

Principes de la thermo : systèmes fermés, systèmes ouverts en régime permanent. Applications.

Samuel Croquette

Table des matières

1	Prérequis	1
2	Introduction	1
3	Partie I : Thermo en système ouvert 3.1 Rappels	
	3.3 Bilan d'entropie en régime stationnaire	
4	Partie II : Applications en aéronautique 4.1 Tuyère propulsive	
5	Conclusion	4
6	Questions et remarques des correcteurs	4
7	Bibliographie	4

1 Prérequis

- ▷ Principes de la thermo en système fermé
- ▷ Bilan de masse sur un système ouvert
- ▶ Première et deuxième lois de Joule
- ▷ Caractère réversible ou non d'une transformation
- ▶ Transformations usuelles (isobare, isentropique, etc.)
- ▶ Lois de Laplace

2 Introduction

La thermo des systèmes fermés ne permet pas de décrire simplement la plupart des applications industrielles. Nécessité d'adapter les principes de la thermodynamique pour un système ouvert.

3 Partie I : Thermo en système ouvert

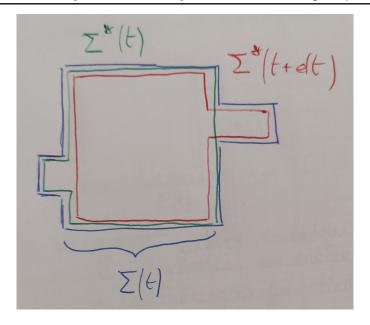
3.1 Rappels

Le premier et deuxième principe en système fermé.

3.2 Premier principe industriel

Voir schéma ci-dessus pour la définition des systèmes. L'étoile désignera par la suite toutes les grandeurs associées au système fermé Σ^* . On indice de plus par e les grandeurs d'entrées et s les grandeurs de sortie. On se place en stationnaire.

Bilan de masse sur un intervalle de temps dt :



$$M^*(t) = M(t) + D_e dt$$

$$M^*(t + dt) = M(t + dt) + D_s dt$$

En faisant la différence de ces deux relations et en divisant par dt on a à l'ordre 1 :

$$\frac{dM^*}{dt} = \frac{dM}{dt} + (D_s - D_e)$$

puis $\frac{dM^*}{dt} = 0$ car système fermé et $\frac{dM}{dt} = 0$ car stationnaire donc $D_e = D_s = D$. Le débit est conservé. Bilan d'énergie totale :

$$E^*(t) = E(t) + D(\frac{v_e^2}{2} + e_{pe} + u_e)dt$$

$$E^*(t + dt) = E(t + dt) + D(\frac{v_s^2}{2} + e_{ps} + u_s)dt$$

On obtient de la même manière que précédemment :

$$\frac{dE^*}{dt} = D\Delta_{e/s}(\frac{v^2}{2} + e_p + u)$$

Or le premier principe de la thermo en système fermé nous permet d'écrire que $dE^* = \delta W_p + \delta W' + \delta Q = \delta W_p + Dw'dt + Dqdt$ avec δW_p le travail infinitésimal des forces de pression, w' le travail massique utile et q la chaleur massique. De plus le travail des forces de pression d'écrit :

$$\delta W_p = p_e S_e \times v_e dt - p_s S_s \times v_s dt = D dt (\frac{p_e}{\rho_e} - \frac{p_s}{\rho_s})$$

donc on peut écrire :

$$\Delta_{e/s}(\frac{v^2}{2} + e_p + u + \frac{p}{\rho}) = w' + q$$

or $u + \frac{p}{\rho} = h$ donc

$$\Delta_{e/s}(\frac{v^2}{2} + e_p + h) = w' + q$$

C'est le premier principe industriel.

Exemple de la détente de Joule-Kelvin : tout est nul (écoulement lent, horizontal, sans pièce mobile et calorifugé) sauf la variation d'enthalpie donc on a $h_e = h_s$. Expérimentalement pour un gaz parfait on n'observe pas de variation de température ce qui est cohérent avec la deuxième loi de Joule.

3.3 Bilan d'entropie en régime stationnaire

Avec le même système et les mêmes hypothèses qu'en 2) (en ajoutant que la température extérieure T_0 est constante au cours de la transformation) on peut faire un bilan d'entropie :

$$S^*(t) = S(t) + Ds_e dt$$
 et $S^*(t + dt) = S(t + dt) + Ds_s dt$

donc en stationnaire $\frac{dS^*}{dt}=D\Delta_{e/s}s$ puis en exploitant le deuxième principe de la thermo en système fermé ($dS^*=\frac{\delta Q}{T_0}+\delta S_c$) on a :

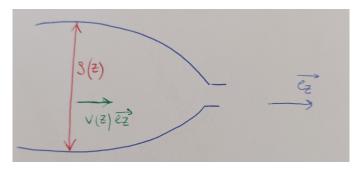
$$D\Delta_{e/s}s = \frac{1}{T_0}\frac{\delta Q}{dt} + \frac{\delta S_c}{dt}$$

Exemple de la détente de Joule et Kelvin :

Ici la transformation est adiabatique irréversible donc $\delta Q = 0$ et $\delta S_c > 0$ soit avec la relation ci-dessus $s_s > s_e$. Cela est cohérent avec la perte d'information qu'on a de la sortie à l'entrée sur la position des molécules de gaz (elles sont "bloquées" au niveau du bouchon en entrée et sont en écoulement libre en sortie).

4 Partie II : Applications en aéronautique

4.1 Tuyère propulsive



Elle a pour objectif d'accélérer les gaz en sortie d'un moteur de fusée par effet Venturi. On ne s'intéresse ici qu'à la partie convergente car dans la partie divergente le gaz s'écoule à vitesse supersonique donc bon la modélisation...

Hypothèses : L'air est assimilé à un gaz parfait diatomique. On est en régime stationnaire et l'écoulement horizontal dans la tuyère est associé à un transformation adiabatique réversible.

PPI:

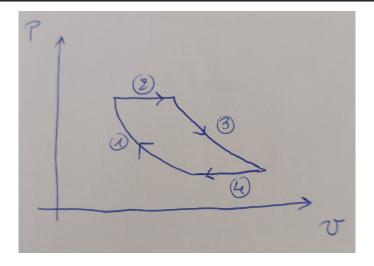
q=0 car adiabatique, w'=0 car pas de pièce mobile et $e_{pe}=e_{ps}$ car horizontal. De plus $v_e << v_s$. On a donc $h_e=\frac{v_s^2}{2}+h_s$.

L'air est supposé parfait donc $h_s - h_s = \frac{c_p}{M}(T_s - T_e)$. On exploite alors les lois de Laplace pour faire apparaître le rapport $x = \frac{p_s}{p_e}$ qui est souvent le paramètre modifiable dans les tuyères. On a alors $h_s - h_e = \frac{\gamma R}{M(\gamma-1)}T_e(x^{1-1/\gamma}-1)$ donc avec la relation ci-dessus on a $v_s \approx \sqrt{\frac{2\gamma RT_e}{M(\gamma-1)}(1-x^{1-1/\gamma})}$. On s'intéresse ensuite au débit massique car la force de poussée est proportionnelle à $D_s v_s$. Avec la loi des gaz parfaits on a $\rho_s = \frac{p_s M}{RT_s}$ donc avec les lois de Laplace $\rho_s = \frac{xp_e M}{RT_e}x^{1-1/\gamma}$ donc $D_s \propto x^{1/\gamma}\sqrt{1-x^{1-1/\gamma}}$. En multipliant par v_s et en cherchant le maximum de la fonction on peut trouver x tel que la force de poussée est maximale.

4.2 Turbopropulseur

Un turbopropulseur permet de faire tourner une hélice grâce à un compresseur et une turbine. En listant un certain nombre d'hypothèses (voir diapo) on peut construire la transformation dans le diagramme (P,v) avec v le volume massique. On applique le premier principe industriel dans toutes les phases (1 à 4) de la transformation.

Phase 1 : les lois de Laplace donnent $T_1 = T_0(\frac{p_1}{p_0})^{1-1/\gamma} = 541K$ et l PPI donne un travail reçu du compresseur $w_c = c_p(T_1 - T_0) > 0$.



Phase 2 : le PPI donne $q = c_p(T_1' - T_1) > 0$

Phase 3 : le PPI donne un travail cédé à la turbine de $w_t = c_p(T_0' - T_1') < 0$ et les lois de la Laplace donnent $T_0' = T_1'(\frac{p_0}{p_1})^{1-1/\gamma} = 518K$.

Bilan énergétique:

L'énergie cédée à la turbine par l'air sert à faire fonctionner le compresseur et l'hélice : $-w_t = w_c + w_h$ donc $w_h = c_p(T_0 - T_1 + T_0' - T_1')$. L'application numérique donne $w_h \approx 222kJ/kg$ et q = 461kJ/kg. Le rendement du turbopropulseur est $\eta = \frac{w_h}{q} = 1 - \frac{T_0' - T_0}{T_1' - T_1} \approx 0,48$.

5 Conclusion

Pratique le PPI pour étudier pas mal d'applications. Il y a aussi énoemément d'applications dans la production de froid.

6 Questions et remarques des correcteurs

- ▶ post-combustion pour améliorer le rendement
- ▷ cap prépa PT ancienne édition pour toute la thermo
- ▷ sujets de thermo banque PT pour pas mal d'applications
- $\,\rhd\,$ cycle de Carnot : c'est l'isotherme qui n'est pas réaliste
- \triangleright diagramme de Clapeyron \neq diagramme de Watt
- ⊳ différence entre travail et chaleur : mouvement macroscopique vs mouvement microscopique
- ▷ transformation polytropique souvent utilisée à la place de l'isotherme ou de l'adiabatique réversible
- ▷ il faudrait mettre une application à vapeur + une application à gaz parfait plutôt que deux applications à gaz parfait
- ▷ Centrale B PC 2017

7 Bibliographie

- ⊳ le Pérez pour les applications et le bilan d'entropie
- ▷ des cours de prépa pour le PPI