by bacteria into the surrounding environment as well as their subsequent
uptake by other bacterial cells. In this way, the cellular automaton allows us to explicitly ana-
lyze spatial effects and emergent population structures. The basis of the simulated bacterial
phenotypes is an empirical set of Escherichia coli genotypes that differ in their metabolic abili-
ties [18]. These genotypes include: (1) prototrophic wild type, (2) a strain producing increased
amounts of two amino acids (hereafter ‘overproducer’), (3) two genotypes that essentially
require one of two amino acids to grow (hereafter ‘auxotrophs’), and (4) two genotypes that are
auxotrophic for one amino acid, yet produce and release increased amounts of the respective
other amino acid into the cell-external environment (hereafter’cross-feeders’) (Fig 1).

In this work, we employ CELL-ABC to identify the range of parameters under which coop-
erative cross-feeding of essential metabolites can persist within bacterial populations and to
determine the population-level consequences that arise in terms of genotypic composition and
spatial interaction structure. To address these issues, we monitored the dynamics of popula-
tions, in which the cost-to-benefit ratio of metabolite cross-feeding, the environmental avail-
ability of focal metabolites, and the diffusion of the released metabolites were systematically
varied. In particular, the following hypotheses were tested:

1. Metabolic cross-feeding is favored when costs of metabolite production are low.

2. Metabolic cross-feeding interactions are stabilized at low levels of metabolite diffusion.

3. Environments with increased metabolite availabilities favor amino acid auxotrophic
genotypes.

4. Obligate metabolic cross-feeding increases the genotypic diversity within bacterial
populations.

Results

Cooperative cross-feeding is ecologically stable despite increased
fitness costs
The fitness of the empirically characterized genotypes was determined in the presence of different
amino acid concentrations in the environment (Fig 1B and 1C). While the growth of prototro-
phic cells (i.e. wild type and the amino acid overproducer) was insensitive to varying amino acid
concentrations in the environment, the two cross-feeding types and the two auxotrophs each
showed a unique growth response that differed significantly from the one of prototrophic types
as well as from each other (ANOVA, P< 0.05, n = 8, Fig 1B and 1C and S3 Fig). This empirically
determined growth response of each of the focal genotypes was defined as a benefit-to-cost ratios
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Fig 1. Schematic overview over the focal genotypes and their corresponding growth performance. (A)
Genes deleted from the genome of the prototrophic wild type (WT) strain of Escherichia coli to yield mutants
that are auxotrophic for the amino acids arginine or lysine (AUX1, AUX2), a mutant that overproduces a
mixture of both amino acids (OP), and cross-feeding genotypes that are auxotrophic for one, yet produce
increased amounts of the respective other amino acid (CF1, CF2). (B,C) Experimentally determined growth

Cooperative Cross-Feeding in Bacterial Communities

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004986 June 17, 2016 4 / 21



(BCRs) of 1. To determine how changes in metabolite production costs would affect the stability
of amino acid cross-feeding interactions, the BCR of the simulated genotypes was computation-
ally in- or decreased. Increasing the costs of amino acid overproduction over the experimentally
determined values (i.e. BCR< 0.8) always led to a stable state, in which wild type cells occupied
all available grid-cells. For a BCR between 0.8 and 1.0, mixed populations of wild type, cross-feed-
ing-, and auxotrophic genotypes coexisted, while further decreasing the costs of amino acid pro-
duction (> 1.0) resulted in a competitive exclusion of prototrophic wild type cells. Finally, when
benefits strongly outweighed metabolite production costs (> 1.05), non-cooperating auxotrophs
were outcompeted by cross-feeding genotypes (Fig 2A).

Characteristic clusters of cross-feeding mutants formed at BCRs ranging between 0.8 and
1.0, which were virtually always flanked by a belt of non-cooperating auxotrophs (Fig 2A).
With increasing metabolite production costs, the size of these clusters increased and the thick-
ness of the fringing belt of non-cooperating types decreased. Decreasing the costs of metabolite
production generally altered the qualitative distribution of cross-feeding interactions within
populations: reciprocal cross-feeding was favored over a unilateral exchange of metabolites
(Fig 3A and 3B).

Taken together, these results demonstrate that the costs of amino acid overproduction sig-
nificantly impacted both the prevalence of cross-feeding genotypes within populations and
their spatial distribution. Nevertheless, both unilateral and bilateral cross-feeding was common
under a broad range of parameter conditions.

Reduced metabolite diffusion facilitates the formation of cross-feeding
clusters
To determine how the degree of spatial structuring affects metabolic interactions within the
resident populations, the number of iterated diffusion steps within a given environment was
varied. In this way it was possible to manipulate the spatial distribution of the released metabo-
lites. The results of these analyses showed that a reduced diffusion of amino acids facilitated
the formation of clusters consisting of both cross-feeding genotypes (Fig 2A). Although auxo-
trophic genotypes benefited from the public goods that were released from clusters of cross-
feeding genotypes, they occurred exclusively at the periphery of these clusters. This striking
pattern was most likely caused by a limited diffusion of amino acids outside of these clusters,
which led to a spatial exclusion of non-cooperating auxotrophs from these public goods.

In contrast, when interactions were less localized due to an increased diffusion of metabo-
lites, the benefit auxotrophic mutants gained increased as indicated by the fact that they
increasingly accumulated around cross-feeding clusters (BCR = 0.85, Mann–Whitney U test:
P< 0.05, n = 200 and Fig 2A). This characteristic pattern was lost in spatially unstructured
environments (mimicking a perfectly mixed environment), in which both auxotrophic- and
cross-feeding mutants showed a random spatial distribution (Fig 2A) with no sign of direct
metabolic cross-feeding (Fig 3A and 3B).

Taken together, the degree of spatial structuring and thus the access to essential metabo-
lites significantly shaped the composition and spatial distribution of genotypes within the
modeled populations. A low diffusion of public goods resulted in the formation of cross-

performance of all focal genotypes in response to different concentrations of the amino acids (B) arginine and
(C) leucine. Amino acids were applied in a mixture of amino acids mimicking the blend of amino acids
produced by the overproducer. Growth rate (μ) per hour is the experimentally determined Malthusian
parameter during 24h of growth. Lines represent fitted Monod kinetics for auxotrophic and cross-feeding
genotypes and the calculated mean for the prototrophic (WT) strain (red) as well as the genotype
overproducing amino acids (blue). See S1 Text and S3 Fig for further information.

doi:10.1371/journal.pcbi.1004986.g001
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Fig 2. Auxotrophic and cross-feeding genotypes are selectively favored under a broad range of conditions.
Shown are representative simulation results after 100 simulation steps. Parameters analyzed include the benefit-to-cost
ratio where the experimentally determined values were computationally in- or decreased (x-axes), the degree of
metabolite diffusion in the environment (y-axes) ranging from low (structured environment) to high (unstructured
environment), and the environmental availability of amino acids (A,B) including (A) no amino acids are available in the
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feeding clusters, which were surrounded by non-cooperating auxotrophs that reaped benefits
without reciprocating.

Decoupling obligate interactions affects community structure
To investigate the community-structuring effect of obligate cross-feeding, the requirement for
uni- and bilateral cross-feeding was relieved by additionally supplying both essential amino
acids to the simulated environments. The added amount of amino acids per grid cell were in
the same order of magnitude as the amount of amino acids secreted by overproducing geno-
types. Auxotrophic genotypes generally benefited from environmentally available amino acids,
as reflected by their increased abundance (Figs 2 and 3). High amino acid concentrations in the
environment readily resulted in a total numerical dominance of these genotypes as expected
from the growth performance experiments (Fig 1). The observation that also the connectivity
of unilateral cross-feeding increased significantly when amino acids were environmentally
available (Mantel test: P<0.05, n = 9999) corroborated the interpretation that auxotrophic
genotypes were nutritionally independent under amino acid replete conditions, which resulted
in an increased degree of intermixing between different genotypes. Interestingly, an additional
supply of amino acids significantly reduced the abundance of cross-feeding genotypes at low
BCRs (< 1). Moreover, due to the relief from obligate amino acid exchange under these condi-
tions, the spatial distibution of cross-feeding genotypes was altered (Mantel test: P< 0.05,
n = 9999) with almost no tendency to form clusters (Fig 3).

In sum, externally providing amino acids to the environment decoupled the obligate inter-
actions and thus eliminated the requirements for reciprocal cross-feeding. As a consequence,
auxotrophic genotypes that saved amino acid production costs were generally favored over all
other genotypes.

Obligate metabolite cross-feeding increases the genotypic diversity
Finally, the set of simulations conducted was used to systematically investigate the effect of
amino acid cross-feeding on the genotypic diversity within the population under a given set of
conditions. Starting each simulation run with six different genotypes, which were present in
equal numbers and randomly distributed over the grid, the maximal diversity achievable
(Shannon-Weaver diversity index H) in the simulated population is 1.792.

Investigating the genotypic diversity for scenarios, in which the fitness cost of amino acid
overproduction was computationally in- or decreased (i.e. BCR 0.8 − 1.1) relative to experi-
mentally determined genotypes, revealed a bell-shaped diversity distribution in response to
increasing BCRs in low diffusion conditions (Fig 4A). The highest diversity (here 1.31, which
corresponds to 73% of the maximally achievable diversity) emerged at a BCR of 0.85 (i.e. 15%
costs of amino acid overproduction relative to experimentally determined values). Strikingly,
an external supply of amino acids to the growth environment significantly lowered diversity
levels populations achieved within spatially structured environments (Fig 4A), while in
unstructured environments amino acid supplementation had the opposite effect, particularly
at very low (i.e.< 0.9 BCR values (Fig 4B)). In the absence of environmentally available amino
acids, levels of genotypic diversity showed a strong positive correlation with the prevalence of
two-way cross-feeding in the corresponding communities (Spearman’s rank correlation
r = 0.79, n = 14) when levels of metabolite diffusion were reduced. In contrast, amino acid

environment, and (B) substantial additional availability of amino acids in the environment. Color-code of genotypes:
red = wild type, blue = amino acid overproducer, yellow = amino acid auxotrophs (2 types), green = cross-feeding
genotypes (2 types).

doi:10.1371/journal.pcbi.1004986.g002
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Fig 3. Prevalence of unilateral and bilateral cross-feeding. Sizes of circles represent the mean proportion of (A, C) unilateral and (B, D) bilateral
cross-feeding that included all interactions depicted in the schematic above. Colors of circles represent the mean connectivity between cell types that
measures the co-occurrence of genotypes and thus reflects the probability of genotypes to display one or the other type of cross-feeding. 100 simulation
runs were analyzed per parameter combination. Simulation results with (A, B) no or (B, D) a substantial addition of amino acids to the environment are
displayed. Parameter combinations that were analyzed in each panel include the benefit-to-cost ratio (x-axes) and the degree of metabolite diffusion in
the environment (y-axes) ranging from low (structured environment) to high (unstructured environment).

doi:10.1371/journal.pcbi.1004986.g003
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Fig 4. Metabolic cross-feeding increases genotypic diversity within bacterial populations.Mean
Shannon-Weaver diversity indices (H ± standard deviation) of simulated populations with varying benefit-to-
cost ratios (BCR) are shown. Simulations were performed in the presence (blue line) or absence (red line) of
environmentally supplemented amino acids in (A) spatially structured (i.e. low diffusion) and (B) unstructured
environments (i.e. high diffusion). The dashed line indicates the maximally achievable diversity index for six
genotypes. Asterisks indicate significant differences between the amino acid supplemented- and
unsupplemented environment for a given BCR (FDR-corrected two-sample t-test: *** P < 0.001, ns:
P > 0.05, n = 50).

doi:10.1371/journal.pcbi.1004986.g004
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supplementation to unstructured environments benefited auxotrophs and—to a lesser extent—
also cross-feeding genotypes that otherwise (in the absence of amino acids) were largely domi-
nated by monocultures of wild type cells (BCR< 0.85). Altogether, these results revealed
strong interactive effects between the degree of environmental structure and an increased avail-
ability of the required metabolites in the environment on the genotypic diversity of the focal
populations.

Dynamic replacement of metabolic strategies
The simulations were frequently characterized by a non-linear development from the random
initial distribution of genotypes to the final steady state. This steady state was qualitatively
independent of initial community compositions over a broad range of parameter combinations
(S2 Fig). While the abundance of overproducing genotypes always converged immediately to
zero, the fraction of the remaining strategies commonly followed a complex pattern (Fig 5).
Surprisingly, the abundance of cross-feeders often initially dropped—even for parameter set-
tings that promoted reciprocal cross-feeding in the long run. Here, prototrophic wild type cells

Fig 5. Population dynamics in environments without amino acid supplementation.Repeated simulations (n = 100) are plotted for varying benefit-to-
cost ratios (BCR) and degrees of amino acid diffusion (bold line: mean, shaded ribbon: standard deviation). All simulations start with a random distribution
of all genotypes and undergo a specific dynamic alternation of genotype frequencies. Depending on the genotype’s strategy, it can repress, facilitate, or
even outcompete others (see text for more details). Legend: red = wild type, blue = overproducing genotype, yellow = auxotroph (2 types), green = cross-
feeder (2 types).

doi:10.1371/journal.pcbi.1004986.g005
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and auxotrophic genotypes underwent a short-term increase in their frequency shortly after
the simulation started. High abundances of auxotrophic genotypes reduced the overall concen-
tration of amino acids and thus diminished the frequency of cross-feeding genotypes providing
the public good. This feedback mechanism damped the increase in the frequency of auxotro-
phic genotypes. However, random co-localization of complementary cross-feeders in spatially
structured environments (i.e. low metabolite diffusion) resulted in fitness values that exceeded
wild type levels and rapidly developed into fast-growing clusters of cross-feeders. Their spread-
ing across the grid was often flanked by non-producing and hitch-hiking auxotrophic geno-
types. Simultaneously, the fraction of grid cells occupied by wild type declined and usually
strategies flew into an oscillating steady state with fluctuating, yet stable patterns (Fig 5). When
additional amino acids were available, wild type and auxotrophic mutants were the most domi-
nant genotypes. Their frequencies showed a damped oscillating pattern (S5 Fig). Under these
conditions, cross-feeders generally occurred at very low frequencies, except for BCR> 1.

Taken together, cross-feeding interactions drove the dynamic turnover of strategies within
metabolically diverse population and promoted spatio-temporal oscillations of genotype
frequencies.

Discussion
Obligate cross-feeding of essential metabolites is very common in the microbial world [19, 21].
The conditions that favor such synergistic interactions and the consequences that result for the
structure and composition of the resident microbial community, however, remain poorly
understood. Here we address these issues by identifying the range of conditions that maintain
metabolic cross-feeding and, thus, genotypic diversity within bacterial populations. Using
genetically engineered loss-of-function mutants as empirical basis, we explore how changes of
intrinsic (i.e. benefit-to-cost-ratio of metabolic cross-feeding) and extrinsic factors (i.e. envi-
ronmental amino acids availability, diffusion rate) affect the ecological dynamics within geno-
typically diverse populations (i.e. six genotypes). Our study revealed that unilateral and
bilateral cross-feeding of essential metabolites that are based on the release of these metabolites
into the cell-external environment is stably maintained over a broad range of conditions
including increased costs of metabolite production and increased diffusion rates. Only when
the costs of metabolite production exceeded a certain threshold (i.e.> 20% relative to the
experimentally determined values) or environments were perfectly mixed, prototrophic geno-
types outcompete all other types present. An environmental availability of amino acids selected
for auxotrophic- and against cross-feeding genotypes. Obligate metabolic cross-feeding helped
to maintain genotypic diversity in spatially structured environments, while nutrient supple-
mentation to the environment counteracted this effect.

Our analysis of environments that did not contain the limiting resource (i.e. amino acids)
identified two conditions under which obligate metabolic cross-feeding maintained genotypic
diversity within a bacterial population: First, a high degree of spatial structuring, and second,
low production costs of the traded metabolites (Fig 4). These predictions are corroborated by
empirical data. For example, Salmonella enterica rapidly evolved increased amino acid produc-
tion rates to support the growth of auxotrophic E. coli cells, which in turn produced metabolic
waste products Salmonella needed to grow [23]. Also in this case, spatial structure was essential
for the costly amino acid overproduction mutation to increase in frequency once it had
evolved. In contrast, unilateral cross-feeding, in which a receiving genotype is an adaptive
mutant that consumes metabolic by-products released by the ancestral donor, does not require
spatial structure to allow for coexistence between both partners. A well-documented example
of such a cross-feeding polymorphism that emerged and was maintained even in a shaken,
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liquid environment is the case of acetate-cross-feeders that evolved from glucose-utilizing
Escherichia coli cells [16, 35]. Since this interaction is likely non-obligatory and does not incur
a fitness cost to the producing cell, its maintenance in spatially unstructured environments is
also predicted by our model (Fig 2A).

However, what is the ecological mechanism that favored consortia of cross-feeding geno-
types in amino acid-deficient, structured environments? Under these conditions, groups of
cross-feeding cells that coincidentally co-localized formed cell clusters that enjoyed the benefits
of cooperative cross-feeding, which more than compensated for the costs of metabolite over-
production. In the long-run, these cooperative clusters could persist despite the presence of
non-producing genotypes, most likely because cross-feeders within these clusters enjoyed the
benefits of a cooperative metabolite exchange, which were less available to non-cooperating
auxotrophs outside these clusters [36]. These conditions resemble the situation experienced by
cells growing in a biofilm, in which principles of spatial self-organization facilitate positive
assortment among cross-feeding genotypes [37, 38]. Indeed, both theoretical [39, 40] and
experimental studies [30, 41] have previously identified spatial structure as a factor favoring
the evolution of cooperative interactions. Oliveira and coworkers [42], however, concluded
based on theoretical grounds that problems to find the right complementary genotype in spa-
tially structured environments can also inhibit the evolution of metabolic cross-feeding interac-
tions between genotypes. In contrast to these predictions, our results with six bacterial
genotypes that were parametrized using empirical data show that low levels of metabolite diffu-
sion can in fact promote cooperation between complementary cross-feeding genotypes. Experi-
ments using different E. colimutants to test these predictions are currently being performed
and will be presented elsewhere.

Simulations with benefit-to-cost ratios between 0.8 and 1.0 (i.e. up to 20% costs to the
experimentally determined values) and a low degree of metabolite diffusion revealed specific
temporal dynamics. These were characterized by a characteristic alternation of abundances,
especially of wild type-, auxotrophic-, and cross-feeding genotypes. First, an increase in the fre-
quency of auxotrophic- and a decline of cross-feeding genotypes was observed to a point, at
which the community was not able to sustain more non-cooperating auxotrophic mutants and
almost collapsed. Prototrophic wild type genotypes benefited from this situation and thus
increased in frequency. This was accompanied by a dramatic decline of genotypic richness in
the community and a harmonization of local genotype assemblages. At this point, coinciden-
tally co-localized cross-feeders formed founder populations that subsequently re-populated the
grid. Expanding cross-feeding clusters were virtually always flanked by a belt of auxotrophic
genotypes. Patches in which auxotrophs persist may thus function as a genetic reservoir, from
which cooperative cross-feeding can arise by mutation and spread throughout the population
when environmental conditions change.

The local turnover of wild type cells, cross-feeding clusters, and auxotrophic mutants in spa-
tially structured environments combined with the observation that global genotype abun-
dances remained relatively stable, is strikingly reminiscent of a spatial zero-sum game (e.g. the
‘rock-scissor-paper game’). Biological examples include non-transitive competitive networks as
displayed by bacteriocin- producing, -resistant, and -sensitive E. coli cells (see [43] for a review
and [44] for a theoretical study) or the reproductive strategies of small lizards (Uta stansburi-
ana) that are associated with color polymorphisms [45].

Our results reveal that environments, in which the essentially required metabolites were
not limiting, strongly selected for auxotrophic genotypes (Fig 2). This pattern was indepen-
dent of the production costs and the diffusion rate of the focal metabolite. This finding is in
line with theoretical work showing that cooperation is favored under resource limited condi-
tions [46] and experimental studies demonstrating that auxotrophic mutants of different
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bacterial species (i.e. E. coli, Acinetobacter baylyi, and Bacillus subtilis) that lack the ability to
biosynthesize a certain metabolite gain a selective advantage in environments that contain the
corresponding metabolite in sufficient amounts [33, 47]. Also cross-feeding genotypes
benefited from increased metabolite availabilities in the environment—albeit this advantage
only manifested at higher benefit-to-cost ratios (Fig 3). This was likely due to the fact that
even though cross-feeders saved the costs to produce one amino acid, they were still burdened
with the investment to produce increased amounts of other amino acids. Only when these
production cost were very low, cross-feeders increasingly benefited from environmentally
supplemented amino acids as well as the metabolite released by the corresponding other
cross-feeder.

Interestingly, our results demonstrate that obligate cross-feeding of essential metabolites
can stabilize genotypic richness in microbial communities even above the limits that are pre-
dicted by the competitive exclusion principle [8, 9]. According to this theory, the number of
different species that can coexist is limited by the number of resources that are available in the
same environment. In the case analyzed in this study, all genotypes utilize the same carbon
source, yet some of them provide new resources that are essentially required by others to grow.
Thus, when amino acids are lacking in the environment, both overproducers and cross-feeders
construct the niche that allows other community members (i.e. auxotrophs and cross-feeders)
to grow [48, 49]. Conversely, externally providing the required metabolites to genotypically
diverse communities uncoupled the obligate metabolic interactions and significantly reduced
the genotypic diversity in spatially structured environments. This effect is analogous to the so-
called ‘paradox of enrichment’ [50]: supplementation of limiting nutrients to an ecosystem
does not relax competitive interactions, but intensifies them, by favoring the most competitive
species. Originally proposed for interactions between two trophic levels (i.e. predator-prey
interactions), nutrient addition has also been shown to destabilize steady states of competitive
ecosystems [50]. Thus, our study extends this list by obligate metabolic cross-feeding interac-
tions that are ecologically uncoupled by an environmental nutrient availability. As a conse-
quence, more competitive genotypes will take over, which ultimately leads to a loss of
genotypic diversity in the population. Strikingly, experimental nutrient supplementation to soil
also resulted in a significantly reduced bacterial diversity [51]. However, future work is neces-
sary to determine whether and to which extend this result was due to the uncoupling of obli-
gate cross-feeding interactions.

A main conclusion that follows from the results of our study is that spatially structured
environments that show fluctuating nutrient availabilities should select for a loss of biosyn-
thetic genes when the corresponding metabolites are sufficiently available in the environment,
yet favor cooperative cross-feeding when metabolite levels drop below a certain level. Indeed,
bacteria usually exist in highly structured environments [52], in which they experience fre-
quent changes in the availability of (essential) nutrients [53, 54] and both uni- and bilateral
cross-feeding is common in these bacterial communities [19–22]. Moreover, less than 1% of
all bacterial species known are amenable to laboratory cultivation in monoculture [55, 56], yet
this fraction can be increased by growing seemingly unculturable bacteria in the presence of
other community members [57]. These findings suggest that obligate cross-feeding of essen-
tial metabolites could explain the frequently observed difficulties to cultivate natural bacteria
isolates under laboratory conditions. The fact that simply the deletion of three different meta-
bolic genes was sufficient to generate the complex patterns of metabolic interdependencies
[18] analyzed in this work suggests gene loss is a powerful source of synergistic ecological
interactions. Once established, obligate metabolic interactions may intensify in a ‘black-
queen’-type race [58], in which locally interacting partners loose additional metabolic func-
tions that are compensated by other community members. Over time, this process should lead
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to increasingly intertwined metabolic interactions within microbial communities, whose
dynamics will most likely be also determined by the key parameters identified in this study: i)
degree of spatial structuring, ii) benefit-to-cost ratio, and iii) environmental availability of
exchanged nutrients.

Given the enormous fitness advantages that result from the different metabolic interactions
a question arises: What maintains prototrophic genotypes in the long-run? By losing the ability
to produce certain metabolites, auxotrophic genotypes as well as the type of cross-feeders ana-
lyzed here and in [18] trade their metabolic autonomy against an immediate fitness advantage.
As a consequence, the reproduction of these types becomes contingent on an environmental
supply of the required nutrient, reflecting the dilemma of specialization versus flexibility.
Assuming the environmental conditions to which bacterial metapopulations are exposed
change frequently, prototrophic bacteria should be globally maintained, because some local
patches feature conditions under which they are selectively favored. In this case, prototrophic
genotypes would serve as generalist dispersal unit that can found new populations, in which
newly-emerged adaptive loss of function mutants can thrive. This scenario is consistent with
prototrophic bacterial pathogens such as Pseudomonas fluorescens that opportunistically infect
the lung of cystic fibrosis patients and—due to increased metabolite concentrations in the spu-
tum—rapidly evolve amino acid auxotrophies [59, 60].

Our results indicate that obligate metabolic interactions represent a strong ecological force
to stabilize a range of different genotypes, which can help to maintain genotypic diversity
within microbial populations and communities. Especially spatial structure with limited
metabolite diffusion favored cooperative cross-feeding via local feedbacks that excluded less
efficient cooperators or, non-cooperating auxotrophic genotypes. Our model predicts that bio-
films (i.e. highly structured environments with very limited metabolite diffusion) and environ-
ments that frequently fluctuate in their nutrient availability should generally select for
cooperative cross-feeding. Taken together, by implementing biologically realistic parameter
values, our model suggests that mutualistic cross-feeding interactions between different geno-
types should readily evolve in microbial communities.

Methods
The description of CELL-ABC basically follows the ODD-protocol, which was developed for
describing individual- and agent-based models [61, 62]. Non-applicable sections of the proto-
col were omitted.

CELL-ABCmodel description (ODD protocol)
Purpose. This model aims at simulating metabolic exchange among bacteria to identify

the conditions under which cross-feeding is evolutionarily stable despite competition with met-
abolically autonomous genotypes (i.e. amino acid overproducing- and prototrophic genotypes)
as well as with non-cooperating auxotrophs.

Entities, state variables, and scales. In our model, cells of Escherichia coli strains are rep-
resented by the lattice sites (grid-cells) of a Cartesian grid. The grid has periodic boundary con-
ditions and was determined to dimensions of 100x100 cells as previously determined in a pilot
study (see S4A Fig). Grid-cells can either be free or occupied by a strategy. There are six types
of strategies, which differ in their fundamental metabolic properties: prototrophic wild type, a
genotype overproducing the two amino acids (arginine (Arg) and leucine (Leu)), two geno-
types that are auxotrophic for Arg and Leu (non-cooperators), and two cross-feeding geno-
types (i.e. cooperators) that are auxotrophic for one, yet produce increased amounts of the
other amino acid. These six genotypes represent a functional subset of the model system used
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by Pande et al. (2014) [18] (Fig 1). Additionally, each grid-cell has a list of concentrations of
the two focal amino acids Arg and Leu representing the amount of amino acids currently avail-
able in this grid-cell. Thus, a grid-cell represents both an individual (i.e. characterized by its
strategy and metabolic properties) as well as the environment (i.e. the local concentration of
amino acids that is temporally available).

Each genotype that occupies a grid-cell has a fitness value that results from the local avail-
ability of amino acids (see Input section). The fitness calculation procedure (see Submodel sec-
tion) of overproducing genotypes is extended by a benefit-to-cost ratio (BCR) parameter to
account for the costs of amino acid overproduction or the benefits stemming from the saving
of amino acid overproduction costs.

One update step in the model represents 10 minutes in real-time. Secretion and growth pro-
cesses derived from experimental results are normalized to this time interval. All simulations
were evaluated after 100 simulation steps (see S4B Fig). The diffusion parameter simulates
slow, fast, or a homogeneous distribution of interchanged metabolites (thus simulating the
effect of spatial structure). In this way, bacterial growth can be simulated either under normal
diffusion conditions or in a homogeneous (i.e. spatially unstructured) environment. S1 Table
provides an overview over the state variables and parameters used.

Process overview and scheduling. At every discrete time step, each process (S1 Fig) is
carried out simultaneously by all grid-cells. One update step proceeds as follows: grid-cells
with mutants carrying overproduction mutations release amino acids by updating their list
of amino acid concentrations (see submodelMetabolite Secretion). Then diffusion is applied
to the amino acids in each grid-cell (see submodel Diffusion). All occupied grid-cells then cal-
culate their fitness value (see submodel Fitness Calculation). Grid-cells with fitness values
equal to zero (e.g. to a lack of essential amino acids) were assumed to be not viable. These
grid-cells were set to empty and thus are excluded from the fitness-based contest. The last
process of each update step is the spreading of genotypes (i.e. replication), in which all grid-
cells participate in a fitness-based contest in their Moore neighborhood and with a weighted
probability adopt the strategy of the neighbor with the highest fitness-value (see submodel
Spreading).

Initialization. Initially, all six focal genotypes are randomly assigned to grid-cells with a
probability of 15%, so that all types are equi-abundant. The remaining 10% of cells are left
empty. Different initial starting frequencies of cross-feeding genotypes revealed no qualitative
differences in the final community composition over a broad range of parameter combinations
(S2 Fig). Fitness values and all local amino acid concentrations are set to 0.

Input. The model has two main interfaces, in which experimental data have been imple-
mented: i) growth experiments analyzing the dependence of the genotypes’ growth rates (Fig
1B and 1C) in response to different amino acid concentrations in the environment and ii)
biosensor experiments revealing the amount of amino acids produced by each genotypes per
unit time (see S1 Text). Diffusion coefficients of amino acids were obtained from the litera-
ture [63, 64].

Output. A parameter to quantitatively describe the co-occurrence of genotypes (i.e. poten-
tial cross-feeding interactions) was calculated from the mean minimal Euclidean distance
(MMED) for each combination of mutant strategies. The calculations were performed for each
grid-cell to 30% of randomly chosen non-empty cells. Since a random initial distribution of six
different mutants results in an expected MMED of 1/6, each deviation from this value is caused
by interactions among genotypes (i.e. fitness-based contests). The MMED was calculated after
100 time-steps from 50 independent simulation runs for each parameter combination. Beyond
this number of iterations, all grid-cells were usually occupied by the same genotypes (e.g. all
wild type) or the ratio of remaining strategies did not change significantly. Finally the MMED

Cooperative Cross-Feeding in Bacterial Communities

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004986 June 17, 2016 15 / 21



values were transformed to a measure of connectivity:

connectivity ¼ 1� MMED
MMEDmax

ð1Þ

Thus, cells with a low MMED indicate a high connectivity and thus represent a high degree
of co-occurrence among genotypes. Connections, in which one or both genotypes had gone
extinct during simulations, were set to a connectivity value of zero. For further analysis, meta-
bolic cross-feeding interaction were classified as unilateral and bilateral depending on the
directionality of metabolic exchange. Unilateral cross-feeding occurs between overproducing-,
auxotrophic-, and cross-feeding mutants, while bilateral interactions are restricted to reciprocal
cross-feeding interactions between two cross-feeding genotypes. Spatial co-occurrence of geno-
types was used to estimate the abundance and directionality of cross-feeding.

0.1 Submodels
Metabolite secretion. All genotypes carrying the overproduction mutation produced

increased amounts of amino acids. While the overproducer secretes increased amounts of Arg
and Leu, the cross-feeding genotypes solely produce either Arg or Leu. The amount of secreted
amino acid per cell and time interval was calculated from biosensor experiments (see S1 Text).
The local concentrations of amino acids are stored in concentration lists that are assigned to
each grid-cell.

Diffusion. In CELL-ABC, diffusion of amino acids is modeled as proposed by Grajdeanu
[65]. The local amino acid concentrations of both aminoacids (i.e. Arg and Leu) were synchro-
nously updated for all cells. We chose this diffusion model over NetLogo’s built-in diffusion
routine, because we anticipated that the stability of cross-feeding consortia should depend on
their position relative to each other and on small differences in environmental amino acid con-
centrations. In contrast to NetLogo’s built-in diffusion routine, the model by Grajdaenu dis-
criminates between orthogonal and diagonal neighbors of a grid-cell and thus allows to more
realistically represent diffusion processes within a discrete grid.

The chosen diffusion-radius regulates how often the diffusion calculation is repeated at each
update step, thereby determining the rate of diffusion of amino acids in relation to a grid-cell’s
update step. Increasing diffusion radii flatten the gradient and extend the spatial distribution of
amino acids. This increases the amount of amino acids the focal cell receives from more, and
potentially more diverse, neighboring patches, while the local competition of neighboring cells
is maintained. The cumulative local concentration of amino acids is lower when diffusion radii
are large as compared to smaller diffusion radii that show steeper gradients.

Fitness calculation. For each grid-cell, a fitness value is calculated depending on the local
availability of amino acids. For this, results of the growth performance experiments were used
(i.e. amino acid concentration-dependent growth curves as determined for wild type, amino
acid auxotrophs, overproducers, and cross-feeding genotypes) (see Input section and S1 Text
for further details). Thus the fitness of a single genotype is determined by its own strategy, the
qualitative and quantitative composition of its neighborhood (i.e. amino acid donors or auxo-
trophs), and diffusion parameters. Fitness values of overproducing and cross-feeding genotypes
can additionally be in- or decreased relative to experimentally determined values to computa-
tionally in- or decrease the costs of metabolite overproduction. The resulting parameter ‘bene-
fit-to-cost-ratio’ (BCR) is set to 1 for the experimentally characterized model genotypes. BCR
values< 1 represent cases, in which the costs for amino acid overproduction were computa-
tionally increased over the empirical example, while values> 1 simulate cases in which amino
acids were less costly to overproduce.
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The fitness of non-overproducing genotypes (i.e. wild type and auxotrophs) is calculated by:

fwt ¼ faux ¼
Vmax � clocalAA
Km þ clocalAA

ð2Þ

Parameter Vmax and Km are derived from in vitro experiments for each genotype (see Sup-
plement S1 Text and S3 Fig). The local amount of amino acid is given by clocal. For all genotypes
that produce increased amount of amino acids (i.e. overproducer and cross-feeders) the BCR
parameter is added to alter the benefit to cost ratio:

fop ¼ fcf ¼ BCR � Vmax � clocalAA
Km þ clocalAA

ð3Þ

Spreading. For each cell the neighbor with the highest fitness value in its Moore neighbor-
hood (including itself) is identified that has not yet spread in this time step. A weighted, fit-
ness-based contest is performed to simulate competition, making it possible for the cell with
the lower fitness value to keep its settings. In the contest, a random number between 0 and 1 is

drawn from a uniform distribution. If it is below
fp

fpþfn
, where fp is the fitness value of the focal

cell and fn is the fitness value of the fittest neighbor, the grid-cell keeps its settings, otherwise
the fittest neighbor overgrows the less fit cell. If there is more than one fittest neighbor, one
type is chosen randomly from a uniform distribution.

Supporting Information
S1 Table. Table of state variables and parameters.
(PDF)

S1 Fig. UML of CELL-ABC representing the order of the main simulation processes. Dia-
gram of the basic processes and procedures of CELL-ABC model.
(TIF)

S2 Fig. Varying initial fraction of cross-feeding genotypes. Repeated simulations (n = 200)
are plotted for varying initial fractions (5% to 95%) of cross-feeding genotypes (i.e. CF1 and
CF2) in the community. Simulations were run for low (A and C) and high (B and D) diffusion
conditions, both in the absence (A and B) and presence (C and D) of an environmental supply
of amino acid. Under none of the four treatments analyzed did the initial community-level pro-
portion of cross-feeding genotypes qualitatively affect their final frequency in the community.
(TIF)

S3 Fig. Experimentally determined growth parameters of all six genotypes. AMonod kinetic
was fitted to the growth of all genotypes. Based on this, the growth parameters (A) Vmax and
(B) KM were determined for wild type (WT), the overproducer (Δmdh, OP), the arginine
auxotroph (ΔargH, AUX 1), the leucine auxotroph (ΔleuB, AUX 2), as well as the two cross-
feeders (ΔargHΔmdh, CF 1, ΔleuBΔmdh, CF 2). Different letters indicate significant differences
between groups (A: Kruskal-Wallis test followed by a Tamhanes post-hoc test: P< 0.05, n = 8,
B: two-way ANOVA followed by a SNK post-hoc test: P< 0.05, n = 8).
(TIF)

S4 Fig. Simulated genotype fractions at different grid dimensions and durations of simula-
tion runs. Fractions of simulated genotypes after (A) 100 simulation steps using grids of
different dimensions (n = 15) or (B) on a grid with the dimensions 100x100 grid cells after sim-
ulations of a different duration (n = 15). Both parameters were varied to identify the optimal
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grid size and simulation duration that would yield representative genotype distributions while
minimizing computational costs. This preliminary analysis revealed a grid size of� 30x30 cells
and� 100 simulation steps was required for the planned analysis.
(TIF)

S5 Fig. Population dynamics in environments with amino acid supplementation. Repeated
simulations (n = 100) are plotted for varying benefit-to-cost ratios (BCR) and degrees of amino
acid diffusion (bold line: mean, shaded ribbon: standard deviation). All simulations start with a
random distribution of all genotypes and undergo a specific dynamic alternation of genotypes
frequencies. Depending on the genotype’s strategy, it can repress, facilitate, or even outcompete
others (see text for more details). Legend: red = wild type, blue = overproducing genotype,
yellow = auxotroph (2 types), green = cross-feeder (2 types).
(TIF)

S1 Text. Laboratory experiments.
(PDF)
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